- 最新动态
- 功能总览
-
服务公告
- 最新公告
- 产品变更公告
- 集群版本公告
-
漏洞公告
- 漏洞修复策略
- Kubernetes安全漏洞公告(CVE-2024-10220)
- Kubernetes安全漏洞公告(CVE-2024-9486,CVE-2024-9594)
- NVIDIA Container Toolkit容器逃逸漏洞公告(CVE-2024-0132)
- Linux CUPS服务RCE 漏洞公告(CVE-2024-47076、CVE-2024-47175、CVE-2024-47176、CVE-2024-47177)
- NGINX Ingress控制器验证绕过漏洞公告(CVE-2024-7646)
- Docker Engine授权插件AuthZ权限绕过漏洞公告(CVE-2024-41110)
- Linux内核权限提升漏洞公告(CVE-2024-1086)
- OpenSSH远程代码执行漏洞公告(CVE-2024-6387)
- Fluent Bit内存崩溃漏洞公告(CVE-2024-4323)
- runc systemd属性注入漏洞公告(CVE-2024-3154)
- runc漏洞(CVE-2024-21626)对CCE服务的影响说明
- Kubernetes安全漏洞公告(CVE-2022-3172)
- Linux Kernel openvswitch 模块权限提升漏洞预警(CVE-2022-2639)
- nginx-ingress插件安全漏洞预警公告(CVE-2021-25748)
- nginx-ingress插件安全漏洞预警公告(CVE-2021-25745,CVE-2021-25746)
- containerd容器进程权限提升漏洞公告(CVE-2022-24769)
- CRI-O容器运行时引擎任意代码执行漏洞(CVE-2022-0811)
- linux内核导致的容器逃逸漏洞公告(CVE-2022-0492)
- containerd镜像Volume非安全处理漏洞公告(CVE-2022-23648)
- Linux内核整数溢出漏洞(CVE-2022-0185)
- Linux Polkit 权限提升漏洞预警(CVE-2021-4034)
- Kubernetes subpath符号链接交换安全漏洞(CVE-2021- 25741)
- runc符号链接挂载与容器逃逸漏洞预警公告(CVE-2021-30465)
- Docker资源管理错误漏洞公告(CVE-2021-21285)
- NVIDIA GPU驱动漏洞公告(CVE-2021-1056)
- Sudo缓冲区错误漏洞公告(CVE-2021-3156)
- Kubernetes安全漏洞公告(CVE-2020-8554)
- Apache containerd安全漏洞公告(CVE-2020-15257)
- Docker Engine输入验证错误漏洞公告(CVE-2020-13401)
- Kubernetes kube-apiserver输入验证错误漏洞公告(CVE-2020-8559)
- Kubernetes kubelet资源管理错误漏洞公告(CVE-2020-8557)
- Kubernetes kubelet和kube-proxy授权问题漏洞公告(CVE-2020-8558)
- 修复Kubernetes HTTP/2漏洞公告
- 修复Linux内核SACK漏洞公告
- 修复Docker操作系统命令注入漏洞公告(CVE-2019-5736)
- 全面修复Kubernetes权限许可和访问控制漏洞公告(CVE-2018-1002105)
- 修复Kubernetes Dashboard安全漏洞公告(CVE-2018-18264)
-
产品发布记录
-
集群版本发布记录
- Kubernetes版本策略
-
Kubernetes版本发布记录
- Kubernetes 1.31版本说明
- Kubernetes 1.30版本说明
- Kubernetes 1.29版本说明
- Kubernetes 1.28版本说明
- Kubernetes 1.27版本说明
- Kubernetes 1.25版本说明
- Kubernetes 1.23版本说明
- (停止维护)Kubernetes 1.21版本说明
