
Cloud Container Engine

Best Practices

Issue 01

Date 2025-01-08

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Checklist for Deploying Containerized Applications in the Cloud...............................1

2 Containerization.. 12
2.1 Containerizing an Enterprise Application (ERP)...12
2.1.1 Solution Overview... 12
2.1.2 Resource and Cost Planning.. 16
2.1.3 Procedure... 16
2.1.3.1 Containerizing an Entire Application...17
2.1.3.2 Containerization Process... 18
2.1.3.3 Analyzing the Application... 19
2.1.3.4 Preparing the Application Runtime... 21
2.1.3.5 Compiling a Startup Script..23
2.1.3.6 Compiling the Dockerfile...23
2.1.3.7 Building and Uploading an Image... 25
2.1.3.8 Creating a Container Workload.. 26

3 Migration...31
3.1 Migrating Container Images... 31
3.1.1 Solution Overview... 31
3.1.2 Migrating Images to SWR Using Docker Commands... 33
3.1.3 Migrating Images to SWR Using image-migrator... 34
3.1.4 Synchronizing Images Across Clouds from Harbor to SWR..40
3.2 Migrating Kubernetes Clusters to CCE.. 45
3.2.1 Solution Overview... 45
3.2.2 Planning Resources for the Target Cluster..50
3.2.3 Procedure... 55
3.2.3.1 Migrating Resources Outside a Cluster.. 55
3.2.3.2 Installing the Migration Tool..57
3.2.3.3 Migrating Resources in a Cluster (Velero).. 61
3.2.3.4 Updating Resources Accordingly.. 64
3.2.3.5 Performing Additional Tasks.. 67
3.2.3.6 Troubleshooting.. 68

4 DevOps...71
4.1 Installing and Deploying Jenkins on CCE..71

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.1.1 Solution Overview... 71
4.1.2 Resource and Cost Planning.. 74
4.1.3 Procedure... 75
4.1.3.1 Installing and Deploying Jenkins Master... 75
4.1.3.2 Configuring Jenkins Agent.. 81
4.1.3.3 Using Jenkins to Build a Pipeline.. 91
4.1.3.4 Interconnecting Jenkins with RBAC of Kubernetes Clusters (Example).. 94
4.2 Interconnecting GitLab with SWR and CCE for CI/CD... 100
4.3 Continuous Delivery Using Argo CD.. 107
4.4 Implementing Separate DevOps Processes for Multiple Clusters Using Jenkins and GitLab...................115
4.4.1 Solution Overview...115
4.4.2 Resource Planning.. 117
4.4.3 Procedure... 118
4.4.3.1 Setting Up the Jenkins and GitLab Environments.. 118
4.4.3.2 Configuring Cluster Environments... 122
4.4.3.3 Configuring a GitLab Project... 126
4.4.3.4 Implementing Continuous Integration and Deployment...127

5 Disaster Recovery.. 137
5.1 Recommended Configurations for HA CCE Clusters.. 137
5.2 Implementing High Availability for Applications in CCE.. 147
5.3 Implementing High Availability for Add-ons in CCE.. 149

6 Security.. 154
6.1 Overview..154
6.2 Configuration Suggestions on CCE Cluster Security...155
6.3 Configuration Suggestions on CCE Node Security.. 159
6.4 Configuration Suggestions on CCE Container Runtime Security... 161
6.5 Configuration Suggestions on CCE Container Security... 163
6.6 Configuration Suggestions on CCE Container Image Security..167
6.7 Configuration Suggestions on CCE Secret Security.. 169
6.8 Configuration Suggestions on CCE Workload Identity Security... 171

7 Auto Scaling... 177
7.1 Using HPA and CA for Auto Scaling of Workloads and Nodes.. 177
7.2 Elastic Scaling of CCE Pods to CCI.. 185
7.3 Auto Scaling Based on Prometheus Metrics... 188
7.4 Auto Scaling Based on ELB Monitoring Metrics.. 192
7.5 Auto Scaling of Multiple Applications Using Nginx Ingresses.. 202

8 Monitoring.. 209
8.1 Monitoring Multiple Clusters Using Prometheus.. 209
8.2 Monitoring GPU Metrics Using dcgm-exporter... 213
8.3 Reporting Prometheus Monitoring Data to a Third-Party Monitoring Platform... 219
8.4 Obtaining Prometheus Data Using PromQL Statements... 222

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

9 Cluster..227
9.1 Suggestions on CCE Cluster Selection... 227
9.2 Creating an IPv4/IPv6 Dual-Stack Cluster in CCE..233
9.3 Creating a Custom CCE Node Image...242
9.4 Executing the Pre- or Post-installation Commands During Node Creation...249
9.5 Using OBS Buckets to Implement Custom Script Injection During Node Creation.....................................250
9.6 Connecting to Multiple Clusters Using kubectl..254
9.7 Selecting a Data Disk for the Node... 260
9.8 Implementing Cost Visualization for a CCE Cluster... 266
9.9 Creating a CCE Turbo Cluster Using a Shared VPC...270
9.10 Protecting a CCE Cluster Against Overload.. 271
9.11 Managing Costs for a Cluster.. 276

10 Networking.. 285
10.1 Planning CIDR Blocks for a Cluster.. 285
10.2 Selecting a Network Model.. 294
10.3 Enabling Cross-VPC Network Communications Between CCE Clusters.. 301
10.4 Implementing Network Communications Between Containers and IDCs Using VPC and Direct
Connect... 309
10.5 Enabling a CCE Cluster to Resolve Domain Names on Both On-Premises IDCs and HUAWEI CLOUD
... 315
10.5.1 Solution Overview.. 315
10.5.2 Solution 1: Using a DNS Endpoint for Cascading Resolution..318
10.5.3 Solution 2: Changing the CoreDNS Configurations.. 321
10.6 Implementing Sticky Session Through Load Balancing.. 324
10.7 Obtaining the Client Source IP Address for a Container.. 332
10.8 Increasing the Listening Queue Length by Configuring Container Kernel Parameters...........................339
10.9 Configuring Passthrough Networking for a LoadBalancer Service...343
10.10 Accessing an External Network from a Pod... 346
10.10.1 Accessing the Internet from a Pod... 346
10.10.2 Accessing Cloud Services from a Pod in the Same VPC..352
10.10.3 Accessing Cloud Services from a Pod in a Different VPC... 359
10.11 Deploying Nginx Ingress Controllers Using a Chart.. 402
10.11.1 Deploying NGINX Ingress Controller in Custom Mode... 402
10.11.2 Advanced Configuration of Nginx Ingress Controller.. 410
10.12 CoreDNS Configuration Optimization.. 413
10.12.1 CoreDNS Optimization Overview... 413
10.12.2 Client.. 414
10.12.2.1 Optimizing Domain Name Resolution Requests... 414
10.12.2.2 Selecting a Proper Image... 415
10.12.2.3 Avoiding Occasional DNS Resolution Timeout Caused by IPVS Defects... 415
10.12.2.4 Using NodeLocal DNSCache... 416
10.12.2.5 Upgrading the CoreDNS in the Cluster Timely...416

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

10.12.2.6 Adjusting the DNS Configuration of the VPC and VM.. 417
10.12.3 Server..417
10.12.3.1 Monitoring the coredns Add-on.. 417
10.12.3.2 Adjusting the CoreDNS Deployment Status.. 418
10.12.3.3 Configuring CoreDNS.. 420
10.13 Pre-Binding Container ENI for CCE Turbo Clusters.. 427
10.14 Connecting a Cluster to the Peer VPC Through an Enterprise Router.. 432
10.15 Accessing an IP Address Outside a Cluster That Uses a VPC Network Using Source Pod IP Addresses
in the Cluster... 439

11 Storage.. 443
11.1 Expanding the Storage Space.. 443
11.2 Mounting Object Storage Across Accounts...452
11.3 Dynamically Creating an SFS Turbo Subdirectory Using StorageClass... 465
11.4 Changing the Storage Class Used by a Cluster of v1.15 from FlexVolume to CSI Everest..................... 469
11.5 Using Custom Storage Classes.. 481
11.6 Scheduling EVS Disks Across AZs Using csi-disk-topology.. 491
11.7 Automatically Collecting JVM Dump Files That Exit Unexpectedly Using SFS 3.0....................................496
11.8 Deploying Storage Volumes in Multiple AZs.. 498

12 Container.. 503
12.1 Recommended Configurations for Workloads... 503
12.2 Properly Allocating Container Computing Resources..507
12.3 Upgrading Pods Without Interrupting Services... 508
12.4 Modifying Kernel Parameters Using a Privileged Container...512
12.5 Using Init Containers to Initialize an Application... 513
12.6 Setting Time Zone Synchronization... 515
12.7 Configuration Suggestions on Container Network Bandwidth Limit...518
12.8 Configuring the /etc/hosts File of a Pod Using hostAliases.. 520
12.9 Configuring Domain Name Resolution for CCE Containers.. 522
12.10 Using Dual-Architecture Images (x86 and Arm) in CCE.. 527
12.11 Locating Container Faults Using the Core Dump File...530
12.12 Configuring Parameters to Delay the Pod Startup in a CCE Turbo Cluster...532
12.13 Automatically Updating a Workload Version Using SWR Triggers.. 533

13 Permission...539
13.1 Configuring kubeconfig for Fine-Grained Management on Cluster Resources..539
13.2 Configuring Namespace-level Permissions for an IAM User.. 543
13.3 Performing RBAC Authentication on a Namespace Using kubectl Commands...554

14 Release.. 559
14.1 Overview... 559
14.2 Using Services to Implement Simple Grayscale Release and Blue-Green Deployment...........................562
14.3 Using Nginx Ingress to Implement Grayscale Release and Blue-Green Deployment.............................. 568

15 Batch Computing.. 578

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

15.1 Deploying and Using Kubeflow in a CCE Cluster..578
15.1.1 Deploying Kubeflow.. 578
15.1.2 Training a TensorFlow Model... 582
15.1.3 Using Kubeflow and Volcano to Train an AI Model... 585
15.2 Deploying and Using Caffe in a CCE Cluster.. 589
15.2.1 Prerequisites... 589
15.2.2 Preparing Resources...592
15.2.3 Caffe Classification Example...592
15.3 Deploying and Using TensorFlow in a CCE Cluster.. 595
15.4 Deploying and Using Flink in a CCE Cluster... 601
15.5 Deploying and Using ClickHouse in a CCE Cluster...609
15.6 Deploying and Using Spark in a CCE Cluster... 619
15.6.1 Installing Spark..619
15.6.2 Using Spark...623

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vi

1 Checklist for Deploying Containerized
Applications in the Cloud

Overview
Security, efficiency, stability, and availability are common requirements on all
cloud services. To meet these requirements, the system availability, data reliability,
and O&M stability must be coordinated. This checklist describes the check items
for deploying containerized applications on the cloud to help you efficiently
migrate services to CCE, reducing potential cluster or application exceptions
caused by improper use.

Check Items

Table 1-1 System availability

Categor
y

Check Item Type Impact FAQ & Example

Cluster Before creating
a cluster,
properly plan
the node
network and
container
network based
on service
requirements to
allow
subsequent
service
expansion.

Network
planning

If the subnet or
container CIDR
block where
the cluster
resides is small,
the number of
available nodes
supported by
the cluster may
be less than
required.

● Network
Planning

● Planning CIDR
Blocks for a
Cluster

● How Do I Set
the VPC CIDR
Block and
Subnet CIDR
Block for a CCE
Cluster?

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_0001.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00144.html

Categor
y

Check Item Type Impact FAQ & Example

Before creating
a cluster,
properly plan
CIDR blocks for
the related
Direct Connect,
peering
connection,
container
network,
service
network, and
subnet to avoid
IP address
conflicts.

Network
planning

If CIDR blocks
are not
properly set
and IP address
conflicts occur,
service access
will be affected.

● Connectivity
● Planning CIDR

Blocks for a
Cluster

When a cluster
is created, the
default security
group is
automatically
created and
bound to the
cluster. You can
set custom
security group
rules based on
service
requirements.

Deployme
nt

Security groups
are key to
security
isolation.
Improper
security policy
configuration
may cause
security risks
and service
connectivity
problems.

● Security Groups
and Security
Group Rules

● How Do I
Prevent Cluster
Nodes from
Being Exposed
to Public
Networks?

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/vpc_faq/faq_connection.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0073379079.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0073379079.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0073379079.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00267.html

Categor
y

Check Item Type Impact FAQ & Example

Enable the
multi-master
node mode,
and set the
number of
master nodes
to 3 when
creating a
cluster.

Reliability After the multi-
master node
mode is
enabled, three
master nodes
will be created.
If a master
node is faulty,
the cluster can
still be
available
without
affecting
service
functions. In
commercial
scenarios, it is
advised to
enable the
multi-master
node mode.

How Do I Check
Whether a Cluster
Is in Multi-Master
Mode?
Once a cluster is
created, the
number of master
nodes cannot be
changed. Exercise
caution when
setting the number
of master nodes.

When creating
a cluster, select
a proper
network model
as needed.
● Select VPC

network or
Tunnel
network for
your CCE
standard
cluster.

● Select Cloud
Native
Network 2.0
for your CCE
Turbo
cluster.

Deployme
nt

After a cluster
is created, the
network model
cannot be
changed.
Exercise caution
when selecting
a network
model.

Network Model
Comparison

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00155.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00155.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00155.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00155.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0281.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0281.html

Categor
y

Check Item Type Impact FAQ & Example

Workloa
d

When creating
a workload, set
the CPU and
memory limits
to improve
service
robustness.

Deployme
nt

When multiple
applications are
deployed on
the same node,
if the upper
and lower
resource limits
are not set for
an application,
resource
leakage occurs.
As a result,
resources
cannot be
allocated to
other
applications,
and the
application
monitoring
information will
be inaccurate.

None

When creating
a workload,
you can set
probes for
container
health check,
including
liveness probe
and readiness
probe.

Reliability If the health
check function
is not
configured, a
pod cannot
detect service
exceptions or
automatically
restart the
service to
restore it. This
results in a
situation where
the pod status
is normal but
the service in
the pod is
abnormal.

● Setting Health
Check for a
Container

● Enabling ICMP
Security Group
Rules

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0112.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0112.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0112.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0084.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0084.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0084.html

Categor
y

Check Item Type Impact FAQ & Example

When creating
a workload,
select a proper
access mode
(Service).
Currently, the
following types
of Services are
supported:
ClusterIP,
NodePort,
DNAT, and
LoadBalancer.

Deployme
nt

Improper
Service
configuration
may cause logic
confusion for
internal and
external access
and resource
waste.

● Network
Overview

When creating
a workload, do
not set the
number of
replicas for a
single pod. Set
a proper node
scheduling
policy based on
your service
requirements.

Reliability For example, if
the number of
replicas of a
single pod is
set, the service
will be
abnormal when
the node or
pod is
abnormal. To
ensure that
your pods can
be successfully
scheduled,
ensure that the
node has idle
resources for
container
scheduling
after you set
the scheduling
rule.

