步骤2:测试初始表结构下的系统性能并建立基线
在优化表结构前后,请测试和记录以下详细信息以对比系统性能差异:
- 数据加载时间。
- 表占用的存储空间大小。
- 查询性能。
本次实践中的示例基于使用8节点的dws.d2.xlarge集群。因为系统性能受到许多因素的影响,即使您使用相同的集群配置,结果也会有所不同。
机器型号 |
dws.d2.xlarge VM |
---|---|
CPU |
4*CPU E5-2680 v2 @ 2.80GHZ |
内存 |
32GB |
网络 |
1GB |
磁盘 |
1.63TB |
节点数目 |
8 |
请使用下面的基准表来记录结果。
基准 |
优化前 |
优化后 |
---|---|---|
加载时间(11张表) |
341584 ms |
- |
占用存储 |
||
Store_Sales |
- |
- |
Date_Dim |
- |
- |
Store |
- |
- |
Item |
- |
- |
Time_Dim |
- |
- |
Promotion |
- |
- |
Customer_Demographics |
- |
- |
Customer_Address |
- |
- |
Household_Demographics |
- |
- |
Customer |
- |
- |
Income_Band |
- |
- |
总存储空间 |
- |
- |
查询执行时间 |
||
查询1 |
- |
- |
查询2 |
- |
- |
查询3 |
- |
- |
总执行时间 |
- |
- |
执行以下步骤测试优化前的系统性能,以建立基准。
- 将上一节记下的所有11张表的累计加载时间填入基准表的“优化前”一列。
- 记录各表的存储使用情况。
使用pg_size_pretty函数查询每张表使用的磁盘空间,并将结果记录到基准表中。
1
SELECT T_NAME, PG_SIZE_PRETTY(PG_RELATION_SIZE(t_name)) FROM (VALUES('store_sales'),('date_dim'),('store'),('item'),('time_dim'),('promotion'),('customer_demographics'),('customer_address'),('household_demographics'),('customer'),('income_band')) AS names1(t_name);
显示结果如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
t_name | pg_size_pretty ------------------------+---------------- store_sales | 42 GB date_dim | 11 MB store | 232 kB item | 110 MB time_dim | 11 MB promotion | 256 kB customer_demographics | 171 MB customer_address | 170 MB household_demographics | 504 kB customer | 441 MB income_band | 88 kB (11 rows)
- 测试查询性能。
运行如下三个查询,并记录每个查询的耗费时间。考虑到操作系统缓存的影响,同一查询在每次执行时耗时会有不同属正常现象,建议多测试几次,取一组平均值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
\timing on SELECT * FROM (SELECT COUNT(*) FROM store_sales ,household_demographics ,time_dim, store WHERE ss_sold_time_sk = time_dim.t_time_sk AND ss_hdemo_sk = household_demographics.hd_demo_sk AND ss_store_sk = s_store_sk AND time_dim.t_hour = 8 AND time_dim.t_minute >= 30 AND household_demographics.hd_dep_count = 5 AND store.s_store_name = 'ese' ORDER BY COUNT(*) ) LIMIT 100; SELECT * FROM (SELECT i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact, SUM(ss_ext_sales_price) ext_price FROM date_dim, store_sales, item,customer,customer_address,store WHERE d_date_sk = ss_sold_date_sk AND ss_item_sk = i_item_sk AND i_manager_id=8 AND d_moy=11 AND d_year=1999 AND ss_customer_sk = c_customer_sk AND c_current_addr_sk = ca_address_sk AND substr(ca_zip,1,5) <> substr(s_zip,1,5) AND ss_store_sk = s_store_sk GROUP BY i_brand ,i_brand_id ,i_manufact_id ,i_manufact ORDER BY ext_price desc ,i_brand ,i_brand_id ,i_manufact_id ,i_manufact ) LIMIT 100; SELECT * FROM (SELECT s_store_name, s_store_id, SUM(CASE WHEN (d_day_name='Sunday') THEN ss_sales_price ELSE null END) sun_sales, SUM(CASE WHEN (d_day_name='Monday') THEN ss_sales_price ELSE null END) mon_sales, SUM(CASE WHEN (d_day_name='Tuesday') THEN ss_sales_price ELSE null END) tue_sales, SUM(CASE WHEN (d_day_name='Wednesday') THEN ss_sales_price ELSE null END) wed_sales, SUM(CASE WHEN (d_day_name='Thursday') THEN ss_sales_price ELSE null END) thu_sales, SUM(CASE WHEN (d_day_name='Friday') THEN ss_sales_price ELSE null END) fri_sales, SUM(CASE WHEN (d_day_name='Saturday') THEN ss_sales_price ELSE null END) sat_sales FROM date_dim, store_sales, store WHERE d_date_sk = ss_sold_date_sk AND s_store_sk = ss_store_sk AND s_gmt_offset = -5 AND d_year = 2000 GROUP BY s_store_name, s_store_id ORDER BY s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales ) LIMIT 100;
经过上面的统计后,记录的基准表信息如下:
基准 |
优化前 |
优化后 |
---|---|---|
加载时间(11张表) |
341584ms |
- |
占用存储 |
||
Store_Sales |
42GB |
- |
Date_Dim |
11MB |
- |
Store |
232kB |
- |
Item |
110MB |
- |
Time_Dim |
11MB |
- |
Promotion |
256kB |
- |
Customer_Demographics |
171MB |
- |
Customer_Address |
170MB |
- |
Household_Demographics |
504kB |
- |
Customer |
441MB |
- |
Income_Band |
88kB |
- |
总存储空间 |
42GB |
- |
查询执行时间 |
||
查询1 |
14552.05ms |
- |
查询2 |
27952.36ms |
- |
查询3 |
17721.15ms |
- |
总执行时间 |
60225.56ms |
- |