计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive
本文导读

展开导读

步骤5:测试新的表结构下的系统性能

更新时间:2024-10-10 GMT+08:00

重新创建了具有存储方式、压缩级别、分布方式和分布列的测试数据集后,重新测试系统性能。

  1. 记录各表的存储使用情况。

    使用pg_size_pretty函数查询每张表使用的磁盘空间,并将结果记录到基准表中。

    1
    SELECT T_NAME, PG_SIZE_PRETTY(PG_RELATION_SIZE(t_name)) FROM (VALUES('store_sales'),('date_dim'),('store'),('item'),('time_dim'),('promotion'),('customer_demographics'),('customer_address'),('household_demographics'),('customer'),('income_band')) AS names1(t_name);
    
             t_name         | pg_size_pretty
    ------------------------+----------------
     store_sales            | 14 GB
     date_dim               | 27 MB
     store                  | 4352 kB
     item                   | 259 MB
     time_dim               | 14 MB
     promotion              | 3200 kB
     customer_demographics  | 11 MB
     customer_address       | 27 MB
     household_demographics | 1280 kB
     customer               | 111 MB
     income_band            | 896 kB
    (11 rows)

  2. 测试查询性能,并将性能数据录入基准表中。

    再次运行如下三个查询,并记录每个查询的耗费时间。

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    \timing on
    SELECT * FROM (SELECT  COUNT(*)  
    FROM store_sales 
        ,household_demographics  
        ,time_dim, store 
    WHERE ss_sold_time_sk = time_dim.t_time_sk    
        AND ss_hdemo_sk = household_demographics.hd_demo_sk  
        AND ss_store_sk = s_store_sk 
        AND time_dim.t_hour = 8 
        AND time_dim.t_minute >= 30 
        AND household_demographics.hd_dep_count = 5 
        AND store.s_store_name = 'ese' 
    ORDER BY COUNT(*) 
     ) LIMIT 100;
    
    SELECT * FROM (SELECT  i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact,
    SUM(ss_ext_sales_price) ext_price
     FROM date_dim, store_sales, item,customer,customer_address,store
     WHERE d_date_sk = ss_sold_date_sk
       AND ss_item_sk = i_item_sk
       AND i_manager_id=8
       AND d_moy=11
       AND d_year=1999
       AND ss_customer_sk = c_customer_sk 
       AND c_current_addr_sk = ca_address_sk
       AND substr(ca_zip,1,5) <> substr(s_zip,1,5) 
       AND ss_store_sk = s_store_sk 
     GROUP BY i_brand
          ,i_brand_id
          ,i_manufact_id
          ,i_manufact
     ORDER BY ext_price desc
             ,i_brand
             ,i_brand_id
             ,i_manufact_id
             ,i_manufact
     ) LIMIT 100;
    
    SELECT * FROM (SELECT  s_store_name, s_store_id,
            SUM(CASE WHEN (d_day_name='Sunday') THEN ss_sales_price ELSE null END) sun_sales,
            SUM(CASE WHEN (d_day_name='Monday') THEN ss_sales_price ELSE null END) mon_sales,
            SUM(CASE WHEN (d_day_name='Tuesday') THEN ss_sales_price ELSE  null END) tue_sales,
            SUM(CASE WHEN (d_day_name='Wednesday') THEN ss_sales_price ELSE null END) wed_sales,
            SUM(CASE WHEN (d_day_name='Thursday') THEN ss_sales_price ELSE null END) thu_sales,
            SUM(CASE WHEN (d_day_name='Friday') THEN ss_sales_price ELSE null END) fri_sales,
            SUM(CASE WHEN (d_day_name='Saturday') THEN ss_sales_price ELSE null END) sat_sales
     FROM date_dim, store_sales, store
     WHERE d_date_sk = ss_sold_date_sk AND
           s_store_sk = ss_store_sk AND
           s_gmt_offset = -5 AND
           d_year = 2000 
     GROUP BY s_store_name, s_store_id
     ORDER BY s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales
      ) LIMIT 100;
    

    下面的基准表显示了本次实践中所用集群的验证结果。您的结果可能会因多方面的原因而有所变化,但规律性应该相差不大。考虑到操作系统缓存的影响,相同表结构的同一查询在每次执行时耗时会有不同属正常现象,建议多测试几次,取一组平均值。

    基准

    优化前

    优化后

    加载时间(11张表)

    341584ms

    257241ms

    占用存储

    Store_Sales

    42GB

    14GB

    Date_Dim

    11MB

    27MB

    Store

    232kB

    4352kB

    Item

    110MB

    259MB

    Time_Dim

    11MB

    14MB

    Promotion

    256kB

    3200kB

    Customer_Demographics

    171MB

    11MB

    Customer_Address

    170MB

    27MB

    Household_Demographics

    504kB

    1280kB

    Customer

    441MB

    111MB

    Income_Band

    88kB

    896kB

    总存储空间

    42GB

    15GB

    查询执行时间

    查询1

    14552.05ms

    1783.353ms

    查询2

    27952.36ms

    14247.803ms

    查询3

    17721.15ms

    11441.659ms

    总执行时间

    60225.56ms

    27472.815ms

  3. 如果对表设计后的性能还有更高期望,可以运行EXPLAIN PERFORMANCE以查看执行计划进行调优。

    关于执行计划的更详细介绍及查询优化请参考SQL执行计划优化查询性能概述

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容