1 |
Absval |
Computes the absolute value of the input. |
[Input]
One input
[Parameter]
engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
[Constraint]
None
[Quantitative tool support]
Yes |
2 |
Argmax |
Returns the index number corresponding to the maximum input value. |
[Input]
One input
[Parameter]
- out_max_val: (optional) bool, default to false
- top_k: (optional) unit32, default to 1
- axis: (optional) int32
[Constraint]
None
[Quantitative tool support]
No |
3 |
BatchNorm |
Normalizes the input:
variance of [(x – avg(x))/x] |
[Input]
One input
[Parameter]
- use_global_stats: bool, must be true
- moving_average_fraction: (optional) float, default to 0.999
- eps: (optional) float, default to 1e-5
[Constraint]
Only the C dimension can be normalized.
[Quantitative tool support]
Yes |
4 |
Concat |
Concatenates the input along the given dimension. |
[Input]
Multiple inputs
[Parameter]
- concat_dim: (optional) uint32, default to 1, greater than 0
- axis: (optional) int32, default to 1, exclusive with concat_dim. When axis is –1, four input dimensions are required. Otherwise, the result may be incorrect.
[Constraint]
- For the input tensor, the sizes of its dimensions must be the same except the dimension for concatenation.
- The range of the input tensor count is [1, 1,000].
[Quantitative tool support]
Yes |
5 |
DepthwiseConvolution |
Depthwise convolution |
[Input]
One 4D input, with a constant filter
[Parameter]
- num_output: (optional) uint32
- bias_term: (optional) bool, default to true
- pad: uint32, default to 0, array
- kernel_size: uint32, array
- stride: uint32, default to 1, array
- dilation: uint32, default to 1, array
- pad_h: (optional) uint32, default to 0 (2D only)
- pad_w: (optional) uint32, default to 0 (2D only)
- kernel_h: (optional) uint32 (2D only)
- kernel_w: (optional) uint32 (2D only)
- stride_h: (optional) uint32 (2D only)
- stride_w: (optional) uint32 (2D only)
- group: (optional) uint32, default to 1
- weight_filler: (optional) FillerParameter
- bias_filler: (optional) FillerParameter
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
- force_nd_im2col: (optional) bool, default to false
- axis: (optional) int32, default to 1
[Constraint]
filterN=inputC=group
[Quantitative tool support]
Yes |
6 |
Convolution |
Convolution |
[Input]
One 4D input, with a constant filter
[Parameter]
- num_output: (optional) uint32
- bias_term: (optional) bool, default to true
- pad: uint32, default to 0, array
- kernel_size: uint32, array
- stride: uint32, default to 1, array
- dilation: uint32, default to 1, array
- pad_h: (optional) uint32, default to 0 (2D only)
- pad_w: (optional) uint32, default to 0 (2D only)
- kernel_h: (optional) uint32 (2D only)
- kernel_w: (optional) uint32 (2D only)
- stride_h: (optional) uint32 (2D only)
- stride_w: (optional) uint32 (2D only)
- group: (optional) uint32, default to 1
- weight_filler: (optional) FillerParameter
- bias_filler: (optional) FillerParameter
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
- force_nd_im2col: (optional) bool, default to false
- axis: (optional) int32, default to 1
[Constraint]
- (inputW + padWHead + padWTail) ≥ (((FilterW-1) x dilationW) + 1)
- (inputW + padWHead + padWTail)/StrideW + 1 ≤ 2147483647
- (inputH + padHHead + padHTail) ≥ (((FilterH-1) x dilationH) + 1)
- (inputH + padHHead + padHTail)/StrideH + 1 ≤ 2147483647
- 0 ≤ Pad < 256, 0 < FilterSize < 256, 0 < Stride < 64, 1 ≤ dilationsize < 256
[Quantitative tool support]
Yes |
7 |
Crop |
Crops the input. |
[Input]
Two inputs
[Parameter]
- axis: (optional) int32, default to 2. When axis is –1, four input dimensions are required.
