更新时间:2024-11-12 GMT+08:00

NUMA亲和性调度

NUMA节点是Non-Uniform Memory Access(非统一内存访问)架构中的一个基本组成单元,每个节点包含自己的处理器和本地内存,这些节点在物理上彼此独立,但通过高速互连总线连接在一起,形成一个整体系统。NUMA节点能够通过提供更快的本地内存访问来提高系统性能,但通常一个Node节点是多个NUMA节点的集合,在多个NUMA节点之间进行内存访问时会产生延迟,开发者可以通过优化任务调度和内存分配策略,来提高内存访问效率和整体性能。

在云原生环境中,对于高性能计算(HPC)、实时应用和内存密集型工作负载等需要CPU间通信频繁的场景下,跨NUMA节点访问会导致增加延迟和开销,从而降低系统性能。为此,volcano提供了NUMA亲和性调度能力,尽可能把Pod调度到需要跨NUMA节点最少的工作节点上,这种调度策略能够降低数据传输开销,优化资源利用率,从而增强系统的整体性能。

更多资料请查看社区NUMA亲和性插件指导链接:https://github.com/volcano-sh/volcano/blob/master/docs/design/numa-aware.md

前提条件

Pod调度行为说明

当Pod设置了拓扑策略时,Volcano会根据Pod设置的拓扑策略预测匹配的节点列表。Pod的拓扑策略配置请参考NUMA亲和性调度使用示例。调度过程如下:

  1. 根据Pod设置的Volcano拓扑策略,筛选具有相同策略的节点。Volcano提供的拓扑策略与拓扑管理器相同。
  2. 在设置了相同策略的节点中,筛选CPU拓扑满足该策略要求的节点进行调度。

Pod可配置的拓扑策略

Pod调度时筛选节点行为说明

1.根据Pod设置的拓扑策略,筛选可调度的节点

2.筛选可调度的节点后,进一步筛选CPU拓扑满足策略的节点进行调度

none

针对配置了以下几种拓扑策略的节点,调度时均无筛选行为:

  • none:可调度
  • best-effort:可调度
  • restricted:可调度
  • single-numa-node:可调度

-

best-effort

筛选拓扑策略同样为“best-effort”的节点:

  • none:不可调度
  • best-effort:可调度
  • restricted:不可调度
  • single-numa-node:不可调度

尽可能满足策略要求进行调度:

优先调度至单NUMA节点,如果单NUMA节点无法满足CPU申请值,允许调度至多个NUMA节点。

restricted

筛选拓扑策略同样为“restricted”的节点:

  • none:不可调度
  • best-effort:不可调度
  • restricted:可调度
  • single-numa-node:不可调度

严格限制的调度策略:

  • 单NUMA节点的CPU容量上限大于等于CPU的申请值时,仅允许调度至单NUMA节点。此时如果单NUMA节点剩余的CPU可使用量不足,则Pod无法调度。
  • 单NUMA节点的CPU容量上限小于CPU的申请值时,可允许调度至多个NUMA节点。

single-numa-node

筛选拓扑策略同样为“single-numa-node”的节点:

  • none:不可调度
  • best-effort:不可调度
  • restricted:不可调度
  • single-numa-node:可调度

仅允许调度至单NUMA节点。

假设单个节点CPU总量为32U,由2个NUMA节点提供资源,分配如下:

工作节点

节点拓扑策略

NUMA节点1上的CPU总量

NUMA节点2上的CPU总量

CPU总量

CPU空闲量

CPU总量

CPU空闲量

节点-1

best-effort

16U

7U

16U

7U

节点-2

restricted

16U

7U

16U

7U

节点-3

restricted

16U

7U

16U

10U

节点-4

single-numa-node

16U

7U

16U

10U

Pod设置拓扑策略后,调度情况如图1所示。

  • 当Pod的CPU申请值为9U时,设置拓扑策略为“best-effort”,Volcano会匹配拓扑策略同样为“best-effort”的节点-1,且该策略允许调度至多个NUMA节点,因此9U的申请值会被分配到2个NUMA节点,该Pod可成功调度至节点-1。
  • 当Pod的CPU申请值为11U时,设置拓扑策略为“restricted”,Volcano会匹配拓扑策略同样为“restricted”的节点-2/节点-3,且单NUMA节点CPU总量满足11U的申请值,但单NUMA节点剩余可用的CPU量无法满足,因此该Pod无法调度。
  • 当Pod的CPU申请值为17U时,设置拓扑策略为“restricted”,Volcano会匹配拓扑策略同样为“restricted”的节点-2/节点-3,且单NUMA节点CPU总量无法满足17U的申请值,可允许分配到2个NUMA节点,该Pod可成功调度至节点-3。
  • 当Pod的CPU申请值为17U时,设置拓扑策略为“single-numa-node”,Volcano会匹配拓扑策略同样为“single-numa-node”的节点,但由于单NUMA节点CPU总量均无法满足17U的申请值,因此该Pod无法调度。
图1 NUMA调度策略对比

