更新时间:2024-10-10 GMT+08:00
步骤5:测试新的表结构下的系统性能
重新创建了具有存储方式、压缩级别、分布方式和分布列的测试数据集后,重新测试系统性能。
- 记录各表的存储使用情况。
使用pg_size_pretty函数查询每张表使用的磁盘空间,并将结果记录到基准表中。
1
SELECT T_NAME, PG_SIZE_PRETTY(PG_RELATION_SIZE(t_name)) FROM (VALUES('store_sales'),('date_dim'),('store'),('item'),('time_dim'),('promotion'),('customer_demographics'),('customer_address'),('household_demographics'),('customer'),('income_band')) AS names1(t_name);
t_name | pg_size_pretty ------------------------+---------------- store_sales | 14 GB date_dim | 27 MB store | 4352 kB item | 259 MB time_dim | 14 MB promotion | 3200 kB customer_demographics | 11 MB customer_address | 27 MB household_demographics | 1280 kB customer | 111 MB income_band | 896 kB (11 rows)
- 测试查询性能,并将性能数据录入基准表中。
再次运行如下三个查询,并记录每个查询的耗费时间。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
\timing on SELECT * FROM (SELECT COUNT(*) FROM store_sales ,household_demographics ,time_dim, store WHERE ss_sold_time_sk = time_dim.t_time_sk AND ss_hdemo_sk = household_demographics.hd_demo_sk AND ss_store_sk = s_store_sk AND time_dim.t_hour = 8 AND time_dim.t_minute >= 30 AND household_demographics.hd_dep_count = 5 AND store.s_store_name = 'ese' ORDER BY COUNT(*) ) LIMIT 100; SELECT * FROM (SELECT i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact, SUM(ss_ext_sales_price) ext_price FROM date_dim, store_sales, item,customer,customer_address,store WHERE d_date_sk = ss_sold_date_sk AND ss_item_sk = i_item_sk AND i_manager_id=8 AND d_moy=11 AND d_year=1999 AND ss_customer_sk = c_customer_sk AND c_current_addr_sk = ca_address_sk AND substr(ca_zip,1,5) <> substr(s_zip,1,5) AND ss_store_sk = s_store_sk GROUP BY i_brand ,i_brand_id ,i_manufact_id ,i_manufact ORDER BY ext_price desc ,i_brand ,i_brand_id ,i_manufact_id ,i_manufact ) LIMIT 100; SELECT * FROM (SELECT s_store_name, s_store_id, SUM(CASE WHEN (d_day_name='Sunday') THEN ss_sales_price ELSE null END) sun_sales, SUM(CASE WHEN (d_day_name='Monday') THEN ss_sales_price ELSE null END) mon_sales, SUM(CASE WHEN (d_day_name='Tuesday') THEN ss_sales_price ELSE null END) tue_sales, SUM(CASE WHEN (d_day_name='Wednesday') THEN ss_sales_price ELSE null END) wed_sales, SUM(CASE WHEN (d_day_name='Thursday') THEN ss_sales_price ELSE null END) thu_sales, SUM(CASE WHEN (d_day_name='Friday') THEN ss_sales_price ELSE null END) fri_sales, SUM(CASE WHEN (d_day_name='Saturday') THEN ss_sales_price ELSE null END) sat_sales FROM date_dim, store_sales, store WHERE d_date_sk = ss_sold_date_sk AND s_store_sk = ss_store_sk AND s_gmt_offset = -5 AND d_year = 2000 GROUP BY s_store_name, s_store_id ORDER BY s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales ) LIMIT 100;
下面的基准表显示了本次实践中所用集群的验证结果。您的结果可能会因多方面的原因而有所变化,但规律性应该相差不大。考虑到操作系统缓存的影响,相同表结构的同一查询在每次执行时耗时会有不同属正常现象,建议多测试几次,取一组平均值。
基准
优化前
优化后
加载时间(11张表)
341584ms
257241ms
占用存储
Store_Sales
42GB
14GB
Date_Dim
11MB
27MB
Store
232kB
4352kB
Item
110MB
259MB
Time_Dim
11MB
14MB
Promotion
256kB
3200kB
Customer_Demographics
171MB
11MB
Customer_Address
170MB
27MB
Household_Demographics
504kB
1280kB
Customer
441MB
111MB
Income_Band
88kB
896kB
总存储空间
42GB
15GB
查询执行时间
查询1
14552.05ms
1783.353ms
查询2
27952.36ms
14247.803ms
查询3
17721.15ms
11441.659ms
总执行时间
60225.56ms
27472.815ms
- 如果对表设计后的性能还有更高期望,可以运行EXPLAIN PERFORMANCE以查看执行计划进行调优。