- (停止维护)Kubernetes 1.19版本说明
- (停止维护)Kubernetes 1.17版本说明
- (停止维护)Kubernetes 1.15版本说明
- (停止维护)Kubernetes 1.13版本说明
- (停止维护)Kubernetes 1.11版本说明
- (停止维护)Kubernetes 1.9及之前版本说明
- 补丁版本发布记录
- 操作系统镜像发布记录
-
插件版本发布记录
- CoreDNS域名解析插件版本发布记录
- CCE容器存储插件(Everest)版本发布记录
- CCE节点故障检测插件版本发布记录
- Kubernetes Dashboard插件版本发布记录
- CCE集群弹性引擎版本发布记录
- NGINX Ingress控制器插件版本发布记录
- Kubernetes Metrics Server插件版本发布记录
- CCE容器弹性引擎插件版本发布记录
- CCE突发弹性引擎(对接CCI)插件版本发布记录
- CCE AI套件(NVIDIA GPU)版本发布记录
- CCE AI套件(Ascend NPU)版本发布记录
- Volcano调度器版本发布记录
- CCE密钥管理(对接 DEW)插件版本发布记录
- CCE容器网络扩展指标插件版本发布记录
- 节点本地域名解析加速插件版本发布记录
- 云原生监控插件版本发布记录
- 云原生日志采集插件版本发布记录
- 容器镜像签名验证插件版本发布记录
- Grafana插件版本发布记录
- OpenKruise插件版本发布记录
- Gatekeeper插件版本发布记录
- 容器垂直弹性引擎版本发布记录
- CCE集群备份恢复插件版本发布记录(停止维护)
- Kubernetes Web终端版本发布记录(停止维护)
- Prometheus插件版本发布记录(停止维护)
-
集群版本发布记录
- 产品介绍
- 计费说明
- Kubernetes基础知识
- 快速入门
-
用户指南
- 高危操作一览
-
集群
- 集群概述
-
集群版本发布说明
-
Kubernetes版本发布记录
- Kubernetes 1.31版本说明
- Kubernetes 1.30版本说明
- Kubernetes 1.29版本说明
- Kubernetes 1.28版本说明
- Kubernetes 1.27版本说明
- Kubernetes 1.25版本说明
- Kubernetes 1.23版本说明
- (停止维护)Kubernetes 1.21版本说明
- (停止维护)Kubernetes 1.19版本说明
- (停止维护)Kubernetes 1.17版本说明
- (停止维护)Kubernetes 1.15版本说明
- (停止维护)Kubernetes 1.13版本说明
- (停止维护)Kubernetes 1.11版本说明
- (停止维护)Kubernetes 1.9及之前版本说明
- 补丁版本发布记录
-
Kubernetes版本发布记录
- 购买集群
- 连接集群
- 管理集群
-
升级集群
- 升级集群的流程和方法
- 升级前须知
- 升级后验证
- 集群跨版本业务迁移
-
升级前检查异常问题排查
- 升级前检查项
- 节点限制检查异常处理
- 升级管控检查异常处理
- 插件检查异常处理
- Helm模板检查异常处理
- Master节点SSH连通性检查异常处理
- 节点池检查异常处理
- 安全组检查异常处理
- 残留待迁移节点检查异常处理
- K8s废弃资源检查异常处理
- 兼容性风险检查异常处理
- 节点上CCE Agent版本检查异常处理
- 节点CPU使用率检查异常处理
- CRD检查异常处理
- 节点磁盘检查异常处理
- 节点DNS检查异常处理
- 节点关键目录文件权限检查异常处理
- 节点Kubelet检查异常处理
- 节点内存检查异常处理
- 节点时钟同步服务器检查异常处理
- 节点OS检查异常处理
- 节点CPU数量检查异常处理
- 节点Python命令检查异常处理
- ASM网格版本检查异常处理
- 节点Ready检查异常处理
- 节点journald检查异常处理
- 节点干扰ContainerdSock检查异常处理
- 内部错误异常处理
- 节点挂载点检查异常处理
- K8s节点污点检查异常处理
- everest插件版本限制检查异常处理