None

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0010.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0010.html

Categor
y

Check Item Type Impact FAQ & Example

Properly set
affinity and
anti-affinity.

Reliability If affinity and
anti-affinity are
both configured
for an
application that
provides
Services
externally,
Services may
fail to be
accessed after
the application
is upgraded or
restarted.

Scheduling Policy
(Affinity/Anti-
affinity)
Negative example:
For application A,
nodes 1 and 2 are
set as affinity
nodes, and nodes 3
and 4 are set as
anti-affinity nodes.
Application A
exposes a Service
through the ELB,
and the ELB listens
to node 1 and node
2. When application
A is upgraded, it
may be scheduled
to a node other
than nodes 1, 2, 3,
and 4, and it
cannot be accessed
through the Service.
Cause:
Scheduling of
application A does
not need to meet
both affinity and
anti-affinity
policies. A node will
be selected for
application A
according to either
of the policies. In
this example, the
node selection is
based on the anti-
affinity scheduling
policy.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0232.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0232.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0232.html

Categor
y

Check Item Type Impact FAQ & Example

When creating
a workload, set
the pre-stop
processing
command
(Lifecycle >
Pre-Stop) to
ensure that the
services
running in the
pods can be
completed in
advance in the
case of
application
upgrade or pod
deletion.

Reliability If the pre-stop
processing
command is
not configured,
the pod will be
directly killed
and services
will be
interrupted
during
application
upgrade.

● Setting
Container
Lifecycle
Parameters

● When Is Pre-
stop Processing
Used?

Table 1-2 Data reliability

Category Check Item Type Impact FAQ & Example

Container
data
persistenc
y

Select a
proper data
volume type
based on
service
requirements.

Reliability When a node
is faulty and
cannot be
recovered,
data in the
local disk
cannot be
recovered.
Therefore, you
are advised to
use cloud
storage
volumes to
ensure data
reliability.

● Storage
Overview

Backup Back up
application
data.

Reliability Data cannot
be restored
after being
lost.

What Are the
Differences Among
CCE Storage
Classes in Terms of
Persistent Storage
and Multi-node
Mounting?

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0105.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0105.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0105.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0105.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00159.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00159.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00159.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0307.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0307.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00038.html

Table 1-3 O&M reliability

Category Check Item Type Impact FAQ & Example

Project The quotas of
ECS, VPC,
subnet, EIP,
and EVS
resources
must meet
customer
requirements.

Deployme
nt

If the quota is
insufficient,
resources will
fail to be
created.
Specifically,
users who
have
configured
auto scaling
must have
sufficient
resource
quotas.

● Which Resource
Quotas Should I
Pay Attention To
When Using
CCE?

● Notes and
Constraints

You are not
advised to
modify kernel
parameters,
system
configurations
, cluster core
component
versions,
security
groups, and
ELB-related
parameters
on cluster
nodes, or
install
software that
has not been
verified.

Deployme
nt

Exceptions
may occur on
CCE clusters or
Kubernetes
components
on the node,
making the
node
unavailable for
application
deployment.

For details, see
High-Risk
Operations and
Solutions.
Negative example:
1. The container

network is
interrupted after
the node kernel is
upgraded.

2. The container
network is
interrupted after
an open-source
Kubernetes
network add-on
is installed on a
node.

3. The /var/paas
or /mnt/paas/
kubernetes
directory is
deleted from a
node, which
causes exceptions
on the node.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00154.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00154.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00154.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00154.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00154.html
https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0005.html
https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0054.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0054.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0054.html

Category Check Item Type Impact FAQ & Example

Do not
modify
information
about
resources
created by
CCE, such as
security
groups and
EVS disks.
Resources
created by
CCE are
labeled cce.

Deployme
nt

CCE cluster
functions may
be abnormal.

Negative example:
1. On the ELB

console, a user
changes the
name of the
listener created
by CCE.

2. On the VPC
console, a user
modifies the
security group
created by CCE.

3. On the EVS
console, a user
deletes or
uninstalls data
disks mounted to
CCE cluster
nodes.

4. On the IAM
console, a user
deletes
cce_admin_trust.

All the preceding
actions will cause
CCE cluster
functions to be
abnormal.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Category Check Item Type Impact FAQ & Example

Proactive
O&M

CCE provides
multi-
dimensional
monitoring
and alarm
reporting
functions,
allowing users
to locate and
rectify faults
as soon as
possible.
● Application

Operations
Manageme
nt (AOM):
The
default
basic
resource
monitoring
of CCE
covers
detailed
container-
related
metrics
and
provides
alarm
reporting
functions.

● Open
source
Prometheu
s: A
monitoring
tool for
cloud
native
application
s. It
integrates
an
independe
nt alarm
system to
provide
more

Monitorin
g

If the alarms
are not
configured, the
standard of
container
cluster
performance
cannot be
established.
When an
exception
occurs, you
cannot receive
alarms and
will need to
manually
locate the
fault.

● Monitoring
Overview

● Monitoring
Custom Metrics
Using the Cloud
Native
Monitoring Add-
on

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0182.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0182.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html

Category Check Item Type Impact FAQ & Example

flexible
monitoring
and alarm
reporting
functions.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2 Containerization

2.1 Containerizing an Enterprise Application (ERP)

2.1.1 Solution Overview
This chapter provides CCE best practices to walk you through the application
containerization.

What Is a Container?

A container is a lightweight high-performance resource isolation mechanism
implemented based on the Linux kernel. It is a built-in capability of the operating
system (OS) kernel.

CCE is an enterprise-class container service based on open-source Kubernetes. It is
a high-performance and high-reliability service through which enterprises can
manage containerized applications. CCE supports native Kubernetes applications
and tools, allowing you to easily set up a container runtime in the cloud.

Why Is a Container Preferred?
● More efficient use of system resources

A container does not require extra costs such as fees for hardware
virtualization and those for running a complete OS. Therefore, a container has
higher resource usage. Compared with a VM with the same configurations, a
container can run more applications.

● Faster startup
A container directly runs on the host kernel and does not need to start a
complete OS. Therefore, a container can be started within seconds or even
milliseconds, greatly saving the development, testing, and deployment time.

● Consistent runtime environment
A container image provides a complete runtime environment to ensure
environment consistency. In this case, problems (for example, some code runs
properly on machine A but fails to run on machine B) will not occur.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● Easier application migration, maintenance, and scaling
A consistent runtime environment makes application migration easier. In
addition, the in-use storage and image technologies facilitate the reuse of
repeated applications and simplifies the expansion of images based on base
images.

Containerization Modes
The following modes are available for containerizing applications:

● Mode 1: Containerize a single application as a whole. Application code and
architecture remain unchanged.

● Mode 2: Separate the components that are frequently upgraded or have high
requirements on auto scaling from an application, and then containerize these
components.

● Mode 3: Transform an application to microservices and then containerize the
microservices one by one.

Table 2-1 lists the advantages and disadvantages of the three modes.

Table 2-1 Containerization modes

Containerization Mode Advantage Disadvantage

Method 1:
Containerize a single
application as a whole.

● Zero modification on
services: The
application architecture
and code require no
change.

● The deployment and
upgrade efficiency is
improved. Applications
can be packed as
container images to
ensure application
environment
consistency and
improve deployment
efficiency.

● Reduce resource costs:
Containers use system
resources more
efficiently. Compared
with a VM with the
same configurations, a
container can run more
applications.

● Difficult to expand
the entire
architecture of an
application. As the
code size increases,
code update and
maintenance would
be complicated.

● Difficult to launch
new functions,
languages,
frameworks, and
technologies.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Containerization Mode Advantage Disadvantage

Method 2:
Containerize first the
application components
that are frequently
updated or have high
requirements on auto
scaling.

● Progressive
transformation:
Reconstructing the
entire architecture
involves a heavy
workload. This mode
containerizes only a
part of components,
which is easy to accept
for customers.

● Flexible scaling:
Application
components that have
high requirements on
auto scaling are
containerized. When
the application needs
to be scaled, you only
need to scale the
containers, which is
flexible and reduces the
required system
resources.

● Faster rollout of new
features: Application
components that are
frequently upgraded
are containerized. In
subsequent upgrades,
only these containers
need to be upgraded.
This shortens the time
to market (TTM) of
new features.

Need to decouple some
services.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Containerization Mode Advantage Disadvantage

Method 3:
Transform an
application to
microservices and then
containerize the
microservices one by
one.

● Independent scaling:
After an application is
split into microservices,
you can independently
increase or decrease
the number of
instances for each
microservice.

● Increased development
speed: Microservices
are decoupled from
one another. Code
development of a
microservice does not
affect other
microservices.

● Security assurance
through isolation: For
an overall application,
if a security
vulnerability exists,
attackers can use this
vulnerability to obtain
the permission to all
functions of the
application. However,
in a microservice
architecture, if a service
is attacked, attackers
can only obtain the
access permission to
this service, but cannot
intrude other services.

● Breakdown isolation: If
one microservice
breaks down, other
microservices can still
run properly.

Need to transform the
application to
microservices, which
involves a large number
of changes.

Mode 1 is used as an example in this tutorial to illustrate how to containerize an
enterprise resource planning (ERP) system.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

2.1.2 Resource and Cost Planning

NO TICE

The fees listed here are estimates. The actual fees vary with regions and will be
displayed on the Huawei Cloud console.

The following table lists the resources needed in this practice.

Table 2-2 Resource and cost planning

Resource Description Quanti
ty

Estimated Fee

ECS Pay-per-use recommended
● VM type: general computing-plus
● Node flavor: 4 vCPUs | 8 GiB
● OS: Ubuntu 22.04
● System disk: 40 GiB | General

purpose SSD
● EIP specification: billed by

bandwidth, 5 Mbit/s

1 USD0.3123/
hour

Cloud
Container
Engine
(CCE)

Pay-per-use recommended
● Cluster type: CCE cluster
● Cluster version: v1.25
● Cluster scale: 50 nodes
● HA: Yes

1 USD0.42/hour

Pay-per-use recommended
● Node type: general computing-plus
● Node flavor: 4 vCPUs | 8GiB
● OS: EulerOS 2.9
● System disk: 50 GiB | General

purpose SSD
● Data disk: 100 GiB | General

purpose SSD

1 USD0.2096/
hour

Elastic
Volume
Service
(EVS)

Pay-per-use recommended
● EVS disk specification: 100 GiB
● EVS disk type: General purpose SSD

1 USD0.0157/
hour

2.1.3 Procedure

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

2.1.3.1 Containerizing an Entire Application
This tutorial describes how to containerize an ERP system by migrating it from a
VM to CCE.

No recoding or re-architecting is required. You only need to pack the entire
application into a container image and deploy the container image on CCE.

Introduction
In this example, the enterprise management application is developed by
enterprise A. This application is provided for third-party enterprises for use, and
enterprise A is responsible for application maintenance.

When a third-party enterprise needs to use this application, a suit of Tomcat
application and MongoDB database must be deployed for the third-party
enterprise. The MySQL database, used to store data of third-party enterprises, is
provided by enterprise A.

Figure 2-1 Application architecture

As shown in Figure 2-1, the application is a standard Tomcat application, and its
backend interconnects with MongoDB and MySQL databases. For this type of
applications, there is no need to split the architecture. The entire application is
built as an image, and the MongoDB database is deployed in the same image as
the Tomcat application. In this way, the application can be deployed or upgraded
through the image.

● Interconnecting with the MongoDB database for storing user files.
● Interconnecting with the MySQL database for storing third-party enterprise

data. The MySQL database is an external cloud database.

Benefits
In this example, the application was deployed on a VM. During application
deployment and upgrade, a series of problems is encountered, but application
containerization has solved these problems.

By using containers, you can easily pack application code, configurations, and
dependencies and convert them into easy-to-use building blocks. This achieves the
environmental consistency and version management, as well as improves the
development and operation efficiency. Containers ensure quick, reliable, and
consistent deployment of applications and prevent applications from being
affected by deployment environment.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Table 2-3 Comparison between the two deployment modes

Category Before: Application
Deployment on VM

After: Application Deployment
Using Containers

Deployment High deployment cost.
A VM is required for
deploying a system for a
customer.

More than 50% cost reduced.
Container services achieve multi-
tenant isolation, which allows you
to deploy systems for different
enterprises on the same VM.

Upgrade Low upgrade efficiency.
During version upgrades,
log in to VMs one by one
and manually configure
the upgrades, which is
inefficient and error-prone.

Per-second level upgrade.
Version upgrades can be completed
within seconds by replacing the
image tag. In addition, CCE
provides rolling updates, ensuring
zero service downtime during
upgrades.

Operation
and
maintenanc
e (O&M)

High O&M cost.
As the number of
applications deployed for
customer grows, the
number of VMs that need
to be maintained increases
accordingly, which requires
a large sum of
maintenance cost.

Automatic O&M
Enterprises can focus on service
development without paying
attention to VM maintenance.

2.1.3.2 Containerization Process
To fully containerize an application, you must go through the entire process.

This involves analyzing the application, setting up the runtime environment for the
application, compiling the startup script and Dockerfile, creating and uploading
images, and creating containerized workloads.

For details about each step of the containerization, see Containerization Process.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Figure 2-2 Process of containerizing an application

2.1.3.3 Analyzing the Application
Before containerizing an application, analyze the running environment and
dependencies of the application, and get familiar with the application deployment
mode. For details, see Table 2-4.

Table 2-4 Application environment

Category Sub-category Description

Runtime
environmen
t

OS OS that the application runs on, such as CentOS
or Ubuntu.
In this example, the application runs on CentOS
7.1.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Category Sub-category Description

Runtime
environment

The Java application requires Java Development
Kit (JDK), the Go language requires GoLang, the
web application requires Tomcat environment,
and the corresponding version number needs to
be confirmed.
In this example, the web application of the
Tomcat type is used. This application requires the
runtime environment of Tomcat 7.0, and Tomcat
requires JDK 1.8.

Dependency
package

Understand required dependency packages, such
as OpenSSL and other system software, and their
version numbers.
In this example, no dependency package is
required.

Deployment
mode

Peripheral
configuration
s

MongoDB database: In this example, the
MongoDB database and Tomcat application are
deployed on the same server. Therefore, their
configurations can be fixed and there is no need
to extract their configurations.

External services with which the application
needs to interconnect, such as databases and file
systems.
These configurations need to be manually
configured each time you deploy an application
on a VM. However, through containerized
deployment, environment variables can be
injected into a container, facilitating deployment.
In this example, the application needs to
interconnect with the MySQL database. Obtain
the database configuration file. The server
address, database name, database login
username, and database login password are
injected through environment variables.
url=jdbc:mysql://Server address/Database name #Database
connection URL
username=**** #Username for logging in to the
database
password=**** #Password for logging in to the
database

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Category Sub-category Description

Application
configuration
s

Sort out the configuration parameters, such as
configurations that need to be modified
frequently and those remain unchanged during
the running of the application.
In this example, no application configurations
need to be extracted.
NOTE

To avoid frequent image replacement, you are advised
to classify configurations of the application.
● For the configurations (such as peripheral

interconnection information and log levels) that are
frequently changed, you are advised to configure
them as environment variables.