调度优先级

不管是什么拓扑策略,都是希望把Pod调度到当时最优的节点上,这里通过给每一个节点进行打分的机制来排序筛选最优节点。

原则:尽可能把Pod调度到需要跨NUMA节点最少的工作节点上。

打分公式如下:

score = weight * (100 - 100 * numaNodeNum / maxNumaNodeNum)

参数说明:

  • weight:NUMA Aware Plugin的权重。
  • numaNodeNum:表示工作节点上运行该Pod需要NUMA节点的个数。
  • maxNumaNodeNum:表示所有工作节点中该Pod的最大NUMA节点个数。

例如,假设有三个节点满足Pod的CPU拓扑策略,且NUMA Aware Plugin的权重设为10:

  • Node A:由1个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=1
  • Node B:由2个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=2
  • Node C:由4个NUMA节点提供Pod所需的CPU资源,即numaNodeNum=4

则根据以上公式,maxNumaNodeNum=4

  • score(Node A) = 10 * (100 - 100 * 1 / 4) = 750
  • score(Node B) = 10 * (100 - 100 * 2 / 4) = 500
  • score(Node C) = 10 * (100 - 100 * 4 / 4) = 0

因此最优节点为Node A。

Volcano开启NUMA亲和性调度

  1. 在节点池中开启静态(static)CPU管理策略,具体请参考 为自定义节点池开启CPU管理策略

    1. 登录CCE控制台,单击集群名称进入集群。
    2. 在左侧选择“节点管理”,在右侧选择“节点池”页签,单击节点池名称后的“更多 > 配置管理”
    3. 在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置(cpu-manager-policy)参数值,选择static

    4. 单击“确定”,完成配置操作。

  2. 在节点池中配置CPU拓扑策略。

    1. 登录CCE控制台,单击集群名称进入集群,在左侧选择“节点管理”,在右侧选择“节点池”页签,单击节点池名称后的“ 配置管理”
    2. 将kubelet的拓扑管理策略(topology-manager-policy)的值修改为需要的CPU拓扑策略即可。

      有效拓扑策略为“none”、“best-effort”、“restricted”、“single-numa-node”,具体策略对应的调度行为请参见Pod调度行为说明

  3. 开启numa-aware插件功能和resource_exporter功能。

    Volcano 1.7.1及以上版本

    1. 登录CCE控制台,单击集群名称进入集群,单击左侧导航栏的“插件中心”,在右侧找到Volcano,单击“编辑”。
    2. 在“扩展功能”中开启“NUMA拓扑调度”能力,单击“确定”。
    Volcano 1.7.1以下版本
    1. 登录CCE控制台,单击集群名称进入集群,单击左侧导航栏的“配置中心”,切换至“调度配置”页面,选择Volcano调度器找到对应的“专家模式”,单击“开始使用”。

    2. 开启resource_exporter_enable参数,用于收集节点numa拓扑信息。JSON格式的示例如下:
      {
         "plugins": {
            "eas_service": {
               "availability_zone_id": "",
               "driver_id": "",
               "enable": "false",
               "endpoint": "",
               "flavor_id": "",
               "network_type": "",
               "network_virtual_subnet_id": "",
               "pool_id": "",
               "project_id": "",
               "secret_name": "eas-service-secret"
            }
         },
         "resource_exporter_enable": "true"
      }
      开启后可以查看当前节点的numa拓扑信息。
      kubectl get numatopo 
      NAME              AGE
      node-1            4h8m
      node-2            4h8m
      node-3            4h8m
    3. 启用Volcano numa-aware算法插件。
      kubectl edit cm -n kube-system volcano-scheduler-configmap
      kind: ConfigMap
      apiVersion: v1
      metadata:
        name: volcano-scheduler-configmap
        namespace: kube-system
      data:
        default-scheduler.conf: |-
          actions: "allocate, backfill, preempt"
          tiers:
          - plugins:
            - name: priority
            - name: gang
            - name: conformance
          - plugins:
            - name: overcommit
            - name: drf
            - name: predicates
            - name: nodeorder
          - plugins:
            - name: cce-gpu-topology-predicate
            - name: cce-gpu-topology-priority
            - name: cce-gpu
          - plugins:
            - name: nodelocalvolume
            - name: nodeemptydirvolume
            - name: nodeCSIscheduling
            - name: networkresource
              arguments:
                NetworkType: vpc-router
            - name: numa-aware # add it to enable numa-aware plugin
              arguments:
                weight: 10 # the weight of the NUMA Aware Plugin