- offset: uint32, array
[Constraint]
None
[Quantitative tool support]
No |
8 |
Deconvolution |
Deconvolution |
[Input]
One 4D input, with a constant filter
[Parameter]
- num_output: (optional) uint32
- bias_term: (optional) bool, default to true
- pad: uint32, default to 0, array
- kernel_size: uint32, array
- stride: uint32, default to 1, array
- dilation: uint32, default to 1, array
- pad_h: (optional) uint32, default to 0 (2D only)
- pad_w: (optional) uint32, default to 0 (2D only)
- kernel_h: (optional) uint32 (2D only)
- kernel_w: (optional) uint32 (2D only)
- stride_h: (optional) uint32 (2D only)
- stride_w: (optional) uint32 (2D only)
- group: (optional) uint32, default to 1
- weight_filler: (optional) FillerParameter
- bias_filler: (optional) FillerParameter
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
- force_nd_im2col: (optional) bool, default to false
- axis: (optional) int32, default to 1
[Constraint]
- group = 1
- dilation = 1
- filterH - padHHead - 1 ≥ 0
- filterW - padWHead - 1 ≥ 0
Restrictions involving intermediate variables:
- a = ALIGN(filter_num, 16) x ALIGN(filter_c, 16) x filter_h x filter_w x 2
- If ALIGN(filter_c, 16)%32 = 0, a = a/2
- conv_input_width = (deconvolution input W – 1) x strideW + 1
- b = (conv_input_width) x filter_h x ALIGN(filter_num, 16) x 2 x 2
- a + b ≤ 1024 x 1024
[Quantitative tool support]
Yes |
9 |
DetectionOutput |
Generates detection results and outputs FSR. |
[Input]
Three inputs
[Parameter]
- num_classes: (mandatory) int32, indicating the number of classes to be predicted
- share_location: (optional) bool, default to true, indicating that classes share one bounding box
- background_label_id: (optional) int32, default to 0
- nms_param: (optional) indicating non-maximum suppression (NMS)
- save_output_param: (optional) indicating whether to save the detection result
- code_type: (optional) default to CENTER_SIZE
- variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
- keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
- confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
- nms_threshold: (optional) float
- top_k: (optional) int32
- boxes: (optional) int32, default to 1
- relative: (optional) bool, default to true
- objectness_threshold: (optional) float, default to 0.5
- class_threshold: (optional) float, default to 0.5
- biases: array
- general_nms_param: optional
[Constraint]
- Used for Faster R-CNN
- Non-maximum suppression (NMS) ratio nmsThreshold is within (0, 1)
- Probability threshold postConfThreshold is within (0, 1)
- Classes ≥ 2
- Input box count ≤ 1,024
- Output W dimension = 16
[Quantitative tool support]
Yes |
10 |
Eltwise |
Computes element-wise operations (PROD, MAX, and SUM). |
[Input]
At least two inputs
[Parameter]
- operation: (optional) enum, PROD = 0, SUM = 1, MAX = 2; default to SUM
- coeff: float array
- stable_prod_grad: (optional) bool, default to true
[Constraint]
- Up to four inputs
- Compared with the native operator, this operator does not support the stable_prod_grad parameter.
- PROD, MAX, and SUM operations are supported.
[Quantitative tool support]
Yes |
11 |
Elu |
Activation function |
[Input]
One input
[Parameter]
alpha: (optional) float, default to 1
[Constraint]
None
[Quantitative tool support]
No |
12 |
Exp |
Applies e as the base and x as the exponent. |
[Input]
One input
[Parameter]
- base: (optional) float, default to –1.0
- scale: (optional) float, default to 1.0
- shift: (optional) float, default to 0.0
[Constraint]
None
[Quantitative tool support]
No |
13 |
Flatten |
Converts an input of shape N * C * H * W to a vector output of shape N * (C * H * W). |
[Input]
One input
(top_size ≠ bottom_size ≠ 1. When axis is –1, four input dimensions are required.)
[Parameter]
- axis: (optional) int32, default to 1
- end_axis: (optional) int32, default to -1
[Constraint]
axis < end axis
[Quantitative tool support]
Yes |
14 |
FullConnection |
Computes an inner product. |
[Input]
One input
[Parameter]
- num_output: (optional) uint32
- bias_term: (optional) bool, default to true
- weight_filler: (optional) FillerParameter, 2D
- bias_filler: (optional) FillerParameter, 1D
- axis: (optional) int32, default to 1
- transpose: (optional) bool, default to false
[Constraint]
- transpose = false, axis = 1
- Bais_C ≤ 56832
- To quantify the model, the following dimension restrictions must be satisfied:
− When N = 1, then 2 x CEIL(C, 16) x 16 x xH x xW ≤ 1024 x 1024
− When N > 1, then 2 x 16 x CEIL(C, 16) x 16 x xH x xW ≤ 1024 x 1024
[Quantitative tool support]
Yes |
15 |
Interp |
Interpolation layer |
[Input]
One input
[Parameter]
- height: (optional) int32, default to 0
- width: (optional) int32, default to 0
- zoom_factor: (optional) int32, default to 1
- shrink_factor: (optional) int32, default to 1
- pad_beg: (optional) int32, default to 0
- pad_end: (optional) int32, default to 0
NOTE:
l zoom_factor and shrink_factor are exclusive.
