计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

Standard支持的AI框架

更新时间:2024-12-31 GMT+08:00

ModelArts Standard的开发环境Notebook、训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。

统一镜像列表

ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于Standard开发环境,模型训练,服务部署,请参考下表。

镜像的URL、包含的依赖项等详细信息请参考ModelArts统一镜像列表

表1 MindSpore

预置镜像

适配芯片

适用范围

适用区域

mindspore_2.2.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Ascend snt9b

Notebook、训练、推理部署

中国-香港

表2 PyTorch

预置镜像

适配芯片

适用范围

适用区域

pytorch_2.1.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Ascend snt9b

Notebook、训练、推理部署

中国-香港

pytorch_1.11.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Ascend snt9b

Notebook、训练、推理部署

中国-香港

开发环境Notebook

开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。

表3 新版Notebook支持的镜像

镜像名称

镜像描述

适配芯片

支持SSH远程开发访问

支持在线JupyterLab访问

pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1.8

CPU/GPU

mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

CPU and GPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0 and cuda 10.1

CPU/GPU

mindspore1.7.0-py3.7-ubuntu18.04

CPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0

CPU

pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.10 and cuda10.2

CPU/GPU

tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1

CPU/GPU

conda3-ubuntu18.04

Clean user customized base image only include conda

CPU

pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1.4

CPU/GPU

tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1

GPU

conda3-cuda10.2-cudnn7-ubuntu18.04

Clean user customized base image include cuda10.2, conda

CPU

spark2.4.5-ubuntu18.04

CPU algorithm development and training, prebuilt PySpark 2.4.5 and is able to attach to preconfigured spark cluster including MRS and DLI.

CPU

mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU

GPU

mindspore1.2.0-openmpi2.1.1-ubuntu18.04

CPU算法开发和训练基础镜像,预置AI引擎MindSpore-CPU

CPU

训练作业

创建训练作业时,训练支持的AI引擎及对应版本如下所示。

预置引擎命名格式如下:
<训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64>
表4 训练作业支持的AI引擎

工作环境

系统架构

系统版本

AI引擎与版本

支持的cuda或Ascend版本

TensorFlow

x86_64

Ubuntu18.04

tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

cuda10.1

PyTorch

x86_64

Ubuntu18.04

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

cuda10.2

MPI

x86_64

Ubuntu18.04

mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

cuda_10.1

Horovod

x86_64

ubuntu_18.04

horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

cuda_10.1

horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

cuda_10.2

说明:

不同区域支持的AI引擎有差异,请以实际环境为准。

推理支持的AI引擎

在ModelArts创建模型时,若使用预置镜像“从模板中选择”或“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。

说明:
  • 标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统一镜像中的安装包更齐全,详细信息可以参见推理基础镜像列表
  • 推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。
  • 待下线的基本镜像不再维护。
  • 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann> - <python版本> - <操作系统版本> - <CPU架构>
表5 支持的常用引擎及其Runtime

模型使用的引擎类型

支持的运行环境(Runtime)

注意事项

TensorFlow

python3.6

python2.7(待下线)

tf1.13-python3.6-gpu

tf1.13-python3.6-cpu

tf1.13-python3.7-cpu

tf1.13-python3.7-gpu

tf2.1-python3.7(待下线)

tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64(推荐)

  • python2.7、python3.6的运行环境搭载的TensorFlow版本为1.8.0。
  • python3.6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。
  • 默认使用的Runtime为python2.7。

Spark_MLlib

python2.7(待下线)

python3.6(待下线)

  • python2.7以及python3.6的运行环境搭载的Spark_MLlib版本为2.3.2。
  • 默认使用的Runtime为python2.7。
  • python2.7、python3.6只能用于运行适用于CPU的模型。

Scikit_Learn

python2.7(待下线)

python3.6(待下线)

  • python2.7以及python3.6的运行环境搭载的Scikit_Learn版本为0.18.1。
  • 默认使用的Runtime为python2.7。
  • python2.7、python3.6只能用于运行适用于CPU的模型。

XGBoost

python2.7(待下线)

python3.6(待下线)

  • python2.7以及python3.6的运行环境搭载的XGBoost版本为0.80。
  • 默认使用的Runtime为python2.7。
  • python2.7、python3.6只能用于运行适用于CPU的模型。

PyTorch

python2.7(待下线)

python3.6

python3.7

pytorch1.4-python3.7

pytorch1.5-python3.7(待下线)

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64(推荐)

  • python2.7、python3.6、python3.7的运行环境搭载的PyTorch版本为1.0。
  • python2.7、python3.6、python3.7、pytorch1.4-python3.7、pytorch1.5-python3.7,表示该模型可同时在CPU或GPU运行。
  • 默认使用的Runtime为python2.7。

MindSpore

aarch64(推荐)

aarch64只能用于运行在Snt3芯片上。

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容