计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

配置资源组

更新时间:2024-11-29 GMT+08:00

资源组介绍

资源组机制从资源分配的角度控制实例的整体查询负载,并可以对查询实施排队策略。可以在一个计算实例资源下创建多个资源组,并且每个提交的查询将分配给一个特定的资源组执行。在资源组执行新查询之前,将检查当前资源组的资源负载是否超过实例分配给它的资源量。如果超过,则将阻止新到达的查询,使其处于排队状态,甚至直接拒绝它。

资源组使用场景

通过资源组可以实现计算实例内的资源管理。对不同用户、不同查询分配不同的资源组,可以起到资源隔离的作用,避免单个用户或查询独占计算实例的资源,也能通过资源组件的权重优先级配置保障重要任务优先执行。典型资源组使用场景如表1所示。

表1 典型资源组使用场景

典型场景

解决方案

随着使用计算实例的业务团队的增加,当某个团队的任务更加重要并且不想执行查询时没有资源。

每个团队分配一个指定的资源组;重要任务分配到资源较多的资源组;保证子资源组的占比和小于等于100%时,可保证某一个队列的资源不被其他资源组抢占,类似于静态化分资源。

当实例资源负载很高时,两个用户同时提交一个查询。一开始,两个查询都在排队。当有空闲资源时,可以调度特定用户的查询首先获取到资源。

两个用户分配不同的资源组,重要的任务可以分配到权重高或优先级高的资源组,调度策略由schedulingPolicy配置,不同的调度策略,会有不同的资源分配顺序。

对于即席查询和批量查询,可以根据不同的SQL类型进行更合理的资源分配。

可以对不同的查询类型,比如EXPLAIN、INSERT、SELECT和DATA_DEFINITION等类型,匹配到不同的资源组,分配不同的资源来执行查询。

启用资源组

在创建计算实例的时候,增加参数文件“resource-groups.json”的自定义配置参数,具体操作请参见创建HetuEngine计算实例中的3.e

资源组属性

资源组属性配置请参见表2

表2 资源组属性

配置项

必选/可选

配置说明

name

必选

资源组名称。

maxQueued

必选

最大排队查询数,当达到此阈值后,新的查询将被拒绝。

hardConcurrencyLimit

必选

最大运行查询数。

softMemoryLimit

可选

资源组最大内存使用量,当达到此阈值后,新任务进入排队;可以指定为固定值(如,10GB)或百分比(如,集群内存的10%)。

softCpuLimit

可选

在一个周期内(参见全局属性的cpuQuotaPeriod参数)可以使用CPU的时间,必须同时指定hardCpuLimit参数,在达到该阈值后,该资源组内占据最大CPU资源的查询的CPU资源会被减少。

hardCpuLimit

可选

在一个周期内可以使用的最大CPU时间。

schedulingPolicy

可选

指定查询从排队到运行状态的调度策略。

  • fair(default)

    当一个资源组下,有几个子资源组都同时有排队的查询,这些子资源组间按照定义的顺序,轮流获得资源,同一个子资源组的查询按照先来先执行的规则获取资源。

  • weighted_fair

    采取这种策略的每一个资源组会配置一个属性schedulingWeight,每个子资源组会计算一个比值:当前子资源组查询数量/schedulingWeight。比值越小的子资源组越先得到资源。

  • weighted

    默认值为1,子资源组的schedulingWeight越大,越先得到资源。

  • query_priority

    所有的子资源组都要配置为query_priority ,排队的查询严格按照指定的query_priority大小顺序来进行获取资源。

schedulingWeight

可选

该分组的权重,见schedulingPolicy,默认为1。

jmxExport

可选

如果为true,则组统计信息将被导出到JMX中进行监控,默认为false。

subGroups

可选

子分组列表。

killPolicy

可选

当查询提交给Worker后,如果总内存使用量超过softMemoryLimit,可选择一种策略终止正在运行的查询,策略如下所示:

  • no_kill(默认值):不终止查询。
  • recent_queries:根据执行顺序的倒序终止查询。
  • oldest_queries:根据执行顺序终止查询。
  • finish_percentage_queries:根据查询执行百分比终止查询。执行百分比最小的查询将首先被终止。high_memory_queries:根据内存使用量终止查询。具有较高内存使用量的查询将首先被终止,以便在查询终止次数最少的情况下,释放更多内存。当两个查询的内存使用量都在限制的10%以内,则进度慢(执行的百分比)的查询被终止,同时两个查询在完成百分比方面的差异在5%以内,则内存使用量大的查询被终止。

