LLM推理请求测试
参考vllm启动兼容OpenAI的API接口,${docker_ip}替换为实际宿主机的IP地址。如果启动服务未添加served-model-name参数,${container_model_path}的值请与model参数的值保持一致,如果使用了served-model-name参数,${container_model_path}请替换为实际使用的模型名称。
curl http://${docker_ip}:8080/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "${container_model_path}", "prompt": "hello", "max_tokens": 7, "temperature": 0 }'
curl -X POST "http://${docker_ip}:8080/v1/chat/completions" \ -H "Content-Type: application/json" \ -d '{ "model": "${container_model_path}", "messages": [ { "role": "user", "content": "hello" } ], "max_tokens": 100, "top_k": -1, "top_p": 1, "temperature": 0, "ignore_eos": false, "stream": false }'
服务的API与vLLM官网相同,此处介绍关键参数。详细参数解释请参见https://docs.vllm.ai/en/stable/api/。

embedding模型,使用OpenAI启动服务,发送推理请求使用的接口如下。
curl -X POST http://${docker_ip}:8080/v1/embeddings
参数 |
是否必选 |
默认值 |
参数类型 |
描述 |
---|---|---|---|---|
model |
是 |
无 |
Str |
通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${container_model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。 |
prompt |
是 |
- |
Str |
请求输入的问题。 |
max_tokens |
否 |
16 |
Int |
每个输出序列要生成的最大tokens数量。 |
top_k |
否 |
-1 |
Int |
控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 |
top_p |
否 |
1.0 |
Float |
控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0,1] 范围内。设置为1表示考虑所有tokens。 |
temperature |
否 |
1.0 |
Float |
控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 |
stop |
否 |
None |
None/Str/List |
用于停止生成的字符串列表。返回的输出将不包含停止字符串。 例如:["你","好"],生成文本时遇到"你"或者"好"将停止文本生成。 |
stream |
否 |
False |
Bool |
是否开启流式推理。默认为False,表示不开启流式推理。 |
n |
否 |
1 |
Int |
返回多条正常结果。 约束与限制: 不使用beam_search场景下,n取值建议为1≤n≤10。如果n>1时,必须确保不使用greedy_sample采样。也就是top_k > 1; temperature > 0。 使用beam_search场景下,n取值建议为1<n≤10。如果n=1,会导致推理请求失败。
说明:
n建议取值不超过10,n值过大会导致性能劣化,显存不足时,推理请求会失败。 |
use_beam_search |
否 |
False |
Bool |
是否使用beam_search替换采样。 约束与限制:使用该参数时,如下参数需按要求设置: n>1 top_p = 1.0 top_k = -1 temperature = 0.0 |
presence_penalty |
否 |
0.0 |
Float |
presence_penalty表示会根据当前生成的文本中新出现的词语进行奖惩。取值范围[-2.0,2.0]。 |
frequency_penalty |
否 |
0.0 |
Float |
frequency_penalty会根据当前生成的文本中各个词语的出现频率进行奖惩。取值范围[-2.0,2.0]。 |
length_penalty |
否 |
1.0 |
Float |
length_penalty表示在beam search过程中,对于较长的序列,模型会给予较大的惩罚。 如果要使用length_penalty,必须添加如下三个参数,并且需将use_beam_search参数设置为true,best_of参数设置大于1,top_k固定为-1。 "top_k": -1 "use_beam_search":true "best_of":2 |
ignore_eos |
否 |
False |
Bool |
ignore_eos表示是否忽略EOS并且继续生成token。 |
guided_json |
否 |
None |
Union[str,dict,BaseModel] |
使用openai启动服务,如果需要使用JSON Schema时要配置guided_json参数,详细配置参照https://support.huaweicloud.com/bestpractice-modelarts/modelarts_llm_infer_5901030.html。 |