● For the configurations that remain unchanged,
directly write them into images.

2.1.3.4 Preparing the Application Runtime
After application analysis, you have gained the understanding of the OS and
runtime required for running the application. Make the following preparations:

● Installing Docker: During application containerization, build a container
image. To do so, you have to prepare a PC and install Docker on it.

● Obtaining the runtime: Obtain the runtime of the application and the
MongoDB database with which the application interconnects.

Installing Docker
Docker is compatible with almost all operating systems. Select a Docker version
that best suits your needs.

NO TE

SWR uses Docker 1.11.2 or later to upload images.
It is recommended that you install Docker and build images as the user root. Make sure to
obtain the user root password for the host where Docker will be installed beforehand.

Step 1 Log in as user root to the device on which Docker is about to be installed.

Step 2 Quickly install Docker on the device running Linux. You can also manually install
Docker. For details, see Docker Engine installation.

curl -fsSL get.docker.com -o get-docker.sh

sh get-docker.sh

Step 3 Run the following command to check the Docker version:

docker version
Client:
Version: 17.12.0-ce
API Version:1.35
...

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://docs.docker.com/engine/install/#server

Version indicates the version number.

----End

Obtaining the Runtime

In this example, the web application of the Tomcat type is used. This application
requires the runtime of Tomcat 7.0, and Tomcat requires JDK 1.8. In addition, the
application must interconnect with the MongoDB database in advance.

NO TE

Download the environment required by the application.

Step 1 Download Tomcat, JDK, and MongoDB installation packages of the specific
versions.

1. Download JDK 1.8.
Download address: https://www.oracle.com/java/technologies/jdk8-
downloads.html.

2. Download Tomcat 7.0 from http://archive.apache.org/dist/tomcat/
tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz.

3. Download MongoDB 3.2 from https://fastdl.mongodb.org/linux/mongodb-
linux-x86_64-rhel70-3.2.9.tgz.

Step 2 Log in as user root to the device running Docker.

Step 3 Run the following commands to create the directory where the application is to be
stored: For example, set the directory to apptest.

mkdir apptest

cd apptest

Step 4 Use Xshell to save the downloaded dependency files to the apptest directory.

Step 5 Run the following commands to decompress the dependency files:

tar -zxf apache-tomcat-7.0.82.tar.gz

tar -zxf jdk-8u151-linux-x64.tar.gz

tar -zxf mongodb-linux-x86_64-rhel70-3.2.9.tgz

Step 6 Save the enterprise application (for example, apptest.war) in the webapps/
apptest directory of the Tomcat runtime environment.

NO TE

apptest.war is used as an example only. Use your own application for actual configuration.

mkdir -p apache-tomcat-7.0.82/webapps/apptest

cp apptest.war apache-tomcat-7.0.82/webapps/apptest

cd apache-tomcat-7.0.82/webapps/apptest

./../../../jdk1.8.0_151/bin/jar -xf apptest.war

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://www.oracle.com/java/technologies/jdk8-downloads.html
https://www.oracle.com/java/technologies/jdk8-downloads.html
http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz
http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.2.9.tgz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.2.9.tgz

rm -rf apptest.war

----End

2.1.3.5 Compiling a Startup Script
During application containerization, prepare a startup script. The method of
compiling this script is the same as that of compiling a shell script. The startup
script is used to:

● Start up the software on which the application depends.
● Set the configurations that need to be changed as the environment variables.

NO TE

Startup scripts vary according to applications. Edit the script based on your service
requirements.

Procedure

Step 1 Log in as user root to the device running Docker.

Step 2 Run the following command to switch to the directory where the application is to
be stored:

cd apptest

Step 3 Compile a script file. The name and content of the script file vary according to
applications. Edit the script file based on your application. The following example
is only for your reference.

vi start_tomcat_and_mongo.sh
#!/bin/bash
Load system environment variables.
source /etc/profile
Start MongoDB. The data is stored in /usr/local/mongodb/data.
./usr/local/mongodb/bin/mongod --dbpath=/usr/local/mongodb/data --logpath=/usr/local/mongodb/logs
--port=27017 –fork
These three script commands indicate that the contents related to the MySQL database in the
environment variables are written into the configuration file when Docker is started.
sed -i "s|mysql://.*/awcp_crmtile|mysql://$MYSQL_URL/$MYSQL_DB|g" /root/apache-tomcat-7.0.82/
webapps/awcp/WEB-INF/classes/conf/jdbc.properties
sed -i "s|username=.*|username=$MYSQL_USER|g" /root/apache-tomcat-7.0.82/webapps/awcp/WEB-INF/
classes/conf/jdbc.properties
sed -i "s|password=.*|password=$MYSQL_PASSWORD|g" /root/apache-tomcat-7.0.82/webapps/awcp/WEB-
INF/classes/conf/jdbc.properties
Start Tomcat.
bash /root/apache-tomcat-7.0.82/bin/catalina.sh run

----End

2.1.3.6 Compiling the Dockerfile
An image is the basis of a container. A container runs based on the content
defined in the image. An image has multiple layers. Each layer includes the
modifications made based on the previous layer.

Generally, Dockerfiles are used to customize images. Dockerfile is a text file and
contains various instructions. Each instruction is used to build an image layer. That
is, each instruction describes how to build an image layer.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

This section describes how to compile a Dockerfile file.

NO TE

Dockerfiles vary according to applications. Dockerfiles need to be compiled based on actual
service requirements.

For details on how to write a quality Dockerfile, see Writing a Quality Dockerfile.

Procedure

Step 1 Log in as the root user to the device running Docker.

Step 2 Compile a Dockerfile.

vi Dockerfile

The content is as follows:

CentOS 7.1.1503 is used as the base image.
FROM centos:7.1.1503
Create a folder to store data and dependency files. You are advised to write multiple commands into one
line to reduce the image size.
RUN mkdir -p /usr/local/mongodb/data \
 && mkdir -p /usr/local/mongodb/bin \
 && mkdir -p /root/apache-tomcat-7.0.82 \
 && mkdir -p /root/jdk1.8.0_151

Copy the files in the apache-tomcat-7.0.82 directory to the container path.
COPY ./apache-tomcat-7.0.82 /root/apache-tomcat-7.0.82
Copy the files in the jdk1.8.0_151 directory to the container path.
COPY ./jdk1.8.0_151 /root/jdk1.8.0_151
Copy the files in the mongodb-linux-x86_64-rhel70-3.2.9 directory to the container path.
COPY ./mongodb-linux-x86_64-rhel70-3.2.9/bin /usr/local/mongodb/bin
Copy start_tomcat_and_mongo.sh to the /root directory of the container.
COPY ./start_tomcat_and_mongo.sh /root/

Enter Java environment variables.
RUN chown root:root -R /root \
 && echo "JAVA_HOME=/root/jdk1.8.0_151 " >> /etc/profile \
 && echo "PATH=\$JAVA_HOME/bin:$PATH " >> /etc/profile \
 && echo "CLASSPATH=.:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar" >> /etc/profile \
 && chmod +x /root \
 && chmod +x /root/start_tomcat_and_mongo.sh

When the container is started, commands in start_tomcat_and_mongo.sh are automatically run. The file
can be one or more commands, or a script.
ENTRYPOINT ["/root/start_tomcat_and_mongo.sh"]

In the preceding information:

● FROM statement: indicates that centos:7.1.1503 is used as the base image.

● Run statement: indicates that a shell command is executed in the container.

● COPY statement: indicates that files in the local computer are copied to the
container.

● ENTRYPOINT statement: indicates the commands that are run after the
container is started.

----End

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/bestpractice-swr/swr_bestpractice_0002.html

2.1.3.7 Building and Uploading an Image
This section describes how to build an entire application into a Docker image.
After building an image, you can use the image to deploy and upgrade the
application. This reduces manual configuration and improves efficiency.

NO TE

When building an image, ensure that files used to build the image are stored in the same
directory.

Required Cloud Services
SoftWare Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized services.

Basic Concepts
● Image: A Docker image is a special file system that includes everything

needed to run containers: programs, libraries, resources, settings, and so on. It
also includes corresponding configuration parameters (such as anonymous
volumes, environment variables, and users) required within a container
runtime. An image does not contain any dynamic data, and its content
remains unchanged after being built.

● Container: Images become containers at runtime, that is, containers are
created from images. A container can be created, started, stopped, deleted, or
suspended.

Procedure

Step 1 Log in as the root user to the device running Docker.

Step 2 Enter the apptest directory.

cd apptest

Ensure that files used to build the image are stored in the same directory.

Step 3 Build an image.

docker build -t apptest:v1 .

Step 4 Upload the image to SWR. For details, see Uploading an Image Through a
Container Engine Client.

----End

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html

2.1.3.8 Creating a Container Workload
This section describes how to deploy a workload on CCE. When using CCE for the
first time, create an initial cluster and add a node into the cluster.

NO TE

Containerized workloads are deployed in a similar way. The difference lies in:
● Whether environment variables need to be set.
● Whether cloud storage is used.

Required Cloud Services
● Cloud Container Engine (CCE): a highly reliable and high-performance service

that allows enterprises to manage containerized applications. With support
for Kubernetes-native applications and tools, CCE makes it simple to set up an
environment for running containers in the cloud.

● Elastic Cloud Server (ECS): a scalable and on-demand cloud server. It helps
you to efficiently set up reliable, secure, and flexible application environments,
ensuring stable service running and improving O&M efficiency.

● Virtual Private Cloud (VPC): an isolated and private virtual network
environment that users apply for in the cloud. You can configure the IP
address ranges, subnets, and security groups, as well as assign elastic IP
addresses and allocate bandwidth in a VPC.

Basic Concepts
● A cluster is a collection of computing resources, including a group of node

resources. A container runs on a node. Before creating a containerized
application, you must have an available cluster.

● A node is a virtual or physical machine that provides computing resources.
You must have sufficient node resources to ensure successful operations such
as creating applications.

● A workload indicates a group of container pods running on CCE. CCE supports
third-party application hosting and provides the full lifecycle (from
deployment to O&M) management for applications. This section describes
how to use a container image to create a workload.

Procedure

Step 1 Prepare the environment as described in Table 2-5.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Table 2-5 Preparing the environment

No. Category Procedure

1 Creating a
VPC

Create a VPC before you create a cluster. A VPC provides
an isolated, configurable, and manageable virtual
network environment for CCE clusters.
If you have a VPC already, skip to the next task.
1. Log in to the management console.
2. In the service list, choose Networking > Virtual

Private Cloud.
3. On the Dashboard page, click Create VPC.
4. Follow the instructions to create a VPC. Retain default

settings for parameters unless otherwise specified.

2 Creating a
key pair

Create a key pair before you create a containerized
application. Key pairs are used for identity authentication
during remote login to a node. If you have a key pair
already, skip this task.
1. Log in to the management console.
2. In the service list, choose Data Encryption Workshop

under Security & Compliance.
3. In the navigation pane, choose Key Pair Service. On

the Private Key Pairs tab, click Create Key Pair.
4. Enter a key pair name, select I agree to host the

private key of the key pair. and I have read and
agree to the Key Pair Service Disclaimer, and click
OK.

5. View and save the private key. For security purposes, a
key pair can be downloaded only once. Keep it secure
to ensure successful login.

Step 2 Create a cluster and a node.

1. Log in to the CCE console. On the Clusters page, click Buy Cluster and select
the type for the cluster to be created.

Configure cluster parameters and select the VPC created in Step 1. For details,
see Buying a CCE Cluster.

2. Buy a node and select the key pair created in Step 1 as the login option. For
details, see Creating a Node.

Step 3 Deploy a workload on CCE.

1. Log in to the CCE console and click the name of the cluster to access the
cluster console. In the navigation pane, choose Workloads and click Create
Workload.

2. Configure the following parameters, and retain the default settings for other
parameters:

– Workload Name: Set it to apptest.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html

– Pods: Set it to 1.

Figure 2-3 Basic settings

3. In the Container Settings area, select the image uploaded in Building and
Uploading an Image.

4. In the Container Settings area, choose Environment Variables and add
environment variables for interconnecting with the MySQL database. The
environment variables are set in the startup script.

NO TE

In this example, interconnection with the MySQL database is implemented through
configuring the environment variables. Determine whether to use environment
variables based on your service requirements.

Table 2-6 Configuring environment variables

Variable Name Variable Value/Variable Reference

MYSQL_DB Database name.

MYSQL_URL IP address and port number of the database.

MYSQL_USER Database username.

MYSQL_PASSWOR
D

Database user password.

5. In the Container Settings area, choose Data Storage and configure cloud

storage for persistent data storage.

NO TE

In this example, the MongoDB database is used and persistent data storage is also
needed, so you need to configure cloud storage. Determine whether to use cloud
storage based on your service requirements.

The mounted path must be the same as the MongoDB storage path in the
Docker startup script. For details, see the startup script. In this example, the
path is /usr/local/mongodb/data.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Figure 2-4 Configuring cloud storage

6. In the Service Settings area, click to add a service, configure workload
access parameters, and click OK.

NO TE

In this example, the application will be accessible from public networks by using an
elastic IP address.

– Service Name: name of the application that can be accessed externally.
In this example, this parameter is set to apptest.

– Service Type: Select NodePort.
– Service Affinity

▪ Cluster-level: The IP addresses and access ports of all nodes in a
cluster can be used to access the workload associated with the
Service. Service access will cause performance loss due to route
redirection, and the source IP address of the client cannot be
obtained.

▪ Node-level: Only the IP address and access port of the node where
the workload is located can be used to access the workload
associated with the Service. Service access will not cause
performance loss due to route redirection, and the source IP address
of the client can be obtained.

– Port

▪ Protocol: Set it to TCP.

▪ Service Port: port for accessing the Service.

▪ Container Port: port that the application will listen on the container.
In this example, this parameter is set to 8080.

▪ Node Port: Set it to Auto. The system automatically opens a real
port on all nodes in the current cluster and then maps the port
number to the container port.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 2-5 Creating a Service

7. Click Create Workload.
After the workload is created, you can view the running workload in the
workload list.

----End

Verifying a Workload
After a workload is created, you can access the workload to check whether the
deployment is successful.

In the preceding configuration, the NodePort mode is selected to access the
workload by using IP address:Port number. If the access is successful, the
workload is successfully deployed.

You can obtain the access mode from the Access Mode tab on the workload
details page.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

3 Migration

3.1 Migrating Container Images

3.1.1 Solution Overview

Challenges
Containers are growing in popularity. Many enterprises choose to build their own
Kubernetes clusters. However, the O&M workload of on-premises clusters is heavy,
and O&M personnel need to configure the management systems and monitoring
solutions by themselves. For enterprises, managing a large number of images
requires high O&M, labor, and management costs, and the efficiency is low.

