计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

创建Workflow训练作业节点

更新时间:2024-12-25 GMT+08:00

功能介绍

该节点通过对算法、输入、输出的定义,实现ModelArts作业管理的能力。主要用于数据处理、模型训练、模型评估等场景。主要应用场景如下:

  • 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。
  • 对于一些物体检测,图像分类等模型场景,可以根据已有的数据使用该节点进行模型的训练。

属性总览

您可以使用JobStep来构建作业类型节点,JobStep结构如下

表1 JobStep

属性

描述

是否必填

数据类型

name

作业节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复

str

algorithm

算法对象

  • BaseAlgorithm
  • Algorithm
  • AIGalleryAlgorithm

spec

作业使用的资源规格相关配置

JobSpec

inputs

作业节点的输入列表

JobInput或者JobInput的列表

outputs

作业节点的输出列表

JobOutput或者JobOutput的列表

title

title信息,主要用于前端的名称展示

str

description

作业节点的描述信息

str

policy

节点执行的policy

StepPolicy

depend_steps

依赖的节点列表

Step或者Step的列表

表2 JobInput

属性

描述

是否必填

数据类型

name

作业类型节点的输入名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输入名称不能重复

str

data

作业类型节点的输入数据对象

数据集或OBS相关对象,当前仅支持Dataset、DatasetPlaceholder、DatasetConsumption、OBSPath、OBSConsumption、OBSPlaceholder、DataConsumptionSelector

表3 JobOutput

属性

描述

是否必填

数据类型

name

作业类型节点的输出名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输出名称不能重复

str

obs_config

输出的OBS相关配置

OBSOutputConfig

model_config

输出的模型相关配置

ModelConfig

metrics_config

metrics相关配置

MetricsConfig

表4 OBSOutputConfig

属性

描述

是否必填

数据类型

obs_path

已存在的OBS目录

str、Placeholder、Storage

metric_file

存储metric信息的文件名称

str、Placeholder

表5 BaseAlgorithm

属性

描述

是否必填

数据类型

id

算法管理的算法ID

str

subscription_id

订阅算法的订阅ID

str

item_version_id

订阅算法的版本号

str

code_dir

代码目录

str、Placeholder、Storage

boot_file

启动文件

str、Placeholder、Storage

command

启动命令

str、Placeholder

parameters

算法超参

AlgorithmParameters的列表

engine

作业使用的镜像信息

JobEngine

environments

环境变量

dict

表6 Algorithm

属性

描述

是否必填

数据类型

algorithm_id

算法管理的算法ID

str

parameters

算法超参

Algorithm Parameters的列表

表7 AIGalleryAlgorithm

属性

描述

是否必填

数据类型

subscription_id

订阅算法的订阅ID

str

item_version_id

订阅算法的版本号

str

parameters

算法超参

Algorithm Parameters的列表

表8 AlgorithmParameters

属性

描述

是否必填

数据类型

name

算法超参的名称

str

value

算法超参的值

int、bool、float、str、Placeholder、Storage

表9 JobEngine

属性

描述

是否必填

数据类型

engine_id

镜像ID

str、Placeholder

engine_name

镜像名称

str、Placeholder

engine_version

镜像版本

str、Placeholder

image_url

镜像url

str、Placeholder

表10 JobSpec

属性

描述

是否必填

数据类型

resource

资源信息

JobResource

log_export_path

日志输出路径

LogExportPath

schedule_policy

作业调度配置策略

SchedulePolicy

volumes

作业挂载的文件系统信息

list[Volume]

表11 JobResource

属性

描述

是否必填

数据类型

flavor

资源规格

Placeholder

node_count

节点个数,默认为1,多节点表示支持分布式

int、Placeholder

表12 SchedulePolicy

属性

描述

是否必填

数据类型

priority

作业调度的优先级,仅支持配置为1、2、3,分别对应低、中、高三种优先级

int、Placeholder

表13 Volume

属性

描述

是否必填

数据类型

nfs

NFS文件系统对象,在一个Volume对象中,nfs、pacific、pfs同时只能配置一个

NFS

pacific

pacific文件系统对象,在一个Volume对象中,nfs、pacific、pfs同时只能配置一个

Placeholder

pfs

OBS并行文件系统对象,在一个Volume对象中,nfs、pacific、pfs同时只能配置一个

PFS、Placeholder

表14 NFS

属性

描述

是否必填

数据类型

nfs_server_path

NFS文件系统的服务地址

str、Placeholder

local_path

挂载到容器里面的路径

str、Placeholder

read_only

是否只读的方式挂载

bool、Placeholder

表15 PFS

属性

描述

是否必填

数据类型

pfs_path

并行文件系统的路径

str、Placeholder

local_path

挂载到容器里面的路径

str、Placeholder

资源规格查询

您在创建作业类型节点之前可以通过以下操作来获取该账号所支持的训练资源规格列表以及引擎规格列表:

  • 导包
    from modelarts.session import Session
    from modelarts.estimatorV2 import TrainingJob
    from modelarts.workflow.client.job_client import JobClient
  • session初始化
    # 如果您在本地IDEA环境中开发工作流,则Session初始化使用如下方式
    # 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全;
    # 本示例以ak和sk保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_AK和HUAWEICLOUD_SDK_SK。
    __AK = os.environ["HUAWEICLOUD_SDK_AK"]
    __SK = os.environ["HUAWEICLOUD_SDK_SK"]
    # 如果进行了加密还需要进行解密操作
    session = Session(
        access_key=__AK, # 账号的AK信息
        secret_key=__SK, # 账号的SK信息
        region_name="***", # 账号所属的region
        project_id="***" ,# 账号的项目ID
    )
    
    # 如果您在Notebook环境中开发工作流,则Session初始化使用如下方式
    session = Session()
  • 公共池查询
    # 公共资源池规格列表查询
    spec_list = TrainingJob(session).get_train_instance_types(session) # 返回的类型为list,可按需打印查看
    print(spec_list)
  • 专属池查询
    # 运行中的专属资源池列表查询
    pool_list = JobClient(session).get_pool_list() # 返回专属资源池的详情列表
    pool_id_list = JobClient(session).get_pool_id_list() # 返回专属资源池ID列表
    专属资源池规格ID列表如下,根据所选资源池的实际规格自行选择:
        1. modelarts.pool.visual.xlarge 对应1卡
        2. modelarts.pool.visual.2xlarge 对应2卡
        3. modelarts.pool.visual.4xlarge 对应4卡
        4. modelarts.pool.visual.8xlarge 对应8卡
  • 引擎规格查询
    # 引擎规格查询
    engine_dict = TrainingJob(session).get_engine_list(session) # 返回的类型为dict,可按需打印查看
    print(engine_dict)

使用案例

主要包含七种场景的用例:

  • 使用订阅自AI Gallery的算法
  • 使用算法管理中的算法
  • 使用自定义算法(代码目录+启动文件+官方镜像)
  • 使用自定义算法(代码目录+脚本命令+自定义镜像)
  • 基于数据集版本发布节点构建作业类型节点
  • 作业类型节点结合可视化能力
  • 输入使用DataSelector对象,支持选择OBS或者数据集

使用订阅自AI Gallery的算法

from modelarts import workflow as wf

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 定义输入的数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.AIGalleryAlgorithm(
        subscription_id="subscription_id", # 算法订阅ID,也可直接填写版本号
        item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号
        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ),  # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值
    
    inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
           
        )
    )# 训练资源规格信息
)

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[job_step],
    storages=[storage]
)

使用算法管理中的算法

from modelarts import workflow as wf

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 定义输入的数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.Algorithm(
        algorithm_id="algorithm_id", # 算法ID
        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ), # 训练使用的算法对象,示例中的算法来源于算法管理;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值

    inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")

        )
    )# 训练资源规格信息
)

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[job_step],
    storages=[storage]
)

使用自定义算法(代码目录+启动文件+官方镜像)

from modelarts import workflow as wf

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 定义输入的数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.BaseAlgorithm(
        code_dir="fake_code_dir", # 代码目录存储的路径
        boot_file="fake_boot_file", # 启动文件存储路径,需要在代码目录下
        engine=wf.steps.JobEngine(engine_name="fake_engine_name", engine_version="fake_engine_version"), # 官方镜像的名称以及版本信息

        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ), # 自定义算法使用代码目录+启动文件+官方镜像的方式实现

    
    inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
            
        )
    )# 训练资源规格信息
)

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[job_step],
    storages=[storage]
)