l height and zoom_factor are exclusive.
l height and shrink_factor are exclusive.
[Constraint]
(outputH x outputW)/(inputH x inputW) > 1/30
[Quantitative tool support]
No |
16 |
Log |
Performs logarithmic operation on the input. |
[Input]
One input
[Parameter]
- base: (optional) float, default to –1.0
- scale: (optional) float, default to 1.0
- shift: (optional) float, default to 0.0
[Constraint]
None
[Quantitative tool support]
No |
17 |
LRN |
Normalizes the input in a local region. |
[Input]
One non-constant input
[Parameter]
- local_size: (optional) uint32, default to 5
- alpha: (optional) float, default to 1
- beta: (optional) float, default to 0.75
- norm_region: (optional) enum, default to ACROSS_CHANNELS (ACROSS_CHANNELS = 0, WITHIN_CHANNEL = 1)
- lrnk: (optional) float, default to 1
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
[Constraint]
- local_size is an odd number greater than 0.
- Inter-channel: If local_size is within [1, 15]: lrnK > 0.00001 and beta > 0.01; Otherwise, lrnK and beta are any values. lrnK and alpha are not 0 at the same time. When the C dimension is greater than 1,776, local_size < 1728.
- Intra-channel: lrnK = 1, local_size is within [1, 15], beta > 0.01.
[Quantitative tool support]
Yes |
18 |
LSTM |
Long and short term memory network (LSTM) |
[Input]
Two or three inputs
- X: time sequence data (T x B x Xt), which is in the NCHW 4D format,
- where, N corresponds to the time sequence length T, C corresponds to the batch size B, H corresponds to the input data Xt at time point t, and W is fixed at 1.
- Cont: sequence continuity flag (T x B)
- Xs: (optional) static data (B x Xt)
[Parameter]
- num_output: (optional) uint32, default to 0
- weight_filler: (optional) FillerParameter
- bias_filler: (optional) FillerParameter
- debug_info: (optional) bool, default to false
- expose_hidden: (optional) bool, default to false
[Constraint]
Restrictions involving intermediate variables:
a = (ALIGN(xt, 16) + ALIGN(output, 16)) x 16 x 2 x 2
b = (ALIGN(xt, 16) + ALIGN(output, 16)) x 16 x 4 x 2 x 2
c = use_projection ? ALIGN(ht, 16) x ALIGN(output, 16) x 2):0
d = 16 x ALIGN(ht, 16) x 2
e = batchNum x 4
The constraints are as follows:
a + b + c ≤ 1024 x 1024
d ≤ 256 x 1024/8
e ≤ 256 x 1024/32
[Quantitative tool support]
No |
19 |
Normalize |
Normalization layer |
[Input]
One input
[Parameter]
- across_spatial: (optional) bool, default to true
- scale_filler: (optional) default to 1.0
- channel_shared: (optional) bool, default to true
- eps: (optional) float, default to 1e-10
[Constraint]
- 1e – 7 < eps ≤ 0.1 + (1e – 6)
- across_spatial can only be true for Caffe, indicating normalization by channel.
[Quantitative tool support]
Yes |
20 |
Permute |
Permutes the input dimensions according to a given mode. |
[Input]
One input
[Parameter]
order: uint32, array
[Constraint]
None
[Quantitative tool support]
Yes |
21 |
Pooling |
Pools the input. |
[Input]
One input
[Parameter]
- pool: (optional) enum, indicating the pooling method, MAX = 0, AVE = 1, and STOCHASTIC = 2, default to MAX
- pad: (optional) uint32, default to 0
- pad_h: (optional) uint32, default to 0
- pad_w: (optional) uint32, default to 0
- kernel_size: (optional) uint32, exclusive with kernel_h/kernel_w
- kernel_h: (optional) uint32
- kernel_w: (optional) uint32, used in pair with kernel_h
- stride: (optional) uint32, default to 1
- stride_h: (optional) uint32
- stride_w: (optional) uint32
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
- global_pooling: (optional) bool, default to false
- ceil_mode: (optional) bool, default to true
- round_mode: (optional) enum, CEIL = 0, FLOOR = 1, default to CEIL
[Constraint]
- kernelH ≤ inputH + padTop + padBottom
- kernelW ≤ inputW + padLeft + padRight
- padTop < windowH
- padBottom < windowH
- padLeft < windowW
- padRight < windowW
In addition to common restrictions, the following restrictions must be satisfied.