SoftWare Repository for Container (SWR) manages container images that function
on multiple architectures, such as Linux and Arm. Enterprises can migrate their
image repositories to SWR to reduce costs.

This section describes three ways for migrating image repositories to SWR
smoothly. You can select one as required.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Migration Solutions

Table 3-1 Comparison of migration solutions and application scenarios

Solution Application Scenario Precautions

Migrating
Images to
SWR Using
Docker
Commands

Small quantity of images ● Disk storage leads to the
timely deletion of local
images and time-cost
flushing.

● Docker daemon strictly
restricts the number of
concurrent pull/push
operations, so high-
concurrency
synchronization cannot be
performed.

● Scripts are complex
because HTTP APIs are
needed to perform the
operations that cannot be
implemented through
Docker CLI.

Migrating
Images to
SWR Using
image-
migrator

A large number of images ● Many-to-many image
repository synchronization
is supported.

● Docker Registry V2-based
image repositories (such
as Docker Hub, Quay, and
Harbor) can be migrated
to SWR.

● Memory- and network-
dependent synchronization
is fast.

● Flushing the Blob
information of
synchronized images
avoids repetition.

● The number of concurrent
synchronization tasks can
be adjusted in the
configuration file.

● Automatically retrying
failed synchronization
tasks can resolve most
network jitter during
image synchronization.

● Docker or other programs
are not required.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Solution Application Scenario Precautions

Synchronizing
Images Across
Clouds from
Harbor to
SWR

A customer deploys services
in multiple clouds and uses
Harbor as their image
repository.

Only Harbor v1.10.5 and later
versions are supported.

3.1.2 Migrating Images to SWR Using Docker Commands

Scenarios
SWR provides easy-to-use image hosting and efficient distribution services. If small
quantity of images need to be migrated, enterprises can use the docker pull/push
command to migrate images to SWR.

Procedure

Step 1 Pull images from the source repository.

Run the docker pull command to pull the images.

Example: docker pull nginx:latest

Run the docker images command to check whether the images are successfully
pulled.
docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 22f2bf2e2b4f 5 hours ago 22.8MB

Step 2 Push the images pulled in Step 1 to SWR.

1. Log in to the VM where the target container is located and log in to SWR. For
details, see Uploading an Image Through a Container Engine Client.

2. Tag the images.
docker tag [Image name:Tag name] [Image repository address]/
[Organization name]/[Image name:Tag name]
Example:
docker tag nginx:v1 swr.ap-southeast-1.myhuaweicloud.com/cloud-
develop/nginx:v1

3. Run the following command to push the images to the target image
repository.
docker push [Image repository address]/[Organization name]/[Image
name:Tag name]
Example:
docker push swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/
nginx:v1

4. Check whether the following information is returned. If yes, the push is
successful.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html

fbce26647e70: Pushed
fb04ab8effa8: Pushed
8f736d52032f: Pushed
009f1d338b57: Pushed
678bbd796838: Pushed
d1279c519351: Pushed
f68ef921efae: Pushed
v1: digest: sha256:0cdfc7910db531bfa7726de4c19ec556bc9190aad9bd3de93787e8bce3385f8d size:
1780

To view the pushed image, refresh the My Images page.

----End

3.1.3 Migrating Images to SWR Using image-migrator
To ensure that container images can be properly pulled after cluster migration and
improve container deployment efficiency, you are advised to migrate self-built
image repositories to Huawei Cloud SoftWare Repository for Container (SWR).

image-migrator is an image migration tool that can automatically migrate images
from a Docker registry built on Docker Registry v2 to SWR.

Preparations

Before the migration, prepare a server with kubectl installed for the connection
between the source and destination clusters. The server must have at least 5 GB of
local disk space and at least 8 GB of memory so that image-migrator can work
properly and can store related data, such as data collected from the source cluster
and recommendation data of the destination cluster.

image-migrator can run on Linux (x86 and Arm) and Windows.

Before using image-migrator in Linux, run the chmod u+x Tool name command
(for example, chmod u+x image-migrator-linux-amd64) to grant the execute
permission.

Table 3-2 Obtaining the image-migrator package

image-
migrator

image-migrator is an
image migration tool
that can automatically
migrate images from a
Docker registry built on
Docker Registry v2 to
SWR, or from a registry
on a third-party cloud to
SWR.

Linux x86: https://ucs-
migration.obs.cn-
north-4.myhuaweicloud.com/
toolkits/image-migrator-linux-amd64
Linux Arm: https://ucs-
migration.obs.cn-
north-4.myhuaweicloud.com/
toolkits/image-migrator-linux-arm64
Windows: https://ucs-
migration.obs.cn-
north-4.myhuaweicloud.com/
toolkits/image-migrator-windows-
amd64.exe

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-amd64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-amd64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-amd64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-amd64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-arm64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-arm64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-arm64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-linux-arm64
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-windows-amd64.exe
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-windows-amd64.exe
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-windows-amd64.exe
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-windows-amd64.exe
https://ucs-migration.obs.cn-north-4.myhuaweicloud.com/toolkits/image-migrator-windows-amd64.exe

How image-migrator Works

Figure 3-1 How image-migrator works

When using image-migrator to migrate images to SWR, you need to prepare two
files. One is the registry access permission file auth.json. The two objects in the
file are the accounts and passwords of the source and destination registries. The
other is the image list file images.json, which consists of multiple image
synchronization rules. Each rule contains a source repository (key) and a
destination repository (value). Place these two files in the directory where image-
migrator is located and run a simple command to migrate the image. The two
files are described as follows:

● auth.json
auth.json is the registry access permission file. Each object is the username
and password of a registry. Generally, you must have permission to pull
images from and access image tags in the source registry and permission to
push images to and create repositories in the destination registry. If you
access a registry anonymously, you do not need to enter the username and
password. Structure of the auth.json file:
{
 "Source registry address": { },
 "Destination registry address": {
 "username": "xxxxxx",
 "password": "xxxxxx",
 "insecure": true
 }
}

To be more specific:
– The Source registry address and Destination registry address can be in the

registry or registry/namespace format matching that in images.json. The
matched URL in images uses the corresponding username and password
for image synchronization. The registry/namespace format is preferred.
If the destination registry address is in the registry format, you can obtain
it from the SWR console. On the Dashboard page, click Generate Login
Command in the upper right corner. The domain name at the end of the
login command is the SWR registry address, for example, swr.cn-
north-4.myhuaweicloud.com. Note that the address varies depending on
the region. Switch to the corresponding region to obtain the address. If

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

the value is in the registry/namespace format, replace namespace with
the organization name of SWR.

– username: (Optional) username. You can set it to a specific value or use
a string of the ${env} or $env type to reference an environment variable.

– password: (Optional) password. You can set it to a specific value or use a
string of the ${env} or $env type to reference an environment variable.

– insecure: (Optional) whether registry is an HTTP service. If yes, the value
of insecure is true. The default value is false.

NO TE

The username of the destination SWR registry is in the following format: Regional
project name@AK. The password is the encrypted login key of the AK and SK. For
details, see Obtaining a Long-Term Valid Login Command.

Example:
{
 "quay.io/coreos": { },
 "swr.cn-north-4.myhuaweicloud.com": {
 "username": "cn-north-4@RVHVMX******",
 "password": "cab4ceab4a1545***************",
 "insecure": true
 }
}

● images.json
This file is essentially a list of images to migrate and consists of multiple
image synchronization rules. Each rule contains a source repository (key) and
a destination repository (value). The specific requirements are as follows:

a. The largest unit that can be synchronized using one rule is repository. The
entire namespace or registry cannot be synchronized using one rule.

b. The formats of the source and destination repositories are similar to
those of the image URL used by the docker pull/push command
(registry/namespace/repository:tag).

c. Both the source and destination repositories (if the destination registry is
not an empty string) contain at least registry/namespace/repository.

d. The source registry field cannot be empty. To synchronize data from a
source registry to multiple destination registries, you need to configure
multiple rules.

e. The destination repository name can be different from the source
repository name. In this case, the synchronization function is similar to
docker pull + docker tag + docker push.

f. If the source repository field does not contain tags, all tags of the
repository have been synchronized to the destination repository. In this
case, the destination repository cannot contain tags.

g. If the source repository field contains tags, only one tag in the source
repository has been synchronized to the destination repository. If the
destination repository does not contain tags, the source tag is used by
default.

h. If the destination repository is an empty string, the source image will be
synchronized to the default namespace of the default registry. The
repository and tag are the same as those of the source repository. The
default registry and namespace can be configured using command line
parameters and environment variables.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

Example:
{
 "quay.io/coreos/etcd:1.0.0": "swr.cn-north-4.myhuaweicloud.com/test/etcd:1.0.0",
 "quay.io/coreos/etcd": "swr.cn-north-4.myhuaweicloud.com/test/etcd",
 "quay.io/coreos/etcd:2.7.3": "swr.cn-north-4.myhuaweicloud.com/test/etcd"
}

We provide a config subcommand of the image-migrator tool to
automatically obtain the image that is being used by the workload in the
cluster. For details, see Usage of image-migrator config. After obtaining the
images.json file, you can modify, add, or delete its content as needed.

How to Use image-migrator
NO TE

image-migrator can run on Linux (x86 and Arm) and Windows. The usage is similar in both
environments. This section uses the Linux (x86) environment as an example.
If Linux (Arm) or Windows is used, replace image-migrator-linux-amd64 in the following
command with image-migrator-linux-arm64 or image-migrator-windows-amd64.exe.

Run ./image-migrator-linux-amd64 -h in the directory where image-migrator is
located to learn about its usage.

● --auth: specifies the path of auth.json. By default, auth.json is stored in the
directory where image-migrator is located.

● --images: specifies the path of images.json. By default, images.json is stored
in the directory where image-migrator is located.

● --log: specifies the path for storing logs generated by image-migrator. The
default value is image-migrator.log in the current directory of image-
migrator.

● --namespace: specifies the default namespace of the destination repository.
That is, if the namespace of the destination repository is not specified in
images.json, you can specify it when running the migration command.

● --registry: specifies the default registry of the destination repository. That is, if
the registry of the destination repository is not specified in images.json, you
can specify it when running the migration command.

● --retries: specifies the number of retry times when the migration fails. The
default value is 3.

● --workers: specifies the number of concurrent workers for image migration.
The default value is 7.

$./image-migrator-linux-amd64 -h
A Fast and Flexible docker registry image images tool implement by Go.

Usage:
 image-migrator [flags]

Aliases:
 image-migrator, image-migrator

Flags:
 --auth string auth file path. This flag need to be pair used with --images. (default "./auth.json")
 -h, --help help for image-migrator
 --images string images file path. This flag need to be pair used with --auth (default "./images.json")
 --log string log file path (default "./image-migrator.log")
 --namespace string default target namespace when target namespace is not given in the images
config file, can also be set with DEFAULT_NAMESPACE environment value
 --registry string default target registry url when target registry is not given in the images config file,

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

can also be set with DEFAULT_REGISTRY environment value
 -r, --retries int times to retry failed tasks (default 3)
 -w, --workers int numbers of working goroutines (default 7)

$./image-migrator --workers=5 --auth=./auth.json --images=./images.json --namespace=test \
--registry=swr.cn-north-4.myhuaweicloud.com --retries=2
$./image-migrator
Start to generate images tasks, please wait ...
Start to handle images tasks, please wait ...
Images(38) migration finished, 0 images tasks failed, 0 tasks generate failed

Example:

./image-migrator --workers=5 --auth=./auth.json --images=./images.json --
namespace=test --registry=swr.cn-north-4.myhuaweicloud.com --retries=2

The preceding command is used to migrate images in the images.json file to
swr.cn-north-4.myhuaweicloud.com/test. If the migration fails, you can retry
twice. A maximum of five images can be migrated at a time.

Usage of image-migrator config
The config subcommand of image-migrator can be used to obtain images used in
cluster applications and generate the images.json file in the directory where the
tool is located. You can run ./image-migrator-linux-amd64 config -h to learn
how to use the config subcommand.

● -k, --kubeconfig: specifies the location of the kubeconfig file of kubectl. The
default value is $HOME/.kube/config. The kubeconfig file is used to
configure access to the Kubernetes cluster. The kubeconfig file contains the
authentication credentials and endpoints (access addresses) required for
accessing and registering the Kubernetes cluster. For details, see the
Kubernetes documentation.

● -n, --namespaces: specifies the namespace of the image to be obtained.
Multiple namespaces are separated by commas (,), for example, ns1,ns2,ns3.
The default value is "", indicating that images of all namespaces are obtained.

● -t, --repo: specifies the destination repository address (registry/namespace).
$./image-migrator-linux-amd64 config -h
generate images.json

Usage:
 image-migrator config [flags]

Flags:
 -h, --help help for config
 -k, --kubeconfig string The kubeconfig of k8s cluster's. Default is the $HOME/.kube/config. (default "/
root/.kube/config")
 -n, --namespaces string Specify a namespace for information collection. If multiple namespaces are
specified, separate them with commas (,), such as ns1,ns2. default("") is all namespaces
 -t, --repo string target repo,such as swr.cn-north-4.myhuaweicloud.com/test

Examples:

● Specify a namespace:
./image-migrator-linux-amd64 config -n default -t swr.cn-
north-4.myhuaweicloud.com/test

● Specify multiple namespaces:
./image-migrator-linux-amd64 config -n default,kube-system -t swr.cn-
north-4.myhuaweicloud.com/test

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

● If no namespace is specified, images of all namespaces are obtained:
./image-migrator-linux-amd64 config -t swr.cn-
north-4.myhuaweicloud.com/test

Procedure

Step 1 Prepare the registry access permission file auth.json.

Create an auth.json file and modify it based on the format. If the repository is
accessed anonymously, you do not need to enter information such as the
username and password. Place the file in the directory where image-migrator is
located.

Example:

{
 "quay.io/coreos": { },
 "swr.cn-north-4.myhuaweicloud.com": {
 "username": "cn-north-4@RVHVMX******",
 "password": "cab4ceab4a1545***************",
 "insecure": true
 }
}

For details about the parameters, see the auth.json file.

Step 2 Prepare the image list file images.json.

1. Connect to the source cluster using kubectl. For details, see Connecting to a
Cluster Using kubectl.

2. Run the config subcommand for image migration to generate the
images.json file.
You can refer to the methods and examples in Usage of image-migrator
config to obtain the image used in the source cluster application without
specifying the namespace, or by specifying one or more namespaces.

3. Modify the images.json to make it meet the requirements in images.json
file.

Step 3 Migrate images.

You can run the default ./image-migrator-linux-amd64 command to migrate
images or configure image-migrator parameters as needed.

For example, run the following command:

./image-migrator-linux-amd64 --workers=5 --auth=./auth.json --images=./
images.json --namespace=test --registry=swr.cn-north-4.myhuaweicloud.com
--retries=2

Example:

$./image-migrator-linux-amd64
Start to generate images tasks, please wait ...
Start to handle images tasks, please wait ...
Images(38) migration finished, 0 images tasks failed, 0 tasks generate failed

Step 4 View the result.

