文档首页/
MapReduce服务 MRS/
开发指南(普通版_2.x及之前)/
Flink开发指南/
开发Flink应用/
向Kafka生产并消费数据程序/
Flink向Kafka生产并消费数据Scala样例代码
更新时间:2024-08-03 GMT+08:00
Flink向Kafka生产并消费数据Scala样例代码
功能简介
在Flink应用中,调用flink-connector-kafka模块的接口,生产并消费数据。
用户在开发前需要使用对接安全模式的Kafka,则需要引入MRS的kafka-client-xx.x.x.jar,该jar包可在MRS client目录下获取。
代码样例
下面列出producer和consumer主要逻辑代码作为演示。
完整代码参见com.huawei.bigdata.flink.examples.WriteIntoKafka和com.huawei.flink.example.kafka.ReadFromKafka
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
//producer代码 object WriteIntoKafkaScala { def main(args: Array[String]) { // 打印出执行flink run的参考命令 System.out.println("use command as: ") System.out.println("./bin/flink run --class com.huawei.flink.example.kafka.WriteIntoKafkaScala" + " /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:21005") System.out.println ("******************************************************************************************") System.out.println("<topic> is the kafka topic name") System.out.println("<bootstrap.servers> is the ip:port list of brokers") System.out.println ("******************************************************************************************") // 构造执行环境 val env = StreamExecutionEnvironment.getExecutionEnvironment // 设置并发度 env.setParallelism(1) // 解析运行参数 val paraTool = ParameterTool.fromArgs(args) // 构造流图,将自定义Source生成的数据写入Kafka val messageStream: DataStream[String] = env.addSource(new SimpleStringGeneratorScala) messageStream.addSink(new FlinkKafkaProducer(paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties)) // 调用execute触发执行 env.execute } } // 自定义Source,每隔1s持续产生消息 class SimpleStringGeneratorScala extends SourceFunction[String] { var running = true var i = 0 override def run(ctx: SourceContext[String]) { while (running) { ctx.collect("element-" + i) i += 1 Thread.sleep(1000) } } override def cancel() { running = false } } //consumer代码 object ReadFromKafkaScala { def main(args: Array[String]) { // 打印出执行flink run的参考命令 System.out.println("use command as: ") System.out.println("./bin/flink run --class com.huawei.flink.example.kafka.ReadFromKafkaScala" + " /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:21005") System.out.println ("******************************************************************************************") System.out.println("<topic> is the kafka topic name") System.out.println("<bootstrap.servers> is the ip:port list of brokers") System.out.println ("******************************************************************************************") // 构造执行环境 val env = StreamExecutionEnvironment.getExecutionEnvironment // 设置并发度 env.setParallelism(1) // 解析运行参数 val paraTool = ParameterTool.fromArgs(args) // 构造流图,从Kafka读取数据并换行打印 val messageStream = env.addSource(new FlinkKafkaConsumer( paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties)) messageStream .map(s => "Flink says " + s + System.getProperty("line.separator")).print() // 调用execute触发执行 env.execute() } } |
父主题: 向Kafka生产并消费数据程序