- cce-hpa-controller插件限制检查异常处理
- 增强型CPU管理策略检查异常处理
- 用户节点组件健康检查异常处理
- 控制节点组件健康检查异常处理
- K8s组件内存资源限制检查异常处理
- K8s废弃API检查异常处理
- 节点NetworkManager检查异常处理
- 节点ID文件检查异常处理
- 节点配置一致性检查异常处理
- 节点配置文件检查异常处理
- CoreDNS配置一致性检查异常处理
- 节点Sudo检查异常处理
- 节点关键命令检查异常处理
- 节点sock文件挂载检查异常处理
- HTTPS类型负载均衡证书一致性检查异常处理
- 节点挂载检查异常处理
- 节点paas用户登录权限检查异常处理
- ELB IPv4私网地址检查异常处理
- 检查历史升级记录是否满足升级条件
- 检查集群管理平面网段是否与主干配置一致
- GPU插件检查异常处理
- 节点系统参数检查异常处理
- 残留packageversion检查异常处理
- 节点命令行检查异常处理
- 节点交换区检查异常处理
- NGINX Ingress控制器插件升级检查异常处理
- 云原生监控插件升级检查异常处理
- Containerd Pod重启风险检查异常处理
- GPU插件关键参数检查异常处理
- GPU/NPU Pod重建风险检查异常处理
- ELB监听器访问控制配置项检查异常处理
- Master节点规格检查异常处理
- Master节点子网配额检查异常处理
- 节点运行时检查异常处理
- 节点池运行时检查异常处理
- 检查节点镜像数量异常处理
- OpenKruise插件兼容性检查异常处理
- Secret落盘加密特性兼容性检查异常处理
- Ubuntu内核与GPU驱动兼容性提醒
- 排水任务检查异常处理
- 节点镜像层数量异常检查
- 检查集群是否满足滚动升级条件
- 轮转证书文件数量检查
- Ingress与ELB配置一致性检查
- 集群网络组件的NetworkPolicy开关检查
- 集群与节点池配置管理检查
- Master节点时区检查
- 集群管理最佳实践
- 节点
- 节点池
- 工作负载
- 调度
-
网络
- 网络概述
- 容器网络
-
服务(Service)
- 服务概述
- 集群内访问(ClusterIP)
- 节点访问(NodePort)
-
负载均衡(LoadBalancer)
- 创建负载均衡类型的服务
- 使用Annotation配置负载均衡类型的服务
- 为负载均衡类型的Service配置HTTP/HTTPS协议
- 为负载均衡类型的Service配置服务器名称指示(SNI)
- 为负载均衡类型的Service配置跨集群的后端
- 为负载均衡类型的Service配置HTTP/2
- 为负载均衡类型的Service配置HTTP/HTTPS头字段
- 为负载均衡类型的Service配置超时时间
- 为负载均衡类型的Service配置TLS
- 为负载均衡类型的Service配置gzip数据压缩
- 为负载均衡类型的Service配置黑名单/白名单访问策略
- 为负载均衡类型的Service指定多个端口配置健康检查
- 为负载均衡类型的Service配置pass-through能力
- 为负载均衡类型的Service配置获取客户端IP
- 为负载均衡类型的Service配置自定义EIP
- 为负载均衡类型的Service配置区间端口监听
- 通过ELB健康检查设置Pod就绪状态
- 健康检查使用UDP协议的安全组规则说明
- DNAT网关(DNAT)
- Headless Service
-
路由(Ingress)
- 路由概述
- ELB Ingress和Nginx Ingress对比
-
ELB Ingress管理
- 通过控制台创建ELB Ingress
- 通过Kubectl命令行创建ELB Ingress
- 用于配置ELB Ingress的注解(Annotations)
-
ELB Ingress高级配置示例
- 为ELB Ingress配置HTTPS证书
- 更新ELB Ingress的HTTPS证书
- 为ELB Ingress配置服务器名称指示(SNI)
- 为ELB Ingress配置多个转发策略
- 为ELB Ingress配置HTTP/2
- 为ELB Ingress配置HTTPS协议的后端服务