After the preceding command is executed, information similar to the following is
displayed:

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2

Images(38) migration finished, 0 images tasks failed, 0 tasks generate failed

The preceding information indicates that 38 images have been migrated to SWR.

----End

3.1.4 Synchronizing Images Across Clouds from Harbor to SWR

Scenarios

A customer deploys services in multiple clouds and uses Harbor as their image
repository. There are two scenarios for synchronizing images from Harbor to SWR:

1. Harbor accesses SWR through a public network. For details, see Accessing
SWR Through a Public Network.

2. Harbor accesses SWR through a VPC endpoint by using a private line. For
details, see Accessing SWR Through a VPC Endpoint by Using a Private
Line.

Background

Harbor is an open source enterprise-class Docker Registry server developed by
VMware. It extends the Docker Distribution by adding the functionalities such as
role-based access control (RBAC), image scanning, and image replication. Harbor
has been widely used to store and distribute container images.

Accessing SWR Through a Public Network

Step 1 Configure a registry endpoint on Harbor.

NO TE

Huawei Cloud SWR has integrated with Harbor 1.10.5 and later versions. You only need to
set Provider to Huawei SWR when configuring your endpoint. This document uses Harbor
2.4.1 as an example.

1. Add an endpoint.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

2. Configure the following parameters.

– Provider: Select Huawei SWR.
– Name: Enter a customized name.
– Endpoint URL: Enter the public network domain name of SWR in the

format of https://{SWR image repository address}. To obtain the image
repository address, log in to the SWR console, choose My Images, and
click Upload Through Client. You can view the image repository address
of the current region on the page that is displayed.

– Access ID: Enter an access ID in the format of Regional project
name@[AK].

– Access Secret: Enter an AK/SK. To obtain an AK/SK, see Obtaining a
Long-Term Valid Login Command.

– Verify Remote Cert: Deselect the option (recommended).

Step 2 Configure a replication rule.

1. Create a replication rule.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

2. Configure the following parameters.

– Name: Enter a customized name.
– Replication mode: Select Push-based, indicating that images are pushed

from the local Harbor to the remote repository.
– Source resource filter: Filters images on Harbor based on the configured

rules.
– Destination registry: Select the endpoint created in Step 1.
– Destination

Namespace: Enter the organization name on SWR.
Flattening: Select Flatten All Levels, indicating that the hierarchy of the
registry is reduced when replicating images. If the directory of Harbor
registry is library/nginx and the directory of the endpoint namespace is
dev-container, after you flatten all levels, the directory of the endpoint
namespace is library/nginx -> dev-container/nginx.

– Trigger Mode: Select Manual.
– Bandwidth: Set the maximum network bandwidth when executing the

replication rule. The value –1 indicates no limitation.

Step 3 After creating the replication rule, select it and click REPLICATE to complete the
replication.

----End

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Accessing SWR Through a VPC Endpoint by Using a Private Line

Step 1 Configure a VPC endpoint.

Step 2 Obtain the private network IP address and domain name of the VPC. (By default,
the domain name resolution rule is automatically added to Huawei Cloud VPCs, so
you only need to configure hosts for non-Huawei Cloud endpoints.) You can query
the IP address and domain name in Private Domain Name on the VPC endpoint
details page.

Step 3 Configure a registry endpoint on Harbor.

NO TE

Huawei Cloud SWR has integrated with Harbor 1.10.5 and later versions. You only need to
set Provider to Huawei SWR when configuring your endpoint. This document uses Harbor
2.4.1 as an example.

1. Add an endpoint.

2. Configure the following parameters.

– Provider: Select Huawei SWR.

– Name: Enter a customized name.

– Endpoint URL: Enter the private network domain name of the VPC
endpoint, which must start with https. In addition, the domain name
mapping must be configured in the container where Harbor is located.

– Access ID: Enter an access ID in the format of Regional project
name@[AK].

– Access Secret: Enter an AK/SK. To obtain an AK/SK, see Obtaining a
Long-Term Valid Login Command.

– Verify Remote Cert: Deselect the option.

Step 4 Configure a replication rule.

1. Create a replication rule.

2. Configure the following parameters.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

– Name: Enter a customized name.

– Replication mode: Select Push-based, indicating that images are pushed
from the local Harbor to the remote repository.

– Source resource filter: Filters images on Harbor based on the configured
rules.

– Destination registry: Select the endpoint created in Step 3.

– Destination

Namespace: Enter the organization name on SWR.

Flattening: Select Flatten All Levels, indicating that the hierarchy of the
registry is reduced when replicating images. If the directory of Harbor
registry is library/nginx and the directory of the endpoint namespace is

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

dev-container, after you flatten all levels, the directory of the endpoint
namespace is library/nginx -> dev-container/nginx.

– Trigger Mode: Select Manual.

– Bandwidth: Set the maximum network bandwidth when executing the
replication rule. The value –1 indicates no limitation.

Step 5 After creating the replication rule, select it and click REPLICATE to complete the
replication.

----End

3.2 Migrating Kubernetes Clusters to CCE

3.2.1 Solution Overview

Application Scenarios

Containers are growing in popularity and Kubernetes simplifies containerized
deployment. Many companies choose to build their own Kubernetes clusters.
However, the O&M workload of on-premises clusters is heavy, and O&M personnel
need to configure the management systems and monitoring solutions by
themselves. This increases the labor costs while decreasing the efficiency.

In terms of performance, an on-premises cluster has poor scalability due to its
fixed specifications. Auto scaling cannot be implemented in case of traffic surges,
which may easily result in the insufficient or waste of cluster resources. In
addition, disaster recovery risks are not considered for deploying an on-premises
cluster, leading to poor reliability. Once a fault occurs, the entire cluster may fail,
resulting in serious production incidents.

Now you can address the preceding challenges by using CCE, a service that allows
easy cluster management and flexible scaling, integrated with application service
mesh and Helm charts to simplify cluster O&M and reduce operations costs. CCE is
easy to use and delivers high performance, security, reliability, openness, and
compatibility. This section describes the solution and procedure for migrating on-
premises clusters to CCE.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Precautions
Compared with on-premises Kubernetes clusters, CCE clusters have multiple
advantages. For details, see Product Advantages. There are some restrictions
when using CCE clusters. For details, see Notes and Constraints. Evaluate the
restrictions before using CCE clusters.

Migration Solution
This section describes a cluster migration solution, which applies to the following
types of clusters:

● Kubernetes clusters built in local IDCs
● On-premises clusters built using multiple ECSs
● Cluster services provided by other cloud service providers
● CCE clusters that are no longer maintained and cannot be upgraded in place

Before the migration, analyze all resources in the source clusters and then
determine the migration solution. Resources that can be migrated include
resources inside and outside the clusters, as listed in the following table.

Table 3-3 Resources that can be migrated

Category Migration Object Remarks

Resources
inside a
cluster

All objects in a cluster,
including pods, jobs, Services,
Deployments, and ConfigMaps.

You are not advised to migrate
the resources in the velero and
kube-system namespaces.
● velero: Resources in this

namespace are created by
the migration tool and do
not need to be migrated.

● kube-system: Resources in
this namespace are system
resources. If this namespace
of the source cluster
contains resources created
by users, migrate the
resources on demand.

CAUTION
If you are migrating or backing up
cluster resources in CCE, for
example, from a namespace to
another, do not back up Secret
paas.elb. It is because secret
paas.elb is periodically updated.
After the backup is complete, the
secret may become invalid when it
is restored. As a result, network
storage functions are affected.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0003.html#section1
https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0005.html

Category Migration Object Remarks

PersistentVolumes (PVs)
mounted to containers

Due to restrictions of the Restic
tool, migration is not
supported for the hostPath
storage volume. For details
about how to solve the
problem, see Storage Volumes
of the HostPath Type Cannot
Be Backed Up.

Resources
outside a
cluster

On-premises image repository Resources can be migrated to
SoftWare Repository for
Container (SWR).

Non-containerized database Resources can be migrated to
Relational Database Service
(RDS).

Non-local storage, such as
object storage

Resources can be migrated to
Object Storage Service (OBS).

Figure 3-2 shows the migration process. You can migrate resources outside a
cluster as required.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Figure 3-2 Migration solution diagram

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Migration Process

The cluster migration process is as follows:

Step 1 Plan resources for the target cluster.

For details about the differences between CCE clusters and on-premises clusters,
see Key Performance Parameter in Planning Resources for the Target Cluster.
Plan resources as required and ensure that the performance configuration of the
target cluster is the same as that of the source cluster.

Step 2 Migrate resources outside a cluster.

To migrate resources outside the cluster, see Migrating Resources Outside a
Cluster.

Step 3 Install the migration tool.

After resources outside a cluster are migrated, you can use a migration tool to
back up and restore application configurations in the source and target clusters.
For details about how to install the tool, see Installing the Migration Tool.

Step 4 Migrate resources in the cluster.

Use Velero to back up resources in the source cluster to OBS and restore the
resources in the target cluster. For details, see Migrating Resources in a Cluster
(Velero).

● Backing Up Applications in the Source Cluster

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

To back up resources, use the Velero tool to create a backup object in the
original cluster, query and back up cluster data and resources, package the
data, and upload the package to the object storage that is compatible with
the S3 protocol. Cluster resources are stored in the JSON format.

● Restoring Applications in the Target Cluster
During restoration in the target cluster, Velero specifies the temporary object
bucket that stores the backup data, downloads the backup data to the new
cluster, and redeploys resources based on the JSON file.

Step 5 Update resources accordingly.

After the migration, cluster resources may fail to be deployed. Update the faulty
resources. The possible adaptation problems are as follows:

● Updating Images
● Updating Services
● Updating the Storage Class
● Updating Databases

Step 6 Perform additional tasks.

After cluster resources are properly deployed, verify application functions after the
migration and switch service traffic to the target cluster. After confirming that all
services are running properly, bring the source cluster offline.

----End

3.2.2 Planning Resources for the Target Cluster
CCE allows you to customize cluster resources to meet various service
requirements. Table 3-4 lists the key performance parameters of a cluster and
provides the planned values. You can set the parameters based on your service
requirements. It is recommended that the performance configuration be the same
as that of the source cluster.

NO TICE

After a cluster is created, the resource parameters marked with asterisks (*) in
Table 3-4 cannot be modified.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Table 3-4 CCE cluster planning

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Cluster *Cluster Type ● CCE cluster: supports VM nodes. You
can run your containers in a secure
and stable container runtime
environment based on a high-
performance network model.

● CCE Turbo cluster: runs on a cloud
native infrastructure that features
software-hardware synergy to support
passthrough networking, high security
and reliability, and intelligent
scheduling, and BMS nodes.

CCE
cluster

*Network
Model

● VPC network: The container network
uses VPC routing to integrate with the
underlying network. This network
model is applicable to performance-
intensive scenarios. The maximum
number of nodes allowed in a cluster
depends on the route quota in a VPC
network.

● Tunnel network: The container
network is an overlay tunnel network
on top of a VPC network and uses the
VXLAN technology. This network
model is applicable when there is no
high requirements on performance.

● Cloud Native Network 2.0: The
container network deeply integrates
the elastic network interface (ENI)
capability of VPC, uses the VPC CIDR
block to allocate container addresses,
and supports passthrough networking
to containers through a load balancer.

VPC
network

*Number of
master
nodes

● 3: Three master nodes will be created
to deliver better DR performance. If
one master node is faulty, the cluster
can still be available without affecting
service functions.

● 1: A single master node will be
created. This mode is not
recommended in commercial
scenarios.

3

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Node OS ● EulerOS
● CentOS
● Ubuntu

EulerOS

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Node
Specification
s (vary
depending
on the actual
region)

● General-purpose: provides a balance
of computing, memory, and network
resources. It is a good choice for many
applications. General purpose nodes
can be used for web servers, workload
development, workload testing, and
small-scale databases.

● Memory-optimized: provides higher
memory capacity than general-
purpose nodes and is suitable for
relational databases, NoSQL, and
other workloads that are both
memory-intensive and data-intensive.

● General computing-basic: provides a
balance of computing, memory, and
network resources and uses the vCPU
credit mechanism to ensure baseline
computing performance. Nodes of this
type are suitable for applications
requiring burstable high performance,
such as light-load web servers,
enterprise R&D and testing
environments, and low- and medium-
performance databases.

● GPU-accelerated: provides powerful
floating-point computing and is
suitable for real-time, highly
concurrent massive computing.
Graphical processing units (GPUs) of P
series are suitable for deep learning,
scientific computing, and CAE. GPUs of
G series are suitable for 3D animation
rendering and CAD. GPU-accelerated
nodes can be added only to clusters of
v1.11 or later.

● High-performance computing:
provides stable and ultra-high
computing performance and is
suitable for scientific computing and
workloads that demand ultra-high
computing power and throughput.

● General computing-plus: provides
stable performance and exclusive
resources to enterprise-class workloads
with high and stable computing
performance.

General-
purpose
(node
specifica
tions: 4
vCPUs
and 8
GiB
memory)

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

● Disk-intensive: supports local disk
storage and provides high networking
performance. It is designed for
workloads requiring high throughput
and data switching, such as big data
workloads.

● Ultra-high I/O: delivers ultra-low SSD
access latency and ultra-high IOPS
performance. This type of
specifications is ideal for high-
performance relational databases,
NoSQL databases (such as Cassandra
and MongoDB), and Elasticsearch.

● Ascend-accelerated: Ascend-
accelerated nodes powered by
HiSilicon Ascend 310 AI processors are
applicable to scenarios such as image
recognition, video processing,
inference computing, and machine
learning.

System Disk ● High I/O: The backend storage media
is SAS disks.

● Ultra-high I/O: The backend storage
media is SSD disks.

High I/O

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Storage Type ● EVS volumes: Mount an EVS volume
to a container path. When containers
are migrated, the attached EVS
volumes are migrated accordingly. This
storage mode is suitable for data that
needs to be permanently stored.

● SFS volumes: Create SFS volumes and
mount them to a container path. The
file system volumes created by the
underlying SFS service can also be
used. SFS volumes are applicable to
persistent storage for frequent read/
write in multiple workload scenarios,
including media processing, content
management, big data analysis, and
workload analysis.

● OBS volumes: Create OBS volumes
and mount them to a container path.
OBS volumes are applicable to
scenarios such as cloud workload, data
analysis, content analysis, and hotspot
objects.

● SFS Turbo volumes: Create SFS Turbo
volumes and mount them to a
container path. SFS Turbo volumes are
fast, on-demand, and scalable, which
makes them suitable for DevOps,
containerized microservices, and
enterprise office applications.

EVS
volumes

3.2.3 Procedure

3.2.3.1 Migrating Resources Outside a Cluster
If your migration does not involve resources outside a cluster listed in Table 3-3 or
you do not need to use other services to update resources after the migration, skip
this section.