The global pool mode supports only the following ranges:
- outputH==1 && outputW==1 && kernelH>=inputH && kernelW>=inputW
- inputH*inputW ≤ 10,000
[Quantitative tool support]
Yes |
22 |
Power |
Computes the output y as (scale * x + shift)^power. |
[Input]
One input
[Parameter]
- power: (optional) float, default to 1.0
- scale: (optional) float, default to 1.0
- shift: (optional) float, default to 0.0
[Constraint]
- power! = 1
- scale * x + shift > 0
[Quantitative tool support]
Yes |
23 |
Prelu |
Activation function |
[Input]
One input
[Parameter]
- filler: optional
- channel_shared: (optional) bool, indicating whether to share slope parameters across channels, default to false
[Constraint]
None
[Quantitative tool support]
Yes |
24 |
PriorBox |
Obtains the real location of the target from the box proposals. |
[Input]
One input
[Parameter]
- min_size: (mandatory) indicating the minimum frame size (in pixels)
- max_size: (mandatory) indicating the maximum frame size (in pixels)
- aspect_ratio: array, float. A repeated ratio is ignored. If no aspect ratio is provided, the default ratio 1 is used.
- flip: (optional) bool, default to true. The value true indicates that each aspect ratio is reversed. For example, for aspect ratio r, the aspect ratio 1.0/r is generated.
- clip: (optional) bool, default to false. The value true indicates that the previous value is clipped to the range [0, 1].
- variance: array, used to adjust the variance of the BBoxes
- img_size: (optional) uint32, exclusive with img_h or img_w
- img_h: (optional) uint32
- img_w: (optional) uint32
- step: (optional) float, exclusive with step_h or step_w
- step_h: (optional) float
- step_w: (optional) float
- offset: float, default to 0.5
[Constraint]
Used for the SSD network only
Output dimensions: [n, 2, detected boxes x 4, 1]
[Quantitative tool support]
Yes |
25 |
Proposal |
Sorts the box proposals by (proposal, score) and obtains the top N proposals by using the NMS. |
[Input]
Three inputs (scores, bbox_pred, im_info)
[Parameter]
- feat_stride: (optional) float
- base_size: (optional) float
- min_size: (optional) float
- ratio: float array
- scale: float array
- pre_nms_topn: (optional) int32
- post_nms_topn: (optional) int32
- nms_thresh: (optional) float
[Constraint]
- Used only for Faster R-CNN
- ProposalParameter and PythonParameter are exclusive.
- Value range of preTopK: 1-6,144
- Value range of postTopK: 1-1,024
- scaleCnt x ratioCnt ≤ 64
- nmsTresh: threshold for Intersection-over-Union (IoU) box filtering, 0 < nmsTresh ≤ 1
- minSize: minimum edge length of a box. A value less than this parameter is filtered out.
- featStride: H/W stride between the two adjacent boxes used in default box generation
- baseSize: default box size used in default box generation
- ratio and scale: used in default box generation
- imgH and imgW: height and width of the image input to the network. The values must be greater than 0.
- Restrictions on the input dimensions:
clsProb: C = 2 x scaleCnt x ratioCnt
bboxPred: C = 4 x scaleCnt x ratioCnt
bboxPrior: N = clsProb.N, C = 4 x scaleCnt x ratioCnt
imInfo: N = clsProb.N, C = 3
[Quantitative tool support]
Yes |
26 |
PSROIPooling |
Position-sensitive region-of-interest pooling (PSROIPooling) |
[Input]
Two inputs
[Parameter]
- spatial_scale: (mandatory) float
- output_dim: (mandatory) int32, indicating the number of output channels
- group_size: (mandatory) int32, indicating the number of groups to encode position-sensitive score maps
[Constraint]
Used for the Region-based Fully Convolutional Network (R-FCN)
- ROI coordinates [roiN, roiC, roiH, roiW]: 1 ≤ roiN ≤ 65535, roiC == 5, roiH == 1, roiW == 1
- Dimensions of the input feature map: [xN, xC, xH, xW]
pooledH == pooledW == groupSize ≤ 128
pooledH and pooledW indicate the length and width of the pooled ROI.