- 为ELB Ingress配置GRPC协议的后端服务
- 为ELB Ingress配置超时时间
- 为ELB Ingress配置慢启动持续时间
- 为ELB Ingress配置灰度发布
- 为ELB Ingress配置黑名单/白名单访问策略
- 为ELB Ingress配置多个监听端口
- 为ELB Ingress配置HTTP/HTTPS头字段
- 为ELB Ingress配置gzip数据压缩
- 为ELB Ingress配置URL重定向
- 为ELB Ingress配置Rewrite重写
- 为ELB Ingress配置HTTP重定向到HTTPS
- 为ELB Ingress配置转发规则优先级
- 为ELB Ingress配置自定义Header转发策略
- 为ELB Ingress配置自定义EIP
- 为ELB Ingress配置跨域访问
- 为ELB Ingress配置高级转发规则
- 为ELB Ingress配置高级转发动作
- ELB Ingress转发策略优先级说明
- 多个Ingress使用同一个ELB对外端口的配置说明
- Nginx Ingress管理
- 自建Nginx Ingress迁移到ELB Ingress
- DNS
- 集群网络配置
- 容器如何访问VPC内部网络
- 从容器访问公网
- 网络管理最佳实践
- 存储
- 弹性伸缩
- 云原生观测
- 云原生成本治理
- 命名空间
- 配置项与密钥
- 插件
- 模板(Helm Chart)
- 权限
- 配置中心
- 存储管理-Flexvolume(已弃用)
-
最佳实践
- CCE最佳实践汇总
- 容器应用部署上云CheckList
- 容器化改造
- 集群备份恢复
- 迁移
- DevOps
- 容灾
- 安全
- 弹性伸缩
- 监控
- 集群
-
网络
- 集群网络地址段规划实践
- 集群网络模型选择及各模型区别
- CCE集群实现访问跨VPC网络通信
- 使用VPC和云专线实现容器与IDC之间的网络通信
- 自建IDC与CCE集群共享域名解析
- 通过负载均衡配置实现会话保持
- 不同场景下容器内获取客户端源IP
- 通过配置容器内核参数增大监听队列长度
- 为负载均衡类型的Service配置pass-through能力
- 从Pod访问集群外部网络
- 通过模板包部署Nginx Ingress Controller
- CoreDNS配置优化实践
- CCE Turbo配置容器网卡动态预热
- 集群通过企业路由器连接对端VPC
- 在VPC网络集群中访问集群外地址时使用Pod IP作为客户端源IP
- 存储
- 容器
- 权限
- 发布
- 批量计算
- API参考
- SDK参考
- 场景代码示例
-
常见问题
- 高频常见问题
- 计费类
- 集群
-
节点
- 节点异常问题排查
- 节点创建
-
节点运行
- 集群可用但节点状态为“不可用”如何解决?
- CCE集群中的节点无法远程登录,如何排查解决?
- 如何重置CCE集群中节点的密码?
- 如何收集CCE集群中节点的日志?
- 如何解决yum update升级操作系统导致的容器网络不可用问题?
- Node节点vdb盘受损,通过重置节点仍无法恢复节点?
- CCE集群节点中安装kubelet的端口主要有哪些?
- 如何配置Pod使用GPU节点的加速能力?
- 容器使用SCSI类型云硬盘偶现IO卡住如何解决?
- docker审计日志量过大影响磁盘IO如何解决?
- thinpool磁盘空间耗尽导致容器或节点异常时,如何解决?
- CCE节点上监听的端口列表
- GPU节点使用nvidia驱动启动容器排查思路
- CCE节点NTP时间不同步如何解决?
- Containerd节点业务容器标准输出日志写入过快导致节点数据盘使用率过高
- 为什么kubectl top命令查看节点内存使用超过100%?
- CCE节点事件中一直出现“镜像回收失败”告警如何解决?
- 规格配置变更
- 操作系统问题说明
- 节点池
- 工作负载
-
网络管理
-
网络异常问题排查
- 工作负载网络异常时,如何定位排查?
- 负载均衡类型Service异常问题排查
- 集群内部无法使用ELB地址访问负载
- 集群外部访问Ingress异常
- CCE集群中域名解析失败
- 为什么访问部署的应用时浏览器返回404错误码?