Migrating Container Images
To ensure that container images can be properly pulled after cluster migration and
improve container deployment efficiency, you are advised to migrate private
images to SoftWare Repository for Container (SWR). CCE works with SWR to
provide a pipeline for automated container delivery. Images are pulled in parallel,
which greatly improves container delivery efficiency.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Manually migrate container images.

Step 1 Remotely log in to any node in the source cluster and run the docker pull
command to pull all images to the local host.

Step 2 Log in to the SWR console, click Login Command in the upper right corner of the
page, and copy the command.

Step 3 Run the copied login command on the node.

The message "Login Succeeded" will be displayed upon a successful login.

Step 4 Add tags to all local images.
docker tag [Image name 1:tag 1] [Image repository address]/[Organization name]/[Image name 2:tag 2]

● [Image name 1:tag 1]: name and tag of the local image to be pulled.
● [Image repository address]: You can obtain the image repository address on

the SWR console.
● [Organization name]: Enter the name of the organization you created on the

SWR console.
● {Image name 2:Tag 2}: image name and tag displayed on the SWR console.

The following is an example:

docker tag nginx:v1 swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/mynginx:v1

Step 5 Run the docker push command to upload all local container image files to SWR.
docker push [Image repository address]/[Organization name]/[Image name 2:tag 2]

The following is an example:

docker push swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/mynginx:v1

----End

Migrating Databases and Storage (On-Demand)
You can determine whether to use Relational Database Service (RDS) and
Object Storage Service (OBS) based on your production requirements. After the
migration is complete, reconfigure the database and storage for applications in
the target CCE cluster.

Database migration

If your database is deployed without using containers and needs to be migrated to
the cloud, Data Replication Service (DRS) can help you do this. DRS provides
multiple capabilities, including online migration, backup migration, real-time
disaster recovery, data synchronization, and data subscription. Contact O&M or
development personnel to migrate the database. For details, see Migrating
Databases Across Cloud Platforms. After the migration is complete, interconnect
with the database by following the procedure described in Updating Databases.

Storage migration

If your cluster has connected to an object storage service and needs to be
migrated to the cloud, Object Storage Migration Service (OMS) can help you
migrate data to OBS. Other storage classes are not supported by official tools.

Contact O&M or development personnel to migrate object storage data. For
details, see Creating a Migration Task. After the migration is complete, attach

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/drs/index.html
https://support.huaweicloud.com/intl/en-us/bestpractice-drs/drs_overview.html
https://support.huaweicloud.com/intl/en-us/bestpractice-drs/drs_overview.html
https://support.huaweicloud.com/intl/en-us/oms/index.html
https://support.huaweicloud.com/intl/en-us/qs-oms/en-us_topic_0045916962.html

the object storage to the application by referring to Using an Existing OBS
Bucket Through a Static PV.

NO TE

Currently, you can use OMS to migrate object storage data from AWS China, Alibaba Cloud,
Microsoft Azure, Baidu Cloud, Kingsoft Cloud, Ucloud, QingCloud, Qiniu Cloud, and Tencent
Cloud to Huawei Cloud OBS.

3.2.3.2 Installing the Migration Tool

Velero is an open-source backup and migration tool for Kubernetes clusters. With
Restic's PV data backup capability integrated into it, Velero can back up
Kubernetes resource objects (such as Deployments, jobs, Services, and
ConfigMaps) in source clusters and data in PVs mounted to pods and uploaded
them to object storage. When a disaster occurs or migration is required, a target
cluster can obtain the corresponding backup data from the object storage using
Velero and restore cluster resources as required.

According to Migration Solution, prepare temporary object storage to store
backup files before the migration. Velero supports OBS or MinIO as the object
storage. The object storage requires sufficient storage space for storing backup
files. You can estimate the storage space based on your cluster scale and data
volume. OBS buckets are recommended for data backup. For details about how to
deploy Velero, see Installing Velero.

Prerequisites
● The Kubernetes version of the source on-premises cluster must be 1.10 or

later, and the cluster can use DNS and Internet services properly.
● If you use OBS to store backup files, obtain the AK/SK of a user who has the

right to operate OBS. For details, see Obtaining Access Keys (AK/SK).
● If you use MinIO to store backup files, bind an EIP to the server where MinIO

is installed and enable the API and console port of MinIO in the security
group.

● The target CCE cluster has been created.
● The source cluster and target cluster must each have at least one idle node. It

is recommended that the node specifications be 4 vCPUs and 8 GiB memory
or higher.

(Optional) Installing MinIO

MinIO is an open-source, high-performance object storage tool compatible with
the S3 API protocol. If MinIO is used to store backup files for cluster migration,
you need a temporary server to deploy MinIO and provide services for external
systems. If you use OBS to store backup files, skip this section and go to Installing
Velero.

MinIO can be installed in any of the following locations:

● Temporary ECS outside the cluster
If the MinIO server is installed outside the cluster, backup files will not be
affected when a catastrophic fault occurs in the cluster.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0379.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0379.html
https://support.huaweicloud.com/intl/en-us/obs/index.html
https://min.io/
https://support.huaweicloud.com/intl/en-us/api-obs/obs_04_0116.html

● Idle nodes in the cluster
You can remotely log in to a node and install MinIO or install the
containerized MinIO. For details, see Velero official document.

NO TICE

For example, to install MinIO in a container, run the following command:
● The storage type in the YAML file provided by Velero is emptyDir. You are

advised to change the storage type to HostPath or Local. Otherwise,
backup files will be permanently lost after the container is restarted.

● Ensure that the MinIO service is accessible externally. Otherwise, backup
files cannot be downloaded outside the cluster. You can change the Service
type to NodePort or use other types of public network access Services.

Regardless of which deployment method is used, the server where MinIO is
installed must have sufficient storage space, an EIP must be bound to the server,
and the MinIO service port must be enabled in the security group. Otherwise,
backup files cannot be uploaded or downloaded.

In this example, MinIO is installed on a temporary ECS outside the cluster.

Step 1 Download MinIO.
mkdir /opt/minio
mkdir /opt/miniodata
cd /opt/minio
wget https://dl.minio.io/server/minio/release/linux-amd64/minio
chmod +x minio

Step 2 Set the username and password of MinIO.

The username and password configured using this method are temporary
environment variables and must be reset after the service is restarted. Otherwise,
the default root credential minioadmin:minioadmin will be used to create the
service.
export MINIO_ROOT_USER=minio
export MINIO_ROOT_PASSWORD=minio123

Step 3 Create a service. In the command, /opt/miniodata/ indicates the local disk path
for MinIO to store data.

The default API port of MinIO is 9000, and the console port is randomly
generated. You can use the --console-address parameter to specify a console port.
./minio server /opt/miniodata/ --console-address ":30840" &

NO TE

Enable the API and console ports in the firewall and security group on the server where
MinIO is to be installed. Otherwise, access to the object bucket will fail.

Step 4 Use a browser to access http://{EIP of the node where MinIO resides}:30840. The
MinIO console page is displayed.

----End

Installing Velero
Go to the OBS console or MinIO console and create a bucket named velero to
store backup files. You can custom the bucket name, which must be used when

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://velero.io/docs/v1.13/contributions/minio/#set-up-server

installing Velero. Otherwise, the bucket cannot be accessed and the backup fails.
For details, see Step 5.

NO TICE

● Velero instances need to be installed and deployed in both the source and
target clusters. The installation procedures are the same, which are used for
backup and restoration, respectively.

● The master node of a CCE cluster does not provide a port for remote login. You
can install Velero using kubectl.

● If there are a large number of resources to back up, you are advised to adjust
the CPU and memory resources of Velero and node-agent to 1 vCPU and 1 GiB
memory or higher. For details, see Backup Tool Resources Are Insufficient.

● The object storage bucket for storing backup files must be empty.

Download the latest, stable binary file from https://github.com/vmware-tanzu/
velero/releases. This section uses Velero 1.13.1 as an example. The installation
process in the source cluster is the same as that in the target cluster.

Step 1 Log in to a VM that can access the public network and use kubectl to access the
cluster where Velero is to be installed.

Step 2 Download the binary file of Velero 1.13.1.
wget https://github.com/vmware-tanzu/velero/releases/download/v1.13.1/velero-v1.13.1-linux-amd64.tar.gz

Step 3 Install the Velero client.
tar -xvf velero-v1.13.1-linux-amd64.tar.gz
cp ./velero-v1.13.1-linux-amd64/velero /usr/local/bin

Step 4 Create the access key file credentials-velero for the backup object storage.
vim credentials-velero

Replace the AK/SK in the file based on the site requirements. When you use OBS,
you can obtain the AK/SK by referring to Obtaining Access Keys (AK/SK). If
MinIO is used, the AK/SK are the username and password created in Step 2.
[default]
aws_access_key_id = {AK}
aws_secret_access_key = {SK}

Step 5 Deploy the Velero server. Change the value of --bucket to the name of the created
object storage bucket. In this example, the bucket name is velero. For more
information about custom installation parameters, see Customize Velero Install.
velero install \
 --provider aws \
 --plugins velero/velero-plugin-for-aws:v1.9.1 \
 --bucket velero \
 --secret-file ./credentials-velero \
 --use-node-agent \
 --use-volume-snapshots=false \
 --backup-location-config region=ap-southeast-1,s3ForcePathStyle="true",s3Url=http://obs.ap-
southeast-1.myhuaweicloud.com

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://support.huaweicloud.com/intl/en-us/api-obs/obs_04_0116.html
https://velero.io/docs/v1.13/customize-installation/

Table 3-5 Installation parameters of Velero

Parameter Description

--provider AWS S3 component to be used

--plugins API component compatible with AWS S3. Both OBS and MinIO
support the S3 protocol.

--bucket Name of the object storage bucket for storing backup files. The
bucket must be created in advance.

--secret-file Secret file for accessing the object storage, that is, the
credentials-velero file created in Step 4.

--use-node-
agent

Whether to enable PV data backup. You are advised to enable
this function. Otherwise, storage volume resources cannot be
backed up.

--use-volume-
snapshots

Whether to create the VolumeSnapshotLocation object for PV
snapshot, which requires support from the snapshot program.
Set this parameter to false.

--backup-
location-
config

OBS bucket configurations, including region, s3ForcePathStyle,
and s3Url.

region Region to which object storage bucket belongs.
● If OBS is used, set this parameter according to your region,

for example, ap-southeast-1.
● If MinIO is used, set this parameter to minio.

s3ForcePathSt
yle

The value true indicates that the S3 file path format is used.

s3Url API access address of the object storage bucket.
● If OBS is used, set this parameter to http://obs.

{region}.myhuaweicloud.com (region indicates the region
where the object storage bucket is located). For example, if
the region is Hong Kong (ap-southeast-1), the value is
http://obs.ap-southeast-1.myhuaweicloud.com.

● If MinIO is used, set this parameter to http://{EIP of the
node where minio is located}:9000. The value of this
parameter is determined based on the IP address and port
of the node where MinIO is installed.
NOTE

– The access port in s3Url must be set to the API port of MinIO
instead of the console port. The default API port of MinIO is
9000.

– To access MinIO installed outside the cluster, enter the public IP
address of MinIO.

Step 6 By default, a namespace named velero is created for the Velero instance. Run the
following command to view the pod status:

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

$ kubectl get pod -n velero
NAME READY STATUS RESTARTS AGE
node-agent-rn29c 1/1 Running 0 16s
velero-c9ddd56-tkzpk 1/1 Running 0 16s

NO TE

To prevent memory insufficiency during backup in the actual production environment, you
are advised to change the CPU and memory allocated to node-agent and Velero by
referring to Backup Tool Resources Are Insufficient.

Step 7 Check the interconnection between Velero and the object storage and ensure that
the status is Available.
$ velero backup-location get
NAME PROVIDER BUCKET/PREFIX PHASE LAST VALIDATED ACCESS MODE DEFAULT
default aws velero Available 2021-10-22 15:21:12 +0800 CST ReadWrite true

----End

3.2.3.3 Migrating Resources in a Cluster (Velero)

Application Scenarios
WordPress is used as an example to describe how to migrate an application from
an on-premises Kubernetes cluster to a CCE cluster. The WordPress application
consists of the WordPress and MySQL components, which are containerized. The
two components are bound to two local storage volumes of the Local type
respectively and provide external access through the NodePort Service.

Before the migration, use a browser to access the WordPress site, create a site
named Migrate to CCE, and publish an article to verify the integrity of PV data
after the migration. The article published in WordPress will be stored in the
wp_posts table of the MySQL database. If the migration is successful, all contents
in the database will be migrated to the new cluster. You can verify the PV data
migration based on the migration result.

Prerequisites
● Before the migration, clear the abnormal pod resources in the source cluster.

If the pod is in the abnormal state and has a PVC mounted, the PVC is in the
pending state after the cluster is migrated.

● Ensure that the cluster on the CCE side does not have the same resources as
the cluster to be migrated because Velero does not restore the same resources
by default.

● To ensure that container images can be properly pulled after cluster
migration, migrate the images to SWR.

● CCE does not support EVS disks of the ReadWriteMany type. If resources of
this type exist in the source cluster, change the storage type to
ReadWriteOnce.

● Velero cannot back up or restore HostPath volumes. For details, see
Limitations. To back up storage volumes of this type, replace the hostPath
volumes with local volumes by referring toStorage Volumes of the HostPath
Type Cannot Be Backed Up. If a backup task involves storage of the
HostPath type, the storage volumes of this type will be automatically skipped
and a warning message will be generated. This will not cause a backup
failure.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

https://velero.io/docs/v1.13/file-system-backup/#limitations

Backing Up Applications in the Source Cluster

Step 1 (Optional) To back up the data of a specified storage volume in the pod, add an
annotation to the pod. The annotation template is as follows:
kubectl -n <namespace> annotate <pod/pod_name> backup.velero.io/backup-
volumes=<volume_name_1>,<volume_name_2>,...

● <namespace>: namespace where the pod is located.
● <pod_name>: pod name.
● <volume_name>: name of the persistent volume mounted to the pod. You

can run the describe statement to query the pod information. The Volume
field indicates the names of all persistent volumes attached to the pod.