- Output format: y [yN, yC, yH, yW]
- poolingMode == avg pooling, pooledH == pooledW == groupSize, pooledH ≤ 128, spatialScale > 0, groupSize > 0, outputDim > 0
- 1 ≤ xN ≤ 65535, roisN % xN == 0
- HW_LIMIT defines the limits of xH and xW.
xHW = xH * xW
pooledHW = pooledH * pooledW
HW_LIMIT = (64 x 1024 – 8 x 1024)/32
xH ≥ pooledH, xW ≥ pooledW
xHW ≥ pooledHW
xHW/pooledHW ≤ HW_LIMIT
- In multi-batch scenarios, the ROIs are allocated equally to the batches. In addition, the batch sequence of the ROIs is the same as the feature.
[Quantitative tool support]
Yes |
27 |
Relu |
Activation function, including common ReLU and Leaky ReLU, which can be specified by parameters |
[Input]
One input
[Parameter]
- negative_slope: (optional) float, default to 0
- engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
[Constraint]
None
[Quantitative tool support]
Yes |
28 |
Reshape |
Reshapes the input. |
[Input]
One input
[Parameter]
- shape: constant, int64 or int
- axis: (optional) int32, default to 0
- num_axes: (optional) int32, default to -1
[Constraint]
None
[Quantitative tool support]
Yes |
29 |
ROIAlign |
Aggregates features using ROIs. |
[Input]
At least two inputs
[Parameter]
- pooled_h: (optional) uint32, default to 0
- pooled_w: (optional) uint32, default to 0
- spatial_scale: (optional) float, default to 1
- sampling_ratio: (optional) int32, default to -1
[Constraint]
Mainly used for Mask R-CNN
- Restrictions on the feature map:
1) H x W ≤ 5,248 (N > 1) or W x C < 40,960 (N = 1)
2) C ≤ 1280
3) ((C - 1)/128 + 1) x pooledW ≤ 216
1) C = 5 (caffe), H = 1, W = 1
2) samplingRatio * pooledW ≤ 128, samplingRatio * pooledH ≤ 128
3) H ≥ pooledH, W ≥ pooledW
[Quantitative tool support]
Yes |
30 |
ROIPooling |
Maps ROI proposals to a feature map. |
[Input]
At least two inputs
[Parameter]
- pooled_h: (mandatory) uint32, default to 0
- pooled_w: (mandatory) uint32, default to 0
- spatial_scale: (mandatory) float, default to 1. The multiplication spatial scale factor is used to convert ROI coordinates from the input scale to the pool scale.
[Constraint]
Mainly used for Faster R-CNN
- Input dimensions: H x W ≤ 8,160, H ≤ 120, W ≤ 120
- Output dimensions: pooledH ≤ 20, pooledW ≤ 20
[Quantitative tool support]
Yes |
31 |
Scale |
out = alpha x Input + beta |
[Input]
Two inputs, each with four dimensions
[Parameter]
- axis: (optional) int32, default to 1. Only 1 or –3 is supported.
- num_axes: (optional) int32, default to 1
- filler: (optional) ignored unless only one bottom is given and scale is a learned parameter
- bias_term: (optional) bool, default to false, indicating whether to learn a bias (equivalent to ScaleLayer + BiasLayer, but may be more efficient). Initialized with bias_filler.
- bias_filler: (optional) default to 0
[Constraint]
shape of scale and bias: (n, c, 1, 1), with the C dimension equal to that of the input
[Quantitative tool support]
Yes |
32 |
ShuffleChannel |
Shuffles information across the feature channels. |
[Input]
One input
[Parameter]
group: (optional) uint32, default to 1
[Constraint]
None
[Quantitative tool support]
Yes |
33 |
Sigmoid |
Activation function |
[Input]
One input
[Parameter]
engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
[Constraint]
None
[Quantitative tool support]
Yes |
34 |
Slice |
Slices an input into multiple outputs. |
[Input]
One input
[Parameter]
- slice_dim: (optional) uint32, default to 1, exclusive with axis
- slice_point: array, uint32
- axis: (optional) int32, default to 1, indicating concatenation along the channel dimension
[Constraint]
None
[Output]
None
[Quantitative tool support]
Yes |
35 |
Softmax |
Normalized logic function |
[Input]
One input
[Parameter]
- engine: (optional) default to 0, CAFFE = 1, CUDNN = 2
- axis: (optional) int32, default to 1, indicating the axis along which softmax is performed
[Constraint]
Softmax can be performed on each of the four input dimensions.