- 为什么容器无法连接互联网?
- VPC的子网无法删除,怎么办?
- 如何修复出现故障的容器网卡?
- 节点无法连接互联网(公网),如何排查定位?
- 如何解决VPC网段与容器网络冲突的问题?
- ELB四层健康检查导致java报错:Connection reset by peer
- Service事件:Have no node to bind,如何排查?
- 为什么登录虚拟机VNC界面会间歇性出现Dead loop on virtual device gw_11cbf51a, fix it urgently?
- 集群节点使用networkpolicy概率性出现panic问题
- 节点远程登录界面(VNC)打印较多source ip_type日志问题
- 使用IE浏览器访问nginx-ingress出现重定向308无法访问
- NGINX Ingress控制器插件升级导致集群内Nginx类型的Ingress路由访问异常
- 负载均衡型Service更新出现错误:Quota exceeded for resources: members_per_pool
- ELB Ingress出现告警:Invalid input for rules
- 为ELB Ingress配置了HTTPS证书后访问异常的原因有哪些?
- 网络规划
- 安全加固
- 网络指导
-
网络异常问题排查
-
存储管理
- 如何扩容容器的存储空间?
- CCE支持的存储在持久化和多节点挂载方面的有什么区别?
- 创建CCE节点时可以不添加数据盘吗?
- CCE集群中的EVS存储卷被删除或者过期后是否可以恢复?
- 公网访问CCE部署的服务并上传OBS,为何报错找不到host?
- Pod接口ExtendPathMode: PodUID如何与社区client-go兼容?
- 创建存储卷失败如何解决?
- CCE容器云存储PVC能否感知底层存储故障?
- 通用文件存储(SFS 3.0)在OS中的挂载点修改属组及权限报错
- 无法使用kubectl命令删除PV或PVC
- 删除挂载了云存储的Pod时提示target is busy
- 无法自动创建包周期的云硬盘存储卷
- 误卸载存储池的磁盘后如何恢复
- 删除动态创建的PVC之后,底层存储依旧残留
- 命名空间
-
模板插件
- 插件异常问题排查
- 集群安装nginx-ingress插件失败,一直处于创建中?
- NPD插件版本过低导致进程资源残留问题
- 模板格式不正确,无法删除模板实例?
- CCE是否支持nginx-ingress?
- 插件安装失败,提示The release name is already exist如何解决?
- 创建或升级实例失败,提示rendered manifests contain a resource that already exists
- kube-prometheus-stack插件实例调度失败如何解决?
- 上传模板失败如何解决?
- 如何根据集群规格调整插件配额?
- NGINX Ingress控制器插件处于Unknown状态时卸载残留
- NGINX Ingress控制器插件升级后无法使用TLS v1.0和v1.1
- API&kubectl
- 域名DNS
- 镜像仓库
- 权限
- 相关服务
- 配置参考
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
NUMA亲和性调度
NUMA节点是Non-Uniform Memory Access(非统一内存访问)架构中的一个基本组成单元,每个节点包含自己的处理器和本地内存,这些节点在物理上彼此独立,但通过高速互连总线连接在一起,形成一个整体系统。NUMA节点能够通过提供更快的本地内存访问来提高系统性能,但通常一个Node节点是多个NUMA节点的集合,在多个NUMA节点之间进行内存访问时会产生延迟,开发者可以通过优化任务调度和内存分配策略,来提高内存访问效率和整体性能。
在云原生环境中,对于高性能计算(HPC)、实时应用和内存密集型工作负载等需要CPU间通信频繁的场景下,跨NUMA节点访问会导致增加延迟和开销,从而降低系统性能。为此,volcano提供了NUMA亲和性调度能力,尽可能把Pod调度到需要跨NUMA节点最少的工作节点上,这种调度策略能够降低数据传输开销,优化资源利用率,从而增强系统的整体性能。
更多资料请查看社区NUMA亲和性插件指导链接:https://github.com/volcano-sh/volcano/blob/master/docs/design/numa-aware.md
前提条件
- 已创建一个CCE Standard集群或CCE Turbo集群,详情请参见购买Standard/Turbo集群。
- 集群中已安装Volcano插件,详情请参见Volcano调度器。
Pod调度行为说明
当Pod设置了拓扑策略时,Volcano会根据Pod设置的拓扑策略预测匹配的节点列表。Pod的拓扑策略配置请参考NUMA亲和性调度使用示例。调度过程如下:
- 根据Pod设置的Volcano拓扑策略,筛选具有相同策略的节点。Volcano提供的拓扑策略与拓扑管理器相同。
