计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive
本文导读

创建Workflow数据集版本发布节点

更新时间:2024-10-24 GMT+08:00

功能介绍

通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下:

  • 对于数据标注这种操作,可以在标注完成后自动帮助用户发布新的数据集版本,结合as_input的能力提供给后续节点使用。
  • 当模型训练需要更新数据时,可以使用数据集导入节点先导入新的数据,然后再通过该节点发布新的版本供后续节点使用。

属性总览

您可以使用ReleaseDatasetStep来构建数据集版本发布节点,ReleaseDatasetStep结构如下:

表1 ReleaseDatasetStep

属性

描述

是否必填

数据类型

name

数据集版本发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复

str

inputs

数据集版本发布节点的输入列表

ReleaseDatasetInput或者ReleaseDatasetInput的列表

outputs

数据集版本发布节点的输出列表

ReleaseDatasetOutput或者ReleaseDatasetOutput的列表

title

title信息,主要用于前端的名称展示

str

description

数据集版本发布节点的描述信息

str

policy

节点执行的policy

StepPolicy

depend_steps

依赖的节点列表

Step或者Step的列表

表2 ReleaseDatasetInput

属性

描述

是否必填

数据类型

name

数据集版本发布节点的输入名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输入名称不能重复

str

data

数据集版本发布节点的输入数据对象

数据集或标注任务相关对象,当前仅支持Dataset,DatasetConsumption,DatasetPlaceholder,LabelTask,LabelTaskPlaceholder,LabelTaskConsumption,DataConsumptionSelector

表3 ReleaseDatasetOutput

属性

描述

是否必填

数据类型

name

数据集版本发布节点的输出名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输出名称不能重复

str

dataset_version_config

数据集版本发布相关配置信息

DatasetVersionConfig

表4 DatasetVersionConfig

属性

描述

是否必填

数据类型

version_name

数据集版本名称,推荐使用类似V001的格式,不填则默认从V001往上递增。

str或者Placeholder

version_format

版本格式,默认为"Default",也可支持"CarbonData"。

str

train_evaluate_sample_ratio

训练-验证集比例,默认值为"1.00"。取值范围为0-1.00, 例如"0.8"表示训练集比例为80%,验证集比例为20%。

str或者Placeholder

clear_hard_property

是否清除难例,默认为“True”。

bool或者Placeholder

remove_sample_usage

是否清除数据集已有的usage信息,默认为“True”。

bool或者Placeholder

label_task_type

标注任务的类型。当输入是数据集时,该字段必填,用来指定数据集版本的标注场景。输入是标注任务时该字段不用填写。

LabelTaskTypeEnum

支持以下几种类型:

  • IMAGE_CLASSIFICATION (图像分类)
  • OBJECT_DETECTION = 1 (物体检测)
  • IMAGE_SEGMENTATION (图像分割)
  • TEXT_CLASSIFICATION (文本分类)
  • NAMED_ENTITY_RECOGNITION (命名实体)
  • TEXT_TRIPLE (文本三元组)
  • AUDIO_CLASSIFICATION (声音分类)
  • SPEECH_CONTENT (语音内容)SPEECH_SEGMENTATION (语音分割)
  • TABLE (表格数据)
  • VIDEO_ANNOTATION (视频标注)

description

版本描述信息。

str

说明:

如果您没有特殊需求,则可直接使用内置的默认值,例如example = DatasetVersionConfig()

使用案例

场景一:基于数据集发布版本

使用场景:当数据集更新了数据时,可以通过该节点发布新的数据集版本供后续的节点使用。

from modelarts import workflow as wf
# 通过ReleaseDatasetStep将输入的数据集对象发布新的版本,输出带有版本信息的数据集对象

# 定义数据集对象
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

# 定义训练验证切分比参数
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR, default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
    name="release_dataset", # 数据集发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="数据集版本发布", # 标题信息,不填默认使用name值
    inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep的输入,数据集对象在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="dataset_name")表示
    outputs=wf.steps.ReleaseDatasetOutput(
        name="output_name", 
        dataset_version_config=wf.data.DatasetVersionConfig(
            label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION,  # 数据集发布版本时需要指定标注任务的类型
            train_evaluate_sample_ratio=train_ration # 数据集的训练验证切分比
            )
    ) # ReleaseDatasetStep的输出
)

workflow = wf.Workflow(
    name="dataset-release-demo",
    desc="this is a demo workflow",
    steps=[release_version]
)

场景二:基于标注任务发布版本

当标注任务更新了数据或者标注信息时,可以通过该节点发布新的数据集版本供后续的节点使用。

from modelarts import workflow as wf
# 通过ReleaseDatasetStep将输入的标注任务对象发布新的版本,输出带有版本信息的数据集对象

# 定义标注任务对象
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

# 定义训练验证切分比参数
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR, default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
    name="release_dataset", # 数据集发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="数据集版本发布", # 标题信息,不填默认使用name值
    inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=label_task), # ReleaseDatasetStep的输入,
标注任务对象在运行时配置;data字段也可使用wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name")表示
    outputs=wf.steps.ReleaseDatasetOutput(name="output_name", dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # 数据集的训练验证切分比
)

workflow = wf.Workflow(
    name="dataset-release-demo",
    desc="this is a demo workflow",
    steps=[release_version]
)

场景三:基于数据集标注节点,构建数据集版本发布节点

使用场景:数据集标注节点的输出作为数据集版本发布节点的输入。

from modelarts import workflow as wf
# 通过ReleaseDatasetStep将输入的标注任务对象发布新的版本,输出带有版本信息的数据集对象

# 定义训练验证切分比参数
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR, default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
    name="release_dataset", # 数据集发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
    title="数据集版本发布", # 标题信息,不填默认使用name值
    inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=labeling_step.outputs["output_name"].as_input()), # ReleaseDatasetStep的输入,
标注任务对象在运行时配置;data字段也可使用wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name")表示
    outputs=wf.steps.ReleaseDatasetOutput(name="output_name", dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # 数据集的训练验证切分比
    depend_steps = [labeling_step] # 依赖的数据集标注节点对象
)
# labeling_step是wf.steps.LabelingStep的实例对象,output_name是wf.steps.LabelingOutput的name字段值

workflow = wf.Workflow(
    name="dataset-release-demo",
    desc="this is a demo workflow",
    steps=[release_version]
)

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容