NUMA亲和性调度使用示例

Pod调度时可以采用的NUMA放置策略,具体策略对应的调度行为请参见Pod调度行为说明

  • single-numa-node:Pod调度时会选择拓扑管理策略已经设置为single-numa-node的节点池中的节点,且CPU需要放置在相同NUMA下,如果节点池中没有满足条件的节点,Pod将无法被调度。
  • restricted:Pod调度时会选择拓扑管理策略已经设置为restricted节点池的节点,且CPU需要放置在相同的NUMA集合下,如果节点池中没有满足条件的节点,Pod将无法被调度。
  • best-effort:Pod调度时会选择拓扑管理策略已经设置为best-effort节点池的节点,且尽量将CPU放置在相同NUMA下,如果没有节点满足这一条件,则选择最优节点进行放置。
  1. 以下为使用Volcano设置NUMA亲和性调度的示例。

    1. 示例一:在无状态工作负载中配置NUMA亲和性。
      kind: Deployment
      apiVersion: apps/v1
      metadata:
        name: numa-tset
      spec:
        replicas: 1
        selector:
          matchLabels:
            app: numa-tset
        template:
          metadata:
            labels:
              app: numa-tset
            annotations:
              volcano.sh/numa-topology-policy: single-numa-node    # set the topology policy
          spec:
            containers:
              - name: container-1
                image: nginx:alpine
                resources:
                  requests:
                    cpu: 2           # 必须为整数,且需要与limits中一致
                    memory: 2048Mi
                  limits:
                    cpu: 2           # 必须为整数,且需要与requests中一致
                    memory: 2048Mi
            imagePullSecrets:
            - name: default-secret
    2. 示例二:创建一个Volcano Job,并使用NUMA亲和性。
      apiVersion: batch.volcano.sh/v1alpha1
      kind: Job
      metadata:
        name: vj-test
      spec:
        schedulerName: volcano
        minAvailable: 1
        tasks:
          - replicas: 1
            name: "test"
            topologyPolicy: best-effort   # set the topology policy for task 
            template:
              spec:
                containers:
                  - image: alpine
                    command: ["/bin/sh", "-c", "sleep 1000"]
                    imagePullPolicy: IfNotPresent
                    name: running
                    resources:
                      limits:
                        cpu: 20
                        memory: "100Mi"
                restartPolicy: OnFailure

  2. NUMA调度分析。

    假设NUMA节点情况如下:

    工作节点

    节点策略拓扑管理器策略

    NUMA 节点 0 上的可分配 CPU

    NUMA 节点 1 上的可分配 CPU

    node-1

    single-numa-node

    16U

    16U

    node-2

    best-effort

    16U

    16U

    node-3

    best-effort

    20U

    20U

    则根据以上示例,

    • 示例一中,Pod的CPU申请值为2U,设置拓扑策略为“single-numa-node”,因此会被调度到相同策略的node-1。
    • 示例二中,Pod的CPU申请值为20U,设置拓扑策略为“best-effort”,它将被调度到node-3,因为node-3可以在单个NUMA节点上分配Pod的CPU请求,而node-2需要在两个NUMA节点上执行此操作。

确认NUMA使用情况

您可以通过lscpu命令查看当前节点的CPU概况:

# 查看当前节点的CPU概况
lscpu
...
CPU(s):              32
NUMA node(s):        2
NUMA node0 CPU(s):   0-15
NUMA node1 CPU(s):   16-31

然后查看NUMA节点使用情况。

# 查看当前节点的CPU分配
cat /var/lib/kubelet/cpu_manager_state
{"policyName":"static","defaultCpuSet":"0,10-15,25-31","entries":{"777870b5-c64f-42f5-9296-688b9dc212ba":{"container-1":"16-24"},"fb15e10a-b6a5-4aaa-8fcd-76c1aa64e6fd":{"container-1":"1-9"}},"checksum":318470969}

以上示例中表示,节点上运行了两个容器,一个占用了NUMA node0的1-9核,另一个占用了NUMA node1的16-24核。

常见问题

Pod调度失败

在使用过程中,如果只开启了Volcano插件的NUMA开关,没有配置CPU管理策略,且调度器为volcano时,可能导致作业调度失败,请根据以下要点进行问题排查。

  • 在使用NUMA亲和性调度前,请保证已部署Volcano插件且插件运行状态正常。
  • 在使用NUMA亲和性调度时:
    1. 请保证节点池的“CPU管理策略配置(cpu-manager-policy)”已设置为static
    2. 请保证节点池的“拓扑管理策略(topology-manager-policy)”已设置正确。
    3. 请保证为Pod设置正确的拓扑策略,来筛选节点池中已配置了相同拓扑策略的节点,具体设置参考NUMA亲和性调度使用示例
    4. 请保证应用Pod使用的是Volcano调度器,具体配置可参考使用Volcano调度工作负载;Pod中的所有容器的CPU Request必须为整数(单位:Core),且Request与Limit相同。