- 在设置了相同策略的节点中,筛选CPU拓扑满足该策略要求的节点进行调度。
Pod可配置的拓扑策略 |
Pod调度时筛选节点行为说明 |
|
---|---|---|
1.根据Pod设置的拓扑策略,筛选可调度的节点 |
2.筛选可调度的节点后,进一步筛选CPU拓扑满足策略的节点进行调度 |
|
none |
针对配置了以下几种拓扑策略的节点,调度时均无筛选行为:
|
- |
best-effort |
筛选拓扑策略同样为“best-effort”的节点:
|
尽可能满足策略要求进行调度: 优先调度至单NUMA节点,如果单NUMA节点无法满足CPU申请值,允许调度至多个NUMA节点。 |
restricted |
筛选拓扑策略同样为“restricted”的节点:
|
严格限制的调度策略:
|
single-numa-node |
筛选拓扑策略同样为“single-numa-node”的节点:
|
仅允许调度至单NUMA节点。 |
假设单个节点CPU总量为32U,由2个NUMA节点提供资源,分配如下:
工作节点 |
节点拓扑策略 |
NUMA节点1上的CPU总量 |
NUMA节点2上的CPU总量 |
||
---|---|---|---|---|---|
CPU总量 |
CPU空闲量 |
CPU总量 |
CPU空闲量 |
||
节点-1 |
best-effort |
16U |
7U |
16U |
7U |
节点-2 |
restricted |
16U |
7U |
16U |
7U |
节点-3 |
restricted |
16U |
7U |
16U |
10U |
节点-4 |
single-numa-node |
16U |
7U |
16U |
10U |
Pod设置拓扑策略后,调度情况如图1所示。
- 当Pod的CPU申请值为9U时,设置拓扑策略为“best-effort”,Volcano会匹配拓扑策略同样为“best-effort”的节点-1,且该策略允许调度至多个NUMA节点,因此9U的申请值会被分配到2个NUMA节点,该Pod可成功调度至节点-1。
- 当Pod的CPU申请值为11U时,设置拓扑策略为“restricted”,Volcano会匹配拓扑策略同样为“restricted”的节点-2/节点-3,且单NUMA节点CPU总量满足11U的申请值,但单NUMA节点剩余可用的CPU量无法满足,因此该Pod无法调度。
- 当Pod的CPU申请值为17U时,设置拓扑策略为“restricted”,Volcano会匹配拓扑策略同样为“restricted”的节点-2/节点-3,且单NUMA节点CPU总量无法满足17U的申请值,可允许分配到2个NUMA节点,该Pod可成功调度至节点-3。
- 当Pod的CPU申请值为17U时,设置拓扑策略为“single-numa-node”,Volcano会匹配拓扑策略同样为“single-numa-node”的节点,但由于单NUMA节点CPU总量均无法满足17U的申请值,因此该Pod无法调度。
调度优先级
不管是什么拓扑策略,都是希望把Pod调度到当时最优的节点上,这里通过给每一个节点进行打分的机制来排序筛选最优节点。
原则:尽可能把Pod调度到需要跨NUMA节点最少的工作节点上。
打分公式如下:
score = weight * (100 - 100 * numaNodeNum / maxNumaNodeNum)
参数说明:
- weight:NUMA Aware Plugin的权重。
- numaNodeNum:表示工作节点上运行该Pod需要NUMA节点的个数。
- maxNumaNodeNum:表示所有工作节点中该Pod的最大NUMA节点个数。
例如,假设有三个节点满足Pod的CPU拓扑策略,且NUMA Aware Plugin的权重设为10:
- Node A:由1个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=1
- Node B:由2个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=2
- Node C:由4个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=4
则根据以上公式,maxNumaNodeNum=4
- score(Node A) = 10 * (100 - 100 * 1 / 4) = 750
- score(Node B) = 10 * (100 - 100 * 2 / 4) = 500
- score(Node C) = 10 * (100 - 100 * 4 / 4) = 0
因此最优节点为Node A。
Volcano开启NUMA亲和性调度
- 在节点池中开启静态(static)CPU管理策略,具体请参考 为自定义节点池开启CPU管理策略。
- 登录CCE控制台,单击集群名称进入集群。
- 在左侧选择“节点管理”,在右侧选择“节点池”页签,单击节点池名称后的“更多 > 配置管理”。