According to axis:
- When axis = 1: C ≤ ((256 x 1024/4) – 8 x 1024 – 256)/2
- When axis = 0: n ≤ (56 x 1024 – 256)/2
- When axis = 2: W = 1, 0 < h < (1024 x 1024/32)
- When axis = 3: 0 < W < (1024 x 1024/32)
If the input contains fewer than four dimensions, softmax is performed only on the last dimension, with the last dimension ≤ 46,080.
[Quantitative tool support]
Yes |
36 |
Tanh |
Activation function |
[Input]
One input
[Parameter]
engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
[Constraint]
The number of tensor elements cannot exceed INT32_MAX.
[Quantitative tool support]
Yes |
37 |
Upsample |
Backward propagation of max pooling |
[Input]
Two inputs
[Parameter]
scale: (optional) int32, default to 1
[Constraint]
None
[Quantitative tool support]
Yes |
38 |
SSDDetectionOutput |
SSD network detection output |
[Input]
Three inputs
[Parameter]
- num_classes: (mandatory) int32, indicating the number of classes to be predicted
- share_location: (optional) bool, default to true, indicating that classes share one bounding box
- background_label_id: (optional) int32, default to 0
- nms_param: (optional) indicating non-maximum suppression (NMS)
- save_output_param: (optional) indicating whether to save the detection result
- code_type: (optional) default to CENTER_SIZE
- variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
- keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
- confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
- nms_threshold: (optional) float
- top_k: (optional) int32
- boxes: (optional) int32, default to 1
- relative: (optional) bool, default to true
- objectness_threshold: (optional) float, default to 0.5
- class_threshold: (optional) float, default to 0.5
- biases: array
- general_nms_param: optional
[Constraint]
- Used for the SSD network only
- Value range of preTopK and postTopK: 1–1024
- shareLocation = true
- nmsEta = 1
- Value range of numClasses: 1–2048
- code_type = CENTER_SIZE
- Value range of nms_threshold and confidence_threshold: 0.0–1.0
[Quantitative tool support]
Yes |
39 |
Reorg |
Real-time object detection |
[Input]
One input
[Parameter]
- stride: (optional) uint32, default to 2
- reverse: (optional) bool, default to false
[Constraint]
sed only for YOLOv2
[Quantitative tool support]
No |
40 |
Reverse |
Reversion |
[Input]
One input
[Parameter]
axis: (optional) int32, default to 1. Controls the axis to be reversed. The content layout will not be reversed.
[Constraint]
None
[Quantitative tool support]
No |
41 |
LeakyRelu |
LeakyRelu activation function |
[Input]
One input
[Parameter]
Same as ReLU
[Constraint]
None
[Quantitative tool support]
Yes |
42 |
YOLODetectionOutput |
YOLO network detection output |
[Input]
Four inputs
[Parameter]
- num_classes: (mandatory) int32, indicating the number of classes to be predicted
- share_location: (optional) bool, default to true, indicating that classes share one bounding box
- background_label_id: (optional) int32, default to 0
- nms_param: (optional) indicating non-maximum suppression (NMS)
- save_output_param: (optional) indicating whether to save the detection result
- code_type: (optional) default to CENTER_SIZE
- variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
- keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
- confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
- nms_threshold: (optional) float
- top_k: (optional) int32
- boxes: (optional) int32, default to 1
- relative: (optional) bool, default to true
- objectness_threshold: (optional) float, default to 0.5
- class_threshold: (optional) float, default to 0.5
- biases: array
- general_nms_param: optional
[Constraint]
- sed only for YOLOv2
- classNUm < 10,240; anchorBox ≤ 8
- W ≤ 1,536
- The upper layer of yolodetectionoutput must be the yoloregion operator.
[Quantitative tool support]
No |