Add annotations to the pods of WordPress and MySQL. The pod names are
wordpress-758fbf6fc7-s7fsr and mysql-5ffdfbc498-c45lh. As the pods are in the
default namespace default, the -n <NAMESPACE> parameter can be omitted.

kubectl annotate pod/wordpress-758fbf6fc7-s7fsr backup.velero.io/backup-volumes=wp-storage
kubectl annotate pod/mysql-5ffdfbc498-c45lh backup.velero.io/backup-volumes=mysql-storage

Step 2 Back up the application. During the backup, you can specify resources based on
parameters. If no parameter is added, the entire cluster resources are backed up
by default. For details about the parameters, see Resource filtering.
● --default-volumes-to-fs-backup: indicates that the PV backup tool is used to

back up all storage volumes attached to a pod. HostPath volumes are not
supported. If this parameter is not specified, the storage volume specified by
annotation in Step 1 is backed up by default. This parameter is available only
when --use-node-agent is specified during Velero installation.
velero backup create <backup-name> --default-volumes-to-fs-backup

● --include-namespaces: backs up resources in a specified namespace.
velero backup create <backup-name> --include-namespaces <namespace>

● --include-resources: backs up the specified resources.
velero backup create <backup-name> --include-resources deployments

● --selector: backs up resources that match the selector.
velero backup create <backup-name> --selector <key>=<value>

In this section, resources in the namespace default are backed up. wordpress-
backup is the backup name. Specify the same backup name when restoring
applications. An example is as follows:

velero backup create wordpress-backup --include-namespaces default --default-volumes-to-fs-backup

If the following information is displayed, the backup task is successfully created:

Backup request "wordpress-backup" submitted successfully.
Run `velero backup describe wordpress-backup` or `velero backup logs wordpress-backup` for more details.

Step 3 Check the backup status.
velero backup get

Information similar to the following is displayed:
NAME STATUS ERRORS WARNINGS CREATED EXPIRES STORAGE
LOCATION SELECTOR
wordpress-backup Completed 0 0 2021-10-14 15:32:07 +0800 CST 29d default
<none>

In addition, you can go to the object bucket to view the backup files. The backups
path is the application resource backup path, and the other is the PV data backup
path.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://velero.io/docs/v1.13/resource-filtering/

----End

Restoring Applications in the Target Cluster
The storage infrastructure of an on-premises cluster is different from that of a
cloud cluster. After the cluster is migrated, PVs cannot be mounted to pods.
Therefore, during the migration, update the storage class of the target cluster to
shield the differences of underlying storage interfaces between the two clusters
when creating a workload and request storage resources of the corresponding
type. For details, see Updating the Storage Class. If you migrate storage by using
Object Storage Migration Service (OMS), you can mount object storage buckets to
pods by referring to Using an Existing OBS Bucket Through a Static PV.

Step 1 Use kubectl to connect to the CCE cluster. Create a storage class with the same
name as that of the source cluster.

In this example, the storage class name of the source cluster is local and the
storage type is local disk. Local disks completely depend on the node availability.
The data DR performance is poor. When the node is unavailable, the existing
storage data is affected. Therefore, EVS volumes are used as storage resources in
CCE clusters, and SAS disks are used as backend storage media.

NO TE

● When an application containing PV data is restored in a CCE cluster, the defined storage
class dynamically creates and mounts storage resources (such as EVS volumes) based on
the PVC.

● The storage resources of the cluster can be changed as required, not limited to EVS
volumes. To mount other types of storage, such as file storage and object storage, see
Updating the Storage Class.

YAML file of the migrated cluster:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

The following is an example of the YAML file of the migration cluster:
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local
 selfLink: /apis/storage.k8s.io/v1/storageclasses/csi-disk
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0379.html

 everest.io/disk-volume-type: SAS
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate

Step 2 Use the Velero tool to create a restore and specify a backup named wordpress-
backup to restore the WordPress application to the CCE cluster.
velero restore create --from-backup wordpress-backup

You can run the velero restore get statement to view the application restoration
status.

Step 3 After the restoration is complete, check whether the application is running
properly. If other adaptation problems may occur, rectify the fault by following the
procedure described in Updating Resources Accordingly.

----End

3.2.3.4 Updating Resources Accordingly

Updating Images

The WordPress and MySQL images used in this example can be pulled from SWR.
Therefore, the image pull failure (ErrImagePull) will not occur. If the application to
be migrated is created from a private image, perform the following steps to
update the image:

Step 1 Migrate the image resources to SWR. For details, see Uploading an Image
Through a Container Engine Client.

Step 2 Log in to the SWR console and obtain the image path used after the migration.

The image path is in the following format:
'swr.{Region}.myhuaweicloud.com/{Organization name}/{Image name}:{Tag name}'

Step 3 Run the following command to modify the workload and replace the image field
in the YAML file with the image path:
kubectl edit deploy wordpress

Step 4 Check the running status of the workload.

----End

Updating Services

After the cluster is migrated, the Service of the source cluster may fail to take
effect. You can perform the following steps to update the Service. If ingresses are
configured in the source cluster, connect the new cluster to ELB again after the
migration. For details, see Using kubectl to Create an ELB Ingress.

Step 1 Connect to the cluster using kubectl.

Step 2 Edit the YAML file of the corresponding Service to change the Service type and
port number.
kubectl edit svc wordpress

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0252.html#section3

To update load balancer resources, connect to ELB again. Add the annotations by
following the procedure described in Using kubectl to Create a Service (Using
an Existing Load Balancer).
annotations:
 kubernetes.io/elb.class: union # Shared load balancer
 kubernetes.io/elb.id: 9d06a39d-xxxx-xxxx-xxxx-c204397498a3 # Load balancer ID, which can be queried
on the ELB console.
 kubernetes.io/elb.subnet-id: f86ba71c-xxxx-xxxx-xxxx-39c8a7d4bb36 # ID of the subnet where the load
balancer resides
 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable the sticky session based on the source IP
address.

Step 3 Use a browser to check whether the Service is available.

----End

Updating the Storage Class
As the storage infrastructures of clusters may be different, storage volumes cannot
be mounted to the target cluster. You can use either of the following methods to
update the volumes:

NO TICE

Both update methods can be performed only before the application is restored in
the target cluster. Otherwise, PV data resources may fail to be restored. In this
case, use Velero to restore applications after the storage class update is complete.
For details, see Restoring Applications in the Target Cluster.

Method 1: Creating a ConfigMap mapping

Step 1 Create a ConfigMap in the CCE cluster and map the storage class used by the
source cluster to the default storage class of the CCE cluster.
apiVersion: v1
kind: ConfigMap
metadata:
 name: change-storageclass-plugin-config
 namespace: velero
 labels:
 app.kubernetes.io/name: velero
 velero.io/plugin-config: "true"
 velero.io/change-storage-class: RestoreItemAction
data:
 {Storage class name01 in the source cluster}: {Storage class name01 in the target cluster}
 {Storage class name02 in the source cluster}: {Storage class name02 in the target cluster}

Step 2 Run the following command to apply the ConfigMap configuration:
$ kubectl create -f change-storage-class.yaml
configmap/change-storageclass-plugin-config created

----End

Method 2: Creating a storage class with the same name

Step 1 Run the following command to query the default storage class supported by CCE:
kubectl get sc

Information similar to the following is displayed:

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0681.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0681.html#section3

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
csi-disk everest-csi-provisioner Delete Immediate true 3d23h
csi-disk-topology everest-csi-provisioner Delete WaitForFirstConsumer true 3d23h
csi-sfs everest-csi-provisioner Delete Immediate false 3d23h
csi-obs everest-csi-provisioner Delete Immediate false 3d23h
csi-sfsturbo everest-csi-provisioner Delete Immediate true 3d23h

Table 3-6 Storage classes

Storage Class Storage Resource

csi-disk EVS

csi-disk-topology EVS with delayed binding

csi-sfs SFS

csi-obs OBS

csi-sfsturbo SFS Turbo

Step 2 Run the following command to export the required storage class details in YAML
format:
kubectl get sc <storageclass-name> -o=yaml

Step 3 Copy the YAML file and create a new storage class.

Change the storage class name to the name used in the source cluster to call basic
storage resources of the cloud.

The YAML file of csi-obs is used as an example. Delete the unnecessary
information in italic under the metadata field and modify the information in bold.
You are advised not to modify other parameters.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 creationTimestamp: "2021-10-18T06:41:36Z"
 name: <your_storageclass_name> # Use the name of the storage class used in the source cluster.
 resourceVersion: "747"
 selfLink: /apis/storage.k8s.io/v1/storageclasses/csi-obs
 uid: 4dbbe557-ddd1-4ce8-bb7b-7fa15459aac7
parameters:
 csi.storage.k8s.io/csi-driver-name: obs.csi.everest.io
 csi.storage.k8s.io/fstype: obsfs
 everest.io/obs-volume-type: STANDARD
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate

NO TE

● SFS Turbo file systems cannot be directly created using StorageClass. Go to the SFS
Turbo console to create SFS Turbo file systems that belong to the same VPC subnet and
have inbound ports (111, 445, 2049, 2051, 2052, and 20048) enabled in the security
group.

● CCE does not support EVS disks of the ReadWriteMany type. If resources of this type
exist in the source cluster, change the storage type to ReadWriteOnce.

Step 4 Restore the cluster application by referring to Restoring Applications in the
Target Cluster and check whether the PVC is successfully created.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

kubectl get pvc

In the command output, the VOLUME column indicates the name of the PV
automatically created using the storage class.
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc Bound pvc-4c8e655a-1dbc-4897-ae6c-446b502f5e77 5Gi RWX local 13s

----End

Updating Databases

In this example, the database is a local MySQL database and does not need to be
reconfigured after the migration. If you use DRS to migrate a local database to
RDS, configure database access based on site requirements after the migration.

NO TE

● If the RDS instance is in the same VPC as the CCE cluster, it can be accessed using the
private IP address. Otherwise, it can only be accessed only through public networks by
binding an EIP. You are advised to use the private network access mode for high security
and good RDS performance.

● Ensure that the inbound rule of the security group to which RDS belongs has been
enabled for the cluster. Otherwise, the connection will fail.

Step 1 Log in to the RDS console and obtain the private IP address and port number of
the DB instance on the Basic Information page.

Step 2 Run the following command to modify the WordPress workload:
kubectl edit deploy wordpress

Set the environment variables in the env field.

● WORDPRESS_DB_HOST: address and port number used for accessing the
database, that is, the internal network address and port number obtained in
the previous step.

● WORDPRESS_DB_USER: username for accessing the database.
● WORDPRESS_DB_PASSWORD: password for accessing the database.
● WORDPRESS_DB_NAME: name of the database to be connected.

Step 3 Check whether the RDS database is properly connected.

----End

3.2.3.5 Performing Additional Tasks

Verifying Application Functions

Cluster migration involves full migration of application data, which may cause
intra-application adaptation problems. In this example, after the cluster is
migrated, the redirection link of the article published in WordPress is still the
original domain name. If you click the article title, you will be redirected to the
application in the source cluster. Therefore, search for the original domain name in
WordPress and replace it with the new domain name, change the values of
site_url and primary URL in the database. For details, see Changing The Site
URL.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

https://wordpress.org/support/article/changing-the-site-url/
https://wordpress.org/support/article/changing-the-site-url/

Access the new address of the WordPress application. If the article published
before the migration is displayed, the data of the persistent volume is successfully
restored.

Switching Live Traffic to the Target Cluster
O&M personnel switch DNS to direct live traffic to the target cluster.

● DNS traffic switching: Adjust the DNS configuration to switch traffic.
● Client traffic switching: Upgrade the client code or update the configuration

to switch traffic.

Bringing the Source Cluster Offline
After confirming that the service on the target cluster is normal, bring the source
cluster offline and delete the backup files.

● Verify that the service on the target cluster is running properly.
● Bring the source cluster offline.
● Delete backup files.

3.2.3.6 Troubleshooting

Storage Volumes of the HostPath Type Cannot Be Backed Up
Both HostPath and Local volumes are local storage volumes. However, the Restic
tool integrated in Velero cannot back up the PVs of the HostPath type and
supports only the Local type. Therefore, you need to replace the storage volumes
of the HostPath type with the Local type in the source cluster.

NO TE

It is recommended that Local volumes be used in Kubernetes v1.10 or later and can only be
statically created. For details, see local.

Step 1 Create a storage class for the Local volume.

Example YAML:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://kubernetes.io/docs/concepts/storage/volumes/#local

 name: local
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

Step 2 Change the hostPath field to the local field, specify the original local disk path of
the host machine, and add the nodeAffinity field.

Example YAML:
apiVersion: v1
kind: PersistentVolume
metadata:
 name: mysql-pv
 labels:
 app: mysql
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 5Gi
 storageClassName: local # Storage class created in the previous step
 persistentVolumeReclaimPolicy: Delete
 local:
 path: "/mnt/data" # Path of the attached local disk
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: Exists

Step 3 Run the following commands to verify the creation result:
kubectl get pv

Information similar to the following is displayed:

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
mysql-pv 5Gi RWO Delete Available local 3s

----End

Backup Tool Resources Are Insufficient

In the production environment, if there are many backup resources, for example,
the default resource size of the backup tool is used, the resources may be
insufficient. In this case, perform the following steps to adjust the CPU and
memory size allocated to the Velero and Restic:

Before installing Velero:

You can specify the size of resources used by Velero and Restic when installing
Velero.

The following is an example of installation parameters:

velero install \
 --velero-pod-cpu-request 500m \
 --velero-pod-mem-request 1Gi \
 --velero-pod-cpu-limit 1000m \
 --velero-pod-mem-limit 1Gi \
 --use-node-agent \
 --node-agent-pod-cpu-request 500m \
 --node-agent-pod-mem-request 1Gi \
 --node-agent-pod-cpu-limit 1000m \
 --node-agent-pod-mem-limit 1Gi

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

After Velero is installed:

Step 1 Edit the YAML files of the Velero and node-agent workloads in the velero
namespace.
kubectl edit deploy velero -n velero
kubectl edit ds node-agent -n velero

Step 2 Modify the resource size under the resources field. The modification is the same
for the Velero and Restic workloads, as shown in the following:
resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi

----End

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

4 DevOps

4.1 Installing and Deploying Jenkins on CCE

4.1.1 Solution Overview

What Is Jenkins?
Jenkins is an open source continuous integration (CI) tool that provides user-
friendly GUIs. It originates from Hudson and is used to automate all sorts of tasks
related to building, testing, and delivering or deploying software.

Jenkins is written in Java and can run in popular servlet containers such as
Tomcat, or run independently. It is usually used together with the version control
tools (or SCM tools) and build tools. Jenkins supports various languages and is
compatible with third-party build tools, such as Maven, Ant, and Gradle. It
seamlessly integrates with common version control tools, such as SVN and Git,
and can directly connect to source code hosting services, such as GitHub.

Constraints
● This solution can be deployed only in CCE clusters. It is not supported in DeC.
● CCE does not provide maintenance and support for Jenkins. The maintenance

is provided by the developers.

Solution Architecture
You can install Jenkins using the following methods:

● You can use a single Master to install Jenkins. The Master handles jobs and
builds and releases services. However, security risks may exist.

● Another one is to use Master+Agents. Master schedules build jobs to Agents
for execution, and monitors Agent status. Agents execute build jobs
dispatched by the Master and return the job progress and result.

You can install the Master and Agents on VMs, containers, or combination of the
two. For details, see Table 4-1.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Table 4-1 Jenkins deployment modes

Deployment
Mode

Master Agent Advantages and
Disadvantages

Single Master VMs - ● Advantage: Localized
construction is easy to
operate.

● Disadvantage: Job
management and execution
are performed on the same
VM and the security risk is
high.