- 在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置(cpu-manager-policy)参数值,选择static。
- 单击“确定”,完成配置操作。
- 在节点池中配置CPU拓扑策略。
- 登录CCE控制台,单击集群名称进入集群,在左侧选择“节点管理”,在右侧选择“节点池”页签,单击节点池名称后的“ 配置管理”。
- 将kubelet的拓扑管理策略(topology-manager-policy)的值修改为需要的CPU拓扑策略即可。
有效拓扑策略为“none”、“best-effort”、“restricted”、“single-numa-node”,具体策略对应的调度行为请参见Pod调度行为说明。
- 开启numa-aware插件功能和resource_exporter功能。
Volcano 1.7.1及以上版本
- 登录CCE控制台,单击集群名称进入集群,单击左侧导航栏的“插件中心”,在右侧找到Volcano,单击“编辑”。
- 在“扩展功能”中开启“NUMA拓扑调度”能力,单击“确定”。
Volcano 1.7.1以下版本- 登录CCE控制台,单击集群名称进入集群,单击左侧导航栏的“配置中心”,切换至“调度配置”页面,选择Volcano调度器找到对应的“专家模式”,单击“开始使用”。
- 开启resource_exporter_enable参数,用于收集节点numa拓扑信息。JSON格式的示例如下:
{ "plugins": { "eas_service": { "availability_zone_id": "", "driver_id": "", "enable": "false", "endpoint": "", "flavor_id": "", "network_type": "", "network_virtual_subnet_id": "", "pool_id": "", "project_id": "", "secret_name": "eas-service-secret" } }, "resource_exporter_enable": "true" }
开启后可以查看当前节点的numa拓扑信息。kubectl get numatopo NAME AGE node-1 4h8m node-2 4h8m node-3 4h8m
- 启用Volcano numa-aware算法插件。
kubectl edit cm -n kube-system volcano-scheduler-configmap
kind: ConfigMap apiVersion: v1 metadata: name: volcano-scheduler-configmap namespace: kube-system data: default-scheduler.conf: |- actions: "allocate, backfill, preempt" tiers: - plugins: - name: priority - name: gang - name: conformance - plugins: - name: overcommit - name: drf - name: predicates - name: nodeorder - plugins: - name: cce-gpu-topology-predicate - name: cce-gpu-topology-priority - name: cce-gpu - plugins: - name: nodelocalvolume - name: nodeemptydirvolume - name: nodeCSIscheduling - name: networkresource arguments: NetworkType: vpc-router - name: numa-aware # add it to enable numa-aware plugin arguments: weight: 10 # the weight of the NUMA Aware Plugin
NUMA亲和性调度使用示例
Pod调度时可以采用的NUMA放置策略,具体策略对应的调度行为请参见Pod调度行为说明。
- single-numa-node:Pod调度时会选择拓扑管理策略已经设置为single-numa-node的节点池中的节点,且CPU需要放置在相同NUMA下,如果节点池中没有满足条件的节点,Pod将无法被调度。
- restricted:Pod调度时会选择拓扑管理策略已经设置为restricted节点池的节点,且CPU需要放置在相同的NUMA集合下,如果节点池中没有满足条件的节点,Pod将无法被调度。
- best-effort:Pod调度时会选择拓扑管理策略已经设置为best-effort节点池的节点,且尽量将CPU放置在相同NUMA下,如果没有节点满足这一条件,则选择最优节点进行放置。
- 以下为使用Volcano设置NUMA亲和性调度的示例。
- 示例一:在无状态工作负载中配置NUMA亲和性。