选择器规则

选择器按顺序进行匹配,将使用第一个匹配到的资源组,一般来说建议配置一个默认资源组,如果没有设置默认资源组,而又不符合其他资源组选择器条件则查询会被拒绝。选择器规则参数配置请参见表3

表3 选择器规则

配置项

必选/可选

配置说明

user

可选

匹配用户名的正则表达式。

source

可选

匹配请求源,参见选择器属性的配置中--source选项的配置值。

queryType

可选

配置任务类型:

  • DATA_DEFINITION:更改/创建/删除模式/表/视图的元数据的查询,以及管理预准备语句、权限、会话和事务的查询。
  • DELETE:DELETE查询。
  • DESCRIBE:DESCRIBE、DESCRIBE INPUT、DESCRIBE OUTPUT和SHOW查询。
  • EXPLAIN:EXPLAIN查询。
  • INSERT:插入和CREATE TABLE AS查询。
  • SELECT:SELECT查询。

clientTags

可选

匹配客户端标签,每个标签都必须在用户提交任务的标签列表里,参见选择器属性的配置中--client-tags选项的配置值。

group

必选

在其中运行查询的资源组。

全局属性

全局属性配置请参见表4

表4 全局属性

配置项

必选/可选

配置说明

cpuQuotaPeriod

可选

CPU配额生效的时间段,与资源组属性的softCpuLimit以及hardCpuLimit结合使用。

选择器属性的配置

数据源名称(source)可设置如下:

  • CLI:使用--source选项。
  • JDBC:在Connection实例上设置ApplicationName客户端信息属性。

客户端标签(clientTags)的设置方式如下:

  • CLI:使用--client-tags选项。
  • JDBC:在Connection实例上设置ClientTags client info属性。

配置示例

图1 配置示例

图1所示:

  • 对于global资源组而言,最多可同时运行100个查询,有1000查询处于排队状态,在它下面有三个子资源组:data_definition、adhoc 和 pipeline;
  • pipeline资源组下每一个用户最多可同时运行5个查询,占用pipeline资源组50%的内存资源,其组内默认采用fair的调度策略,所以是按照先来先执行的顺序执行;
  • 为了充分利用实例资源,各个子资源组的内存配额的总和可大于父资源组,比如global资源组(80%)+admin(100%)=180%>100% 。

在下面的示例配置中,存在多个资源组,其中一些资源组是模板。模板允许HetuEngine管理员动态构建资源组树。例如,在pipeline_${USER}组中,${USER}将扩展为提交查询的用户名称。${SOURCE}也支持,后续会扩展到提交查询的来源。也可以在source表达式和user正则表达式中使用自定义命名变量。

资源组选择器示例如下:

"selectors": [{
	"user": "bob",
	"group": "admin"
},
{
	"source": ".*pipeline.*",
	"queryType": "DATA_DEFINITION",
	"group": "global.data_definition"
},
{
	"source": ".*pipeline.*",
	"group": "global.pipeline.pipeline_${USER}"
},
{
	"source": "jdbc#(?<toolname>.*)",
	"clientTags": ["hipri"],
	"group": "global.adhoc.bi-${toolname}.${USER}"
},
{
	"group": "global.adhoc.other.${USER}"
}]

有四个选择器用于定义在哪个资源组中运行查询:

  • 第一个选择器匹配来自bob的查询,并将它们放在admin组中。
  • 第二个选择器匹配来自包括pipeline的源名称的所有数据定义(DDL)查询,并将它们放在global.data_definition组中。这有助于减少此类查询的排队时间,因为它们预计速度很快。
  • 第三个选择器匹配来自包括pipeline的源名称的查询,并将它们放在global.pipeline组下动态创建的单用户管道组中。
  • 第四个选择器匹配来自BI工具的查询,BI工具有一个源与正则表达式jdbc#(?.*)匹配,并且客户端提供的标签是hi-pri的超集。这些查询被放置在global.adhoc组下动态创建的子组中。动态子组将基于命名变量toolname创建,该命名变量从源的正则表达式中提取。假设有一个源为jdbc#powerfulbi,用户为kayla,客户端标签为hipri和fast的查询。此查询将被路由到global.adhoc.bi-powerfulbi.kayla资源组。
  • 最后一个选择器是一个默认选择器,它将所有尚未匹配的查询放入该资源组。

这些选择器一起实现以下策略:

  • bob是HetuEngine管理员用户,可以同时运行50个查询。查询将根据用户提供的优先级运行。
  • 对于剩余用户:
    • 同时运行的查询总数不能超过100个。
    • 使用源pipeline最多可以运行5个并发的DDL查询。查询按FIFO顺序运行。
    • 非DDL查询将在global.pipeline组下运行,总并发数为45,每用户并发数为5。查询按FIFO顺序运行。
    • 对于BI工具,每个工具最多可以运行10个并发查询,每个用户最多可以运行3个。如果总需求超过10个限制,运行查询最少的用户将获得下一个并发槽。这项策略使得资源争夺时更加公平。
    • 所有剩余的查询都放在global.adhoc.other下的每个用户组中,该组行为类似。

查询匹配选择器的说明:

  • 如上每一个大括号代表一个匹配资源组的选择器selector,这里一共配置了5个选择器以匹配上面的5个资源组:
    admin 
    global.data_definition 
    global.pipeline.pipeline_${USER}
    global.adhoc.bi-${toolname}.${USER}
    global.adhoc.other.${USER}
  • 要全部满足当前selector全部条件,才可放进当前队列执行。比如amy用户使用jdbc方式提交的查询,如果没有配置clientTags,是不能够分配到资源组global.adhoc.bi-${toolname}.${USER}对应的资源;
  • 当一个查询能同时满足两个selector时,会匹配第一个满足要求的selector。比如bob用户提交一个source为pipeline的DATA_DEFINITION类型的job,只会匹配到资源组admin对应的资源,而非global.data_definition对应的资源;
  • 当前4个selector都没有匹配上,会使用最后一个selector指定的资源组global.adhoc.other.${USER}的资源。该资源组相当于起到一个默认资源组的作用,如果没有设置默认资源组,而又不符合其他资源组选择器条件则会被拒绝执行。

    如下是完整样例:

    {
    	"rootGroups": [{
    		"name": "global",
    		"softMemoryLimit": "80%",
    		"hardConcurrencyLimit": 100,
    		"maxQueued": 1000,
    		"schedulingPolicy": "weighted",
    		"jmxExport": true,
    		"subGroups": [{
    			"name": "data_definition",
    			"softMemoryLimit": "10%",
    			"hardConcurrencyLimit": 5,
    			"maxQueued": 100,
    			"schedulingWeight": 1
    		},
    		{
    			"name": "adhoc",
    			"softMemoryLimit": "10%",
    			"hardConcurrencyLimit": 50,
    			"maxQueued": 1,
    			"schedulingWeight": 10,
    			"subGroups": [{
    				"name": "other",
    				"softMemoryLimit": "10%",
    				"hardConcurrencyLimit": 2,
    				"maxQueued": 1,
    				"schedulingWeight": 10,
    				"schedulingPolicy": "weighted_fair",
    				"subGroups": [{
    					"name": "${USER}",
    					"softMemoryLimit": "10%",
    					"hardConcurrencyLimit": 1,
    					"maxQueued": 100
    				}]
    			},
    			{
    				"name": "bi-${toolname}",
    				"softMemoryLimit": "10%",
    				"hardConcurrencyLimit": 10,
    				"maxQueued": 100,
    				"schedulingWeight": 10,
    				"schedulingPolicy": "weighted_fair",
    				"subGroups": [{
    					"name": "${USER}",
    					"softMemoryLimit": "10%",
    					"hardConcurrencyLimit": 3,
    					"maxQueued": 10
    				}]
    			}]
    		},
    		{
    			"name": "pipeline",
    			"softMemoryLimit": "80%",
    			"hardConcurrencyLimit": 45,
    			"maxQueued": 100,
    			"schedulingWeight": 1,
    			"jmxExport": true,
    			"subGroups": [{
    				"name": "pipeline_${USER}",
    				"softMemoryLimit": "50%",
    				"hardConcurrencyLimit": 5,
    				"maxQueued": 100
    			}]
    		}]
    	},
    	{
    		"name": "admin",
    		"softMemoryLimit": "100%",
    		"hardConcurrencyLimit": 50,
    		"maxQueued": 100,
    		"schedulingPolicy": "query_priority",
    		"jmxExport": true
    	}],
    	"selectors": [{
    		"user": "bob",
    		"group": "admin"
    	},
    	{
    		"source": ".*pipeline.*",
    		"queryType": "DATA_DEFINITION",
    		"group": "global.data_definition"
    	},
    	{
    		"source": ".*pipeline.*",
    		"group": "global.pipeline.pipeline_${USER}"
    	},
    	{
    		"source": "jdbc#(?<toolname>.*)",
    		"clientTags": ["hipri"],
    		"group": "global.adhoc.bi-${toolname}.${USER}"
    	},
    	{
    		"group": "global.adhoc.other.${USER}"
    	}],
    	"cpuQuotaPeriod": "1h"
    }

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容