计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

性能测试方法

更新时间:2024-12-31 GMT+08:00

测试目的

广告RTA业务对广告主的技术要求较高,对于广告主来说,一方面需要满足媒体侧的快速响应要求,另一方面还要求数据存储成本可控。近年来,越来越多的RTA业务使用云数据库GeminiDB Redis作为KV特征库,性能与成本双赢。

本章节基于真实RTA业务做压力测试,评估GeminiDB Redis的数据压缩能力、QPS、带宽、时延等各项性能指标表现。

测试环境

本次测试使用的GeminiDB Redis集群规格和弹性云服务器(Elastic Cloud Server,简称ECS)规格如下:

  • GeminiDB Redis规格

    局点

    上海一

    可用区类型

    可用区一/二/三混合部署

    节点CPU规格

    16 vCPUs

    节点数量

    20

    实例总容量

    2 TB

  • ECS规格:

    可用区类型

    AZ1

    规格

    c7.4xlarge.2,3台

    CPU

    16vCPUs

    内存

    32GiB

    操作系统

    CentOS 8.2 64bit

测试工具

本次测试采用Redis Labs推出的多线程压测工具memtier_benchmark,具体使用方法请参见memtier_benchmark

测试指标

本次模拟的广告业务场景(RTA)业务规模大致抽象为:1TB数据量、160w QPS、1.5Gbit/s带宽。

  1. 数据样本

    本次测试使用的数据样本主要分为以下三种:

    类型

    Key

    Value

    Hash

    34位字符

    10对field(10位)-value(20-80位)

    String

    68位字符

    32位随机字符

    String

    19位字符

    500 – 2000位随机字符

    其中,需要存储在Redis中的Key总数约为40亿条。各类型数据占比约为2:7:1,高频访问的数据约占总体的50%。

  2. 评估指标

    对于上述测试模型及场景,记录各数据库操作的如下测试指标:

    指标缩写

    指标描述

    QPS

    每秒执行的请求数,单位为次/秒。

    Avg Latency(ms)

    请求的平均时延,代表GeminiDB Redis整体性能表现。

    P99 Latency(ms)

    请求的P99时延,是比较严格的时延指标,表示99%的请求执行时间都小于该值。

    P9999 Latency(ms)

    请求的P9999时延,是非常严格的时延指标,表示99.99%的请求执行时间小于该值,仅少量尾部请求超过该值。

测试步骤

  1. 注入测试数据

    测试前,生成并注入数据库测试数据。基于测试模型三种类型的分布,对三种数据类型进行如下配置:

    1. hash类型
      • key:34位字符,使用字符串前缀+9位数字,数字由1亿-9亿连续,以控制数据总量和热数据分布。
      • field-value共注入10对,其中field为10位字符,value为20-80位随机字符,注入测试数据时取均值50位。
      • 构造并注入约8亿个key:
        memtier_benchmark -s ${ip} -a $(passwd} -p ${port} -c 20-t20 -n7500000 -d 32 -key-maximum=3
        800000000 -key-minimum =1000000000 --key-pr efix ='cefkljrithuir123894873h4523blj4b2jkjh2iw13b
        nfdhsbnkfhsdjkh' --key-pattern=P:P--ratio=1:0 -pipelire=100
    2. string类型
      • key:68位字符,使用字符串前缀+10位数字,数字由10亿-38亿连续,以控制数据总量和热数据分布。
      • value:注入32位随机字符。
      • 构造并注入约28亿个key:
        memtier_benchmark -s ${ip} -a ${passwd} -p ${port} -c 20 -t 20 -n 2500000 --command='hset __key__ mendke398d __data__ mebnejkehe __data__ fmebejdbnf __data__ j3i45u8923 __data__ j43245i908 __data__ jhiriu2349 __data__ 21021034ji __data__ jh23ui45j2 __data__ jiu5rj9234 __data__ j23io45u29 __data__' -d 50 --key-maximum=900000000 --key-minimum=100000000 --key-prefix='ewfdjkff43ksdh41fuihikucl' --command-key-pattern=P --pipeline=100
    3. string类型
      • key:19位字符,使用字符串前缀+9位数据,数字由1亿到3亿连续,以控制数据总量和热数据分布。
      • value:500 – 2000位随机字符,注入测试数据时取均值1250位。
      • 构造并注入约4亿个key:
        memtier_benchmark -s ${ip} -a ${passwd} -p ${port} -c 20 -t 20 -n 520000 -d 1250 --key-maximum=300000000 --key-minimum=100000000 --key-prefix='miqjkfdjiu' --key-pattern=P:P --ratio=1:0 --pipeline=100

    数据注入完成后,观察其key个数为3,809,940,889个key(约38亿)。观察GeminiDB Redis控制台中使用数据总量,计算GeminiDB Redis的数据压缩比。压缩后的存储容量约为155GB,即压缩比约为13.8%。

    注意:
    • 受memtier_benchmark数据平铺时数据生成影响,生成数据在40亿条左右,各类型间数据分布不受影响。
    • memtier_benchmark工具构造随机字符串中连续字符较多,因此压缩比偏低。根据经验,实际生产数据压缩比一般在30%-50%左右,仍可以达到很好的压缩效果。
  2. 压测命令

    在三台ECS上对GeminiDB Redis实例执行多个压测任务,压测任务分别为:

    1. ECS1上,对类型一进行hgetall查询操作,通过key范围控制仅访问部分高频数据:
      memtier_benchmark -s ${ip} -a ${passwd} -p ${port} -c 20 -t 30 --test-time 1200 --random-data --randomize --distinct-client-seed --command='hgetall __key__' --key-maximum=600000000 --key-minimum=200000000 --key-prefix='ewfdjkff43ksdh41fuihikucl' --out-file=./output_filename
    2. 对类型二进行get查询操作,通过key范围控制仅访问部分高频数据:
      memtier_benchmark -s ${ip} -a ${passwd} -p ${port} -c 70 -t 30 --test-time 1200 --random-data --randomize --distinct-client-seed --key-maximum=2400000000 --key-minimum=1000000000 --key-prefix='cefkljrithuin123894873h4523bhj4b2jkjh2iu13bnfdhsbnkfhsdjkh' --ratio=0:1 --out-file=./output_filename
    3. 对类型三进行get查询操作,通过key范围控制仅访问部分高频数据:
      memtier_benchmark -s ${ip} -a ${passwd} -p ${port} -c 10 -t 30 --test-time 1200 --random-data --randomize --distinct-client-seed --key-maximum=300000000 --key-minimum=100000000 --key-prefix='miqjkfdjiu' --ratio=0:1 --out-file=./output_filename

    其中,连接数(c、t两个参数乘积)通过调整各个压测实例的client数量及配置使整体达到160w QPS,同时读请求流量1.5Gb/s。保持该业务流量,评估GeminiDB Redis的性能表现。

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容