kind: Deployment apiVersion: apps/v1 metadata: name: numa-tset spec: replicas: 1 selector: matchLabels: app: numa-tset template: metadata: labels: app: numa-tset annotations: volcano.sh/numa-topology-policy: single-numa-node # set the topology policy spec: containers: - name: container-1 image: nginx:alpine resources: requests: cpu: 2 # 必须为整数,且需要与limits中一致 memory: 2048Mi limits: cpu: 2 # 必须为整数,且需要与requests中一致 memory: 2048Mi imagePullSecrets: - name: default-secret
- 示例二:创建一个Volcano Job,并使用NUMA亲和性。
apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vj-test spec: schedulerName: volcano minAvailable: 1 tasks: - replicas: 1 name: "test" topologyPolicy: best-effort # set the topology policy for task template: spec: containers: - image: alpine command: ["/bin/sh", "-c", "sleep 1000"] imagePullPolicy: IfNotPresent name: running resources: limits: cpu: 20 memory: "100Mi" restartPolicy: OnFailure
- 示例一:在无状态工作负载中配置NUMA亲和性。
- NUMA调度分析。
假设NUMA节点情况如下:
工作节点
节点策略拓扑管理器策略
NUMA 节点 0 上的可分配 CPU
NUMA 节点 1 上的可分配 CPU
node-1
single-numa-node
16U
16U
node-2
best-effort
16U
16U
node-3
best-effort
20U
20U
则根据以上示例,
- 示例一中,Pod的CPU申请值为2U,设置拓扑策略为“single-numa-node”,因此会被调度到相同策略的node-1。
- 示例二中,Pod的CPU申请值为20U,设置拓扑策略为“best-effort”,它将被调度到node-3,因为node-3可以在单个NUMA节点上分配Pod的CPU请求,而node-2需要在两个NUMA节点上执行此操作。
确认NUMA使用情况
您可以通过lscpu命令查看当前节点的CPU概况:
# 查看当前节点的CPU概况 lscpu ... CPU(s): 32 NUMA node(s): 2 NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31
然后查看NUMA节点使用情况。
# 查看当前节点的CPU分配 cat /var/lib/kubelet/cpu_manager_state {"policyName":"static","defaultCpuSet":"0,10-15,25-31","entries":{"777870b5-c64f-42f5-9296-688b9dc212ba":{"container-1":"16-24"},"fb15e10a-b6a5-4aaa-8fcd-76c1aa64e6fd":{"container-1":"1-9"}},"checksum":318470969}
以上示例中表示,节点上运行了两个容器,一个占用了NUMA node0的1-9核,另一个占用了NUMA node1的16-24核。
常见问题
Pod调度失败
在使用过程中,如果只开启了Volcano插件的NUMA开关,没有配置CPU管理策略,且调度器为volcano时,可能导致作业调度失败,请根据以下要点进行问题排查。
- 在使用NUMA亲和性调度前,请保证已部署Volcano插件且插件运行状态正常。
- 在使用NUMA亲和性调度时:
- 请保证节点池的“CPU管理策略配置(cpu-manager-policy)”已设置为static。
- 请保证节点池的“拓扑管理策略(topology-manager-policy)”已设置正确。
- 请保证为Pod设置正确的拓扑策略,来筛选节点池中已配置了相同拓扑策略的节点,具体设置参考NUMA亲和性调度使用示例。
- 请保证应用Pod使用的是Volcano调度器,具体配置可参考使用Volcano调度工作负载;Pod中的所有容器的CPU Request必须为整数(单位:Core),且Request与Limit相同。