Help Center/ Cloud Container Engine/ Best Practices/ Batch Computing/ Deploying and Using TensorFlow in a CCE Cluster
Updated on 2024-12-28 GMT+08:00

Deploying and Using TensorFlow in a CCE Cluster

Preparing Resources

  • Create a CCE cluster and GPU nodes, and use the gpu-beta add-on to install the graphics card driver.
  • Add an object storage volume to the cluster.

Pre-configuring Data

Download data from https://github.com/zalandoresearch/fashion-mnist.

Obtain the TensorFlow machine learning (ML) example and modify it based on your requirements.

basicClass.py

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import gzip
from tensorflow.python.keras.utils import get_file
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

print(tf.__version__)

#fashion_mnist = keras.datasets.fashion_mnist
#(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

def load_data():
    base = "file:////home/data/"
    files = [
        'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
        't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]

    paths = []
    for fname in files:
        paths.append(get_file(fname, origin=base + fname))

    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

    return (x_train, y_train), (x_test, y_test)

(train_images, train_labels), (test_images, test_labels) = load_data()

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.savefig('/home/img/basicimg1.png')

train_images = train_images / 255.0

test_images = test_images / 255.0

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.savefig('/home/img/basicimg2.png')

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer=tf.train.AdamOptimizer(), 
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print('Test accuracy:', test_acc)

predictions = model.predict(test_images)

def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array[i], true_label[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1]) 
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.savefig('/home/img/basicimg3.png')

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.savefig('/home/img/basicimg4.png')

# Plot the first X test images, their predicted label, and the true label
# Color correct predictions in blue, incorrect predictions in red
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions, test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions, test_labels)
plt.savefig('/home/img/basicimg5.png')

Go to the OBS bucket page, create the data and img folders, and upload basicClass.py.

Go to the data folder and upload the four .gz files downloaded from GitHub.

ML Example

In this section, the ML example from the TensorFlow official website is used. For details, see https://www.tensorflow.org/tutorials/keras/classification?hl=en-us.

Create a job using the third-party tensorflow/tensorflow:1.15.5-gpu. Set the container specifications.

Add pip install matplotlib;python /home/basicClass.py in the Start Command area.

Mount the created OBS volume.

Click Create. Wait until the job execution is complete. On the OBS page, you can view the execution results that are shown as images.

If you want to use kubectl, you can use the following example YAML:

kind: Job
apiVersion: batch/v1
metadata:
  name: testjob
  namespace: default
spec:
  parallelism: 1
  completions: 1
  backoffLimit: 6
  template:
    metadata:
      name: testjob
    spec:
      volumes:
        - name: cce-obs-tensorflow
          persistentVolumeClaim:
            claimName: cce-obs-tensorflow
      containers:
        - name: container-0
          image: 'tensorflow/tensorflow:1.15.5-gpu'
          restartPolicy: OnFailure
          command:
            - /bin/bash
          args:
            - '-c'
            - pip install matplotlib;python /home/basicClass.py
          resources:
            limits:
              cpu: '2'
              memory: 4Gi
              nvidia.com/gpu: '1'
            requests:
              cpu: '2'
              memory: 4Gi
              nvidia.com/gpu: '1'
          volumeMounts:
            - name: cce-obs-tensorflow
              mountPath: /home
          imagePullPolicy: IfNotPresent
      imagePullSecrets:
        - name: default-secret