文档首页/
AI开发平台ModelArts/
最佳实践/
DeepSeek&Qwen3基于Lite Server&Cluster推理/
DeepSeek&Qwen3模型基于Lite Cluster适配NPU的混部推理解决方案/
权重量化补充说明/
W8A8量化替换配置文件 - config.json
更新时间:2025-10-14 GMT+08:00
W8A8量化替换配置文件 - config.json
权重量化替换相关配置文件。
该文件用于替换执行W8A8量化后权重里的config.json文件,详见W8A8权重量化。
{
"architectures": [
"DeepseekV3ForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_deepseek.DeepseekV3Config",
"AutoModel": "modeling_deepseek.DeepseekV3Model",
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
},
"aux_loss_alpha": 0.001,
"bos_token_id": 0,
"eos_token_id": 1,
"ep_size": 1,
"first_k_dense_replace": 3,
"hidden_act": "silu",
"hidden_size": 7168,
"initializer_range": 0.02,
"intermediate_size": 18432,
"kv_lora_rank": 512,
"max_position_embeddings": 163840,
"model_type": "deepseek_v3",
"moe_intermediate_size": 2048,
"moe_layer_freq": 1,
"n_group": 8,
"n_routed_experts": 256,
"n_shared_experts": 1,
"norm_topk_prob": true,
"num_attention_heads": 128,
"num_experts_per_tok": 8,
"num_hidden_layers": 61,
"num_key_value_heads": 128,
"num_nextn_predict_layers": 1,
"pretraining_tp": 1,
"q_lora_rank": 1536,
"qk_nope_head_dim": 128,
"qk_rope_head_dim": 64,
"quantize": "w8a8_dynamic",
"quantization_config": {
"config_groups": {
"group_0": {
"input_activations": {
"actorder": null,
"block_structure": null,
"dynamic": true,
"group_size": null,
"num_bits": 8,
"observer": "memoryless",
"observer_kwargs": {},
"strategy": "token",
"symmetric": true,
"type": "int"
},
"output_activations": null,
"targets": [
"Linear"
],
"weights": {
"actorder": null,
"block_structure": null,
"dynamic": false,
"group_size": null,
"num_bits": 8,
"observer": "minmax",
"observer_kwargs": {},
"strategy": "channel",
"symmetric": true,
"type": "int"
}
}
},
"format": "int-quantized",
"global_compression_ratio": 1.5943962512751308,
"ignore": [
"model.layers.0.self_attn.kv_b_proj",
"model.layers.1.self_attn.kv_b_proj",
"model.layers.2.self_attn.kv_b_proj",
"model.layers.3.self_attn.kv_b_proj",
"model.layers.4.self_attn.kv_b_proj",
"model.layers.5.self_attn.kv_b_proj",
"model.layers.6.self_attn.kv_b_proj",
"model.layers.7.self_attn.kv_b_proj",
"model.layers.8.self_attn.kv_b_proj",
"model.layers.9.self_attn.kv_b_proj",
"model.layers.10.self_attn.kv_b_proj",
"model.layers.11.self_attn.kv_b_proj",
"model.layers.12.self_attn.kv_b_proj",
"model.layers.13.self_attn.kv_b_proj",
"model.layers.14.self_attn.kv_b_proj",
"model.layers.15.self_attn.kv_b_proj",
"model.layers.16.self_attn.kv_b_proj",
"model.layers.17.self_attn.kv_b_proj",
"model.layers.18.self_attn.kv_b_proj",
"model.layers.19.self_attn.kv_b_proj",
"model.layers.20.self_attn.kv_b_proj",
"model.layers.21.self_attn.kv_b_proj",
"model.layers.22.self_attn.kv_b_proj",
"model.layers.23.self_attn.kv_b_proj",
"model.layers.24.self_attn.kv_b_proj",
"model.layers.25.self_attn.kv_b_proj",
"model.layers.26.self_attn.kv_b_proj",
"model.layers.27.self_attn.kv_b_proj",
"model.layers.28.self_attn.kv_b_proj",
"model.layers.29.self_attn.kv_b_proj",
"model.layers.30.self_attn.kv_b_proj",
"model.layers.31.self_attn.kv_b_proj",
"model.layers.32.self_attn.kv_b_proj",
"model.layers.33.self_attn.kv_b_proj",
"model.layers.34.self_attn.kv_b_proj",
"model.layers.35.self_attn.kv_b_proj",
"model.layers.36.self_attn.kv_b_proj",
"model.layers.37.self_attn.kv_b_proj",
"model.layers.38.self_attn.kv_b_proj",
"model.layers.39.self_attn.kv_b_proj",
"model.layers.40.self_attn.kv_b_proj",
"model.layers.41.self_attn.kv_b_proj",
"model.layers.42.self_attn.kv_b_proj",
"model.layers.43.self_attn.kv_b_proj",
"model.layers.44.self_attn.kv_b_proj",
"model.layers.45.self_attn.kv_b_proj",
"model.layers.46.self_attn.kv_b_proj",
"model.layers.47.self_attn.kv_b_proj",
"model.layers.48.self_attn.kv_b_proj",
"model.layers.49.self_attn.kv_b_proj",
"model.layers.50.self_attn.kv_b_proj",
"model.layers.51.self_attn.kv_b_proj",
"model.layers.52.self_attn.kv_b_proj",
"model.layers.53.self_attn.kv_b_proj",
"model.layers.54.self_attn.kv_b_proj",
"model.layers.55.self_attn.kv_b_proj",
"model.layers.56.self_attn.kv_b_proj",
"model.layers.57.self_attn.kv_b_proj",
"model.layers.58.self_attn.kv_b_proj",
"model.layers.59.self_attn.kv_b_proj",
"model.layers.60.self_attn.kv_b_proj",
"model.layers.61.self_attn.kv_b_proj",
"lm_head"
],
"kv_cache_scheme": null,
"quant_method": "compressed-tensors",
"quantization_status": "compressed"
},
"rms_norm_eps": 1e-06,
"rope_scaling": {
"beta_fast": 32,
"beta_slow": 1,
"factor": 40,
"mscale": 1.0,
"mscale_all_dim": 1.0,
"original_max_position_embeddings": 4096,
"type": "yarn"
},
"rope_theta": 10000,
"routed_scaling_factor": 2.5,
"scoring_func": "sigmoid",
"seq_aux": true,
"tie_word_embeddings": false,
"topk_group": 4,
"topk_method": "noaux_tc",
"torch_dtype": "bfloat16",
"transformers_version": "4.47.1",
"use_cache": true,
"v_head_dim": 128,
"vocab_size": 129280
}
父主题: 权重量化补充说明