文档首页/
云搜索服务 CSS/
用户指南/
使用OpenSearch搜索数据/
增强OpenSearch集群搜索能力/
配置OpenSearch集群向量检索/
向量检索的客户端代码示例(Python)
更新时间:2024-10-25 GMT+08:00
向量检索的客户端代码示例(Python)
OpenSearch提供了标准的REST接口,以及Java、Python等语言编写的客户端。
本节提供一份创建向量索引、导入向量数据和查询向量数据的Python代码示例,介绍如何使用客户端实现向量检索。
前提条件
客户端已经安装python依赖包。如果未安装可以执行如下命令安装:
pip install opensearch-py==1.1.0
代码示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
from opensearchpy import OpenSearch # 创建客户端 def get_client(hosts: list, user: str = None, password: str = None): if user and password: return OpenSearch(hosts, http_auth=(user, password), verify_certs=False, ssl_show_warn=False) else: return OpenSearch(hosts) # 创建索引表 def create(client: OpenSearch, index: str): # 索引mapping信息 index_mapping = { "settings": { "index": { "vector": "true", # 开启向量特性 "number_of_shards": 1, # 索引分片数,根据实际需求设置 "number_of_replicas": 0, # 索引副本数,根据实际需求设置 } }, "mappings": { "properties": { "my_vector": { "type": "vector", "dimension": 2, "indexing": True, "algorithm": "GRAPH", "metric": "euclidean" } # 可根据需求添加其他字段 } } } res = client.indices.create(index=index, body=index_mapping) print("create index result: ", res) # 写入数据 def write(client: OpenSearch, index: str, vecs: list, bulk_size=500): for i in range(0, len(vecs), bulk_size): actions = "" for vec in vecs[i: i + bulk_size]: actions += '{"index": {"_index": "%s"}}\n' % index actions += '{"my_vector": %s}\n' % str(vec) client.bulk(body=actions, request_timeout=3600) client.indices.refresh(index=index, request_timeout=3600) print("write index success!") # 查询向量索引 def search(client: OpenSearch, index: str, query: list[float], size: int): # 查询语句,可根据需求选择合适的查询方式 query_body = { "size": size, "query": { "vector": { "my_vector": { "vector": query, "topk": size } } } } res = client.search(index=index, body=query_body) print("search index result: ", res) # 删除索引 def delete(client: OpenSearch, index: str): res = client.indices.delete(index=index) print("delete index result: ", res) if __name__ == '__main__': os_client = get_client(hosts=['http://x.x.x.x:9200']) # 对于开启了https的安全集群,使用: # os_client = get_client(hosts=['https://x.x.x.x:9200', 'https://x.x.x.x:9200'], user='xxxxx', password='xxxxx') # 对于未开启https的安全集群,使用: # os_client = get_client(hosts=['http://x.x.x.x:9200', 'http://x.x.x.x:9200'], user='xxxxx', password='xxxxx') # 测试索引名称 index_name = "my_index" # 创建索引 create(os_client, index=index_name) # 写入数据 data = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]] write(os_client, index=index_name, vecs=data) # 查询索引 query_vector = [1.0, 1.0] search(os_client, index=index_name, query=query_vector, size=3) # 删除索引 delete(os_client, index=index_name) |
父主题: 配置OpenSearch集群向量检索