Single Master Containers - ● Advantage: Kubernetes
containers support self-
healing.

● Disadvantage: Job
management and execution
are not isolated. Security
risks exist.

Master+Agents VMs VMs ● Advantage: Job management
and execution are isolated
and the security risk is low.

● Disadvantage: Agents are
fixed. Resources cannot be
scheduled and the resource
utilization is low and the
maintenance cost is high.

Containers
(Kubernetes
cluster)

● Advantage: Containerized
Agents can be fixed or
dynamic. Kubernetes
schedules the dynamic
Agents, improving the
resource utilization. Jobs can
be evenly allocated based on
the scheduling policy, which
is easy to maintain.

● Disadvantage: The Master
may break down and the
recovery cost is high.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Deployment
Mode

Master Agent Advantages and
Disadvantages

Master+Agents Containers
(Kubernete
s cluster)

Containers
(Kubernetes
cluster)

● Advantage: Containerized
Agents can be fixed or
dynamic. Kubernetes
schedules the dynamic
Agents, improving the
resource utilization. The
Master is self-healing and
the maintenance cost is low.
Agents and the Master can
be deployed in the same
cluster or in different
clusters.

● Disadvantage: The system is
complex and the
environment is difficult to set
up.

In this section, Jenkins is installed with the containerized Master and Agents.
Kubernetes schedules the dynamic Agents. For details about the architecture, see
Figure 4-1.

● The Master handles jobs. Install Kubernetes add-ons on the Master to use the
Kubernetes platform resources.

● The Kubernetes platform generates pods for Agents to execute jobs. When a
job is scheduled on the Master, the Master sends a request to the Kubernetes
platform using the Kubernetes add-on. After receiving the request, Kubernetes
builds a pod using the pod template to send requests to the Master. After the
Master is successfully connected, you can execute the job on the pod.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 4-1 Installing Jenkins on Kubernetes

Procedure

Step 1 Installing and Deploying Jenkins Master

Jenkins Master is deployed in the CCE cluster using container images.

Step 2 Configuring Jenkins Agent

Jenkins can fix Agents in the cluster or use the pipeline to interconnect with CCE
to provide pods for Agents to execute jobs. The dynamic Agents use Kubernetes
add-ons to configure cluster authentication and user permissions.

Step 3 Using Jenkins to Build a Pipeline

The Jenkins pipeline interconnects with SWR and calls docker build/login/push
commands in Agents to package and push images automatically.

You can also use pipelines to deploy and upgrade Kubernetes resources (such as
Deployments, Services, ingresses, and jobs).

----End

4.1.2 Resource and Cost Planning

NO TICE

The fees listed here are estimates. The actual fees will be displayed on the Huawei
Cloud console.

The required resources are as follows:

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Table 4-2 Resource and cost planning

Resource Description Quanti
ty

Estimated Fee
(USD)

Cloud
Container
Engine
(CCE)

Pay-per-use recommended
● Cluster type: CCE cluster
● CCE cluster version: v1.25
● Cluster scale: 50 nodes
● HA: Yes

1 2.91/hour

VM Pay-per-use recommended
● VM type: General computing-plus
● Node flavor: 4 vCPUs | 8 GiB
● OS: EulerOS 2.9
● System disk: 50 GiB | General

purpose SSD
● Data disk: 100 GiB | General

purpose SSD

1 1.00/hour

Elastic
Volume
Service
(EVS)

Pay-per-use recommended
● EVS disk specifications: 100 GiB
● EVS disk type: General purpose SSD

1 0.1/hour

Load
Balancer
(ELB)

Pay-per-use recommended
● Type: Shared
● Billed By: Traffic
● Bandwidth: 5 Mbit/s

1 0.32/hour +
0.80/GiB (The
traffic fee is
charged based
on the actual
outbound
traffic.)

4.1.3 Procedure

4.1.3.1 Installing and Deploying Jenkins Master
NO TE

On the Jenkins page, the UI strings in Chinese and English are different. The screenshots in
this section are for your reference only.

Selecting an Image

Select a relatively new, stable image from Docker Hub. For this test, select
jenkinsci/blueocean, which is bound with all Blue Ocean add-ons and functions.
There is no need to install Blue Ocean add-ons separately. For details, see
Installing Jenkins.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://www.jenkins.io/doc/book/installing/

Preparations
● Before creating a containerized workload, buy a cluster (the cluster must

contain at least one node with four vCPUs and 8 GiB memory). For details,
see Buying a CCE Cluster.
The Docker in Docker scenario is required, which is, running the Docker
commands in the container. Select the Docker container engine for the node.

● To enable external networks to access the workload, ensure that an elastic IP
address (EIP) has been bound to or a load balancer has been configured for
at least one node in the cluster.

Installing and Deploying Jenkins on CCE

Step 1 Log in to the CCE console, choose Workloads > Deployments and click Create
Workload on the upper right corner.

Step 2 Configure basic workload parameters.
● Workload Name: jenkins (customizable)
● Namespace: Select the namespace where Jenkins will be deployed. You can

create a namespace.
● Pods: Set it to 1.

Step 3 Configure basic container parameters.
● Image Name: Enter jenkinsci/blueocean. Select an image version as

required. If no version is selected, the latest version will be used by default.
● CPU Quota: Set Limit to 2 cores.
● Memory Quota: Set Limit to 2048 MiB.
● Privileged Container: If Jenkins with a single Master is used, the privileged

container must be enabled so that the container can perform operations on
the node. Otherwise, you cannot run the Docker commands in the Jenkins
Master container.

Retain the default values for other parameters.

Figure 4-2 Basic container parameters

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html

Step 4 Click Data Storage and add a persistent storage volume.

Click Add Volume, select PVC from the drop-down list, and add a storage volume.
Enter /var/jenkins_home under Mount Path to mount the storage volume
to /var/jenkins_home of the Jenkins container for persistent data storage.

NO TE

The cloud storage type can be EVS or SFS. If no cloud storage is available, click Create PVC.
If you select EVS, the AZ of the EVS disk must be the same as that of the node.

Figure 4-3 Adding a cloud volume

Step 5 Add permissions to the Jenkins container so that related commands can be
executed in it.

1. Ensure that Privileged Container is enabled in 3.
2. Click Data Storage, click Add Volume, select hostPath, and mount the host

path to the corresponding container path.

Table 4-3 Mounting path

Storage
Type

Host Path Mounting Path

hostPath /var/run/docker.sock /var/run/docker.sock

hostPath /usr/bin/docker /usr/bin/docker

hostPath /usr/lib64/libltdl.so.7 /usr/lib/x86_64-linux-gnu/
libltdl.so.7

hostPath /usr/bin/kubectl /usr/local/bin/kubectl

After the mounting is complete, the page shown in Figure 4-4 is displayed.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Figure 4-4 Mounting the host paths to the corresponding container paths

3. In Security Context, set User ID to 0 (user root).

Figure 4-5 Configuring the user

Step 6 Specify the access mode in Service Configuration.

The Jenkins container image has two ports: 8080 and 50000. Configure them
separately. Port 8080 is used for web login, and port 50000 is used for the
connection between Master and Agent.

In this example, two Services are created:

● LoadBalancer: provides external web access using port 8080. You can also
select NodePort to provide external access.
Set the Service name to jenkins (customizable), the container port to 8080,
the access port to 8080, and retain the default values for other parameters.

● ClusterIP: used by the Agent to connect to the Master. The IP addresses of
jenkins-web and jenkins-agent need to be the same. Therefore, port 8080
for web access and port 50000 for agent access are included.
Set the Service name to agent (customizable), the container port 1 to 8080,
the access port 1 to 8080, the container port 2 to 50000, the access port 2 to
50000, and retain the default values for other parameters.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

NO TE

In this example, Agents and the Master are deployed in the same cluster. Therefore,
the Agents can use the ClusterIP Service to connect to the Master.

If Agents need to connect to the Master across clusters or through the public network,
select a proper Service type. Note that the IP addresses of Jenkins-web and Jenkins-
agent need to be the same. Therefore, ports 8080 and 50000 must be enabled for
the IP address connected to jenkins-agent. For addresses used only for web access,
enable only the port 8080.

Figure 4-6 Adding a Service

Step 7 Retain the default settings for Advanced Settings and click Create Workload.

Step 8 Click Back to Deployment List to view the Deployment status. If the workload is
in the Running status, the Jenkins application is accessible.

----End

Logging In and Initializing Jenkins

Step 1 On the CCE console, click the name of the target cluster to access the cluster
console. Choose Services & Ingresses in the navigation pane. On the Services tab,
view the Jenkins access mode.

Figure 4-7 Access mode corresponding to port 8080

Step 2 Enter EIP:8080 of the load balancer in the browser address box to visit the Jenkins
configuration page.

When you visit the page for the first time, you are prompted to obtain the initial
administrator password. You can obtain the password from the Jenkins pod. Before
running the following commands, connect to the cluster using kubectl. For details,
see Connecting to a Cluster Using kubectl.

kubectl get pod -n cicd
NAME READY STATUS RESTARTS AGE
jenkins-7c69b6947c-5gvlm 1/1 Running 0 17m
kubectl exec -it jenkins-7c69b6947c-5gvlm -n cicd -- /bin/sh
cat /var/jenkins_home/secrets/initialAdminPassword
b10eabe29a9f427c9b54c01a9c3383ae

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

Step 3 The system prompts you to select the default recommended add-on and create an
administrator upon the first login. After the initial configuration is complete, the
Jenkins page is displayed.

----End

Modifying the Number of Concurrent Build Jobs

Step 1 On the Jenkins dashboard page, click Manage Jenkins on the left, choose System
Configuration > Manage nodes and clouds, and select Configure from the drop-
down list of the target node.

NO TE

● You can modify the number of concurrent build jobs on both Master and Agent. The
following uses Master as an example.

● If the Master is used with Agents, you are advised to set the number of concurrent
build jobs of Master to 0. That is, all build jobs are performed using Agents. If a single
Master is used, you do not need to change the value to 0.

Step 2 Modify the maximum number of concurrent build jobs. In this example, the value
is changed to 2. You can change the value as required.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

----End

4.1.3.2 Configuring Jenkins Agent
After Jenkins is installed, the following information may display, indicating that
Jenkins uses a Master for local build and Agents are not configured.

If you install Jenkins using a Master, you can build a pipeline after performing
operations in Installing and Deploying Jenkins Master. For details, see Using
Jenkins to Build a Pipeline.

If you install Jenkins using a Master and Agents, you can select either of the
following solutions to configure Agents.

● Fixed Agent: The Agent container keeps running and occupying cluster
resources after a job is built. This configuration is simple.

● Dynamic Agent: An Agent container is dynamically created during job build
and is killed after the job is built. In this way, resources can be dynamically
allocated and the resource utilization is high. This configuration is complex.

In this section, the Agent is containerized using the jenkins/inbound-
agent:4.13.3-1 image.

Adding a Fixed Agent to Jenkins

Step 1 Log in to the Jenkins dashboard, click Manage Jenkins on the left, and choose
System Configuration > Manage nodes and clouds.

Step 2 Click New Node on the left, enter the node name fixed-agent (which can be
customized), and select Permanent Agent for Type.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Step 3 Specify the following node information:
● Number of executors: The default value is 1. Set this parameter as required.
● Remote root directory: Enter /home/jenkins/agent.
● Launch method: Select Launch agent by connecting it to the controller.

Retain the values for other parameters and click Save.

Step 4 In the Nodes page, click the new node. The Agent status is disconnected, and the
method for connecting the node to Jenkins is provided. This command applies to
VM installation. In this example, container-based installation is used. Therefore,
you only need to copy the secret, as shown in the following figure.

Step 5 Log in to the CCE console, click the target cluster. Choose Workloads >
Deployments and click Create Workload on the right.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Step 6 Configure basic workload parameters.
● Workload Name: agent (user-defined)
● Namespace: Select the namespace where Jenkins will be deployed. You can

create a namespace.
● Pods: Set it to 1.

Step 7 Configure basic container parameters.
● Image Name: Enter jenkins/inbound-agent:4.13.3-1. The image version may

change with time. Select an image version as required or use the latest
version.

● CPU Quota: In this example, set Limit to 2 cores.
● Memory Quota: Set Limit to 2048 MiB.
● Privileged Container: must be enabled so that the container can obtain

permissions on the host. Otherwise, Docker commands cannot be executed in
the container.

Retain the default values for other parameters.

Step 8 Run the following commands to configure the environment variables:
● JENKINS_URL: Jenkins access path, which should be the address of port 8080

configured in Step 6. (Both ports 8080 and 50000 must be enabled.) In this
example, the cluster IP address and port 8080 and cluster IP address and port
50000 are used, for example, http://10.247.222.254:8080.

● JENKINS_AGENT_NAME: name of the Agent set in Step 2. In this example,
the value is fixed-agent.

● JENKINS_SECRET: secret copied from Step 4.
● JENKINS_AGENT_WORKDIR: remote work directory configured in Step 3,

that is, /home/jenkins/agent.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Step 9 Add permissions to the Jenkins container so that Docker commands can be
executed in the Jenkins container.

1. Ensure that Privileged Container is enabled in 3.

2. Click Data Storage, click Add Volume, select hostPath, and mount the host
path to the corresponding container path.

Table 4-4 Mounting path

Storage
Type

Host Path Mounting Path

hostPath /var/run/docker.sock /var/run/docker.sock

hostPath /usr/bin/docker /usr/bin/docker

hostPath /usr/lib64/libltdl.so.7 /usr/lib/x86_64-linux-gnu/
libltdl.so.7

hostPath /usr/bin/kubectl /usr/local/bin/kubectl

After the mounting is complete, the page shown in Figure 4-8 is displayed.

Figure 4-8 Mounting the host paths to the corresponding container paths

3. In Security Context, set User ID to 0 (user root).

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Figure 4-9 Configuring the user

Step 10 Retain the default settings for Advanced Settings and click Create Workload.

Step 11 Go to the Jenkins page and refresh the node status to In sync.

NO TE

After the Agent is configured, you are advised to set the number of concurrent build jobs of
the Master to 0. That is, you use the Agent for build. For details, see Modifying the
Number of Concurrent Build Jobs.

----End

Setting a Dynamic Agent for Jenkins

Step 1 Install the plug-in.

On the Jenkins dashboard page, click Manage Jenkins on the left and choose
System Configuration > Manage Plugins. On the Available tab, search for
Kubernetes and install Kubernetes CLI and Kubernetes.

The plug-in version may change with time. Select a plug-in version as required.

● Kubernetes Plugin: 3734.v562b_b_a_627ea_c

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

https://plugins.jenkins.io/kubernetes/

It is used to run dynamic Agents in the Kubernetes cluster, create a
Kubernetes pod for each started Agent, and stop the pod after each build is
complete.

● Kubernetes CLI Plugin: 1.10.3
kubectl can be configured for jobs to interact with Kubernetes clusters.

NO TE

The