使用自定义算法(代码目录+脚本命令+自定义镜像)

from modelarts import workflow as wf

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 定义输入的数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.BaseAlgorithm(
        code_dir="fake_code_dir", # 代码目录存储的路径
        command="fake_command", # 执行的脚本命令
        engine=wf.steps.JobEngine(image_url="fake_image_url"), # 自定义镜像的url,格式为:组织名/镜像名称:版本号,不需要携带相应的域名地址;如果image_url需要设置为运行态可配置,则使用如下方式:image_url=wf.Placeholder(name="image_url", placeholder_type=wf.PlaceholderType.STR, placeholder_format="swr", description="自定义镜像")
        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ), 自定义算法使用代码目录+脚本命令+自定义镜像的方式实现

    inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
            
        )
    )# 训练资源规格信息
)

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[job_step],
    storages=[storage]
)
说明:

上述四种方式使用数据集对象作为输入,如果您需要使用OBS路径作为输入时,只需将JobInput中的data数据替换为data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")或者data=wf.data.OBSPath(obs_path="fake_obs_path")即可。

此外,在构建工作流时就指定好数据集对象或者OBS路径的方式可以减少配置操作,方便您在开发态进行调试。但是对于发布到运行态或者gallery的工作流,更推荐的方式是采用数据占位符的方式进行编写,您可以在工作流启动之前对参数进行配置,自由度更高。

基于数据集版本发布节点构建作业类型节点

使用场景:数据集版本发布节点的输出作为作业类型节点的输入。

from modelarts import workflow as wf

# 定义数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 定义训练验证切分比参数
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR, default="0.8")

release_version_step = wf.steps.ReleaseDatasetStep(
    name="release_dataset", # 数据集发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="数据集版本发布", # 标题信息,不填默认使用name值
    inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep的输入,数据集对象在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="dataset_name")表示
    outputs=wf.steps.ReleaseDatasetOutput(
        name="output_name", 
        dataset_version_config=wf.data.DatasetVersionConfig(
            label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION,  # 数据集发布版本时需要指定标注任务的类型
            train_evaluate_sample_ratio=train_ration # 数据集的训练验证切分比
            )
    ) # ReleaseDatasetStep的输出
)

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.AIGalleryAlgorithm(
        subscription_id="subscription_id", # 算法订阅ID
        item_version_id="item_version_id", # 算法订阅版本ID
        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ),  # 训练使用的算法对象,示例中使用AI Gallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值

    
    inputs=wf.steps.JobInput(name="data_url", data=release_version_step.outputs["output_name"].as_input()), # 使用数据集版本发布节点的输出作为JobStep的输入
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
            
        )
    ), # 训练资源规格信息
    depend_steps=release_version_step # 依赖的数据集版本发布节点对象
)
# release_version_step是wf.steps.ReleaseDatasetStep的实例对象,output_name是wf.steps.ReleaseDatasetOutput的name字段值

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[release_version_step, job_step],
    storages=[storage]
)

作业类型节点结合可视化能力

节点可视化特性将用户在使用Workflow时产生的一些衡量指标进行一个可视化的展示,支持数据的实时可视化,并且允许独立呈现可视化外挂节点。形态上基于作业类型节点原有的使用方式,新增一个针对metrics信息展示的输出,通过MetricsConfig对象进行配置。

表16 MetricsConfig

属性

描述

是否必填

数据类型

metric_files

metrics输出文件列表

list,列表内元素支持(str、Placeholder、Storage)

realtime_visualization

输出的metrics信息是否需要实时展示

bool,默认为False

visualization

是否呈现独立的可视化节点

bool,默认为True

对于输出的metrics文件,数据内容必须为标准的json数据,大小限制为1M,并且与当前支持的几种数据格式保持一致:

  • 键值对类型的数据
    [
        {
            "key": "loss",
            "title": "loss",
            "type": "float",
            "data": {
                "value": 1.2
            }
        },
        {
            "key": "accuracy",
            "title": "accuracy",
            "type": "float",
            "data": {
                "value": 1.6
            }
        }
    ]
  • 折线图数据(type是line chart)
    [
        {
            "key": "metric",
            "title": "metric",
            "type": "line chart",
            "data": {
                "x_axis": [
                    {
                        "title": "step/epoch",
                        "value": [
                            1,
                            2,
                            3
                        ]
                    }
                ],
                "y_axis": [
                    {
                        "title": "value",
                        "value": [
                            0.5,
                            0.4,
                            0.3
                        ]
                    }
                ]
            }
        }
    ]
  • 柱状图数据(type是histogram)
    [
        {
            "key": "metric",
            "title": "metric",
            "type": "histogram",
            "data": {
                "x_axis": [
                    {
                        "title": "step/epoch",
                        "value": [
                            1,
                            2,
                            3
                        ]
                    }
                ],
                "y_axis": [
                    {
                        "title": "value",
                        "value": [
                            0.5,
                            0.4,
                            0.3
                        ]
                    }
                ]
            }
        }
    ]
  • 混淆矩阵
    [
        {
            "key": "confusion_matrix",
            "title": "confusion_matrix",
            "type": "table",
            "data": {
                "cell_value": [
                    [
                        1,
                        2
                    ],
                    [
                        2,
                        3
                    ]
                ],
                "col_labels": {
                    "title": "labels",
                    "value": [
                        "daisy",
                        "dandelion"
                    ]
                },
                "row_labels": {
                    "title": "predictions",
                    "value": [
                        "daisy",
                        "dandelion"
                    ]
                }
            }
        }
    ]
  • 一维表格
    [
        {
            "key": "Application Evaluation Results",
            "title": "Application Evaluation Results",
            "type": "one-dimensional-table",
            "data": {
                "cell_value": [
                    [
                        10,
                        2,
                        0.5
                    ]
                ],
                "labels": [
                    "samples",
                    "maxResTine",
                    "p99"
                ]
            }
        }
    ]
    使用案例:
    from modelarts import workflow as wf
    
    # 构建一个Storage对象,对训练输出目录做统一管理
    storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info", with_execution_id=True, create_dir=True) # name字段必填,title, description可选填 
    
    # 定义输入的数据集对象
    dataset = wf.data.DatasetPlaceholder(name="input_dataset")
    
    # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
    job_step = wf.steps.JobStep(
        name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
        title="图像分类训练", # 标题信息,不填默认使用name
        algorithm=wf.AIGalleryAlgorithm(
            subscription_id="subscription_id", # 算法订阅ID
            item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号
            parameters=[
                wf.AlgorithmParameters(
                    name="parameter_name", 
                    value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
                ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
            ]
    
        ),  # 训练使用的算法对象,示例中使用AI Gallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值
    
        
        inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示
        outputs=[
            wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),# JobStep的输出
            wf.steps.JobOutput(name="metrics_output", metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json", create_dir=False))) # 相关metrics信息由作业的脚本代码自行输出到配置的路径下
        ], 
        spec=wf.steps.JobSpec(
            resource=wf.steps.JobResource(
                flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
                
            )
        )# 训练资源规格信息
    )
    
    workflow = wf.Workflow(
        name="job-step-demo",
        desc="this is a demo workflow",
        steps=[job_step],
        storages=[storage]
    )
说明:

Workflow不会自动获取训练输出的指标信息,要求用户自行在算法代码中获取指标信息并且按照指定的数据格式构造出metrics.json文件,自行上传到MetricsConfig中配置的OBS路径下,Workflow只进行数据的读取以及渲染展示。

输入使用DataSelector对象,支持选择OBS或者数据集

该方式主要用于输入支持可选择的场景,使用DataSelector对象作为输入时,用户在页面配置时可自由选择数据集对象或者OBS对象作为训练的输入,代码示例如下:

from modelarts import workflow as wf

# 构建一个OutputStorage对象,对训练输出目录做统一管理
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 

# 定义DataSelector对象
data_selector = wf.data.DataSelector(name="input_data", data_type_list=["dataset", "obs"])

# 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS
job_step = wf.steps.JobStep(
    name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="图像分类训练", # 标题信息,不填默认使用name
    algorithm=wf.AIGalleryAlgorithm(
        subscription_id="subscription_id", # 算法订阅ID,也可直接填写版本号
        item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号
        parameters=[
            wf.AlgorithmParameters(
                name="parameter_name", 
                value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info")
            ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型
        ]
    ),  # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值
    
    inputs=wf.steps.JobInput(name="data_url", data=data_selector), # JobStep的输入在运行时配置,可自由选择OBS或者数据集作为输入
    outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出
    spec=wf.steps.JobSpec(
        resource=wf.steps.JobResource(
            flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格")
           
        )
    )# 训练资源规格信息
)

workflow = wf.Workflow(
    name="job-step-demo",
    desc="this is a demo workflow",
    steps=[job_step],
    storages=[storage]
)
说明:

使用DataSelector作为输入时,需要用户自行保证算法的输入同时支持数据集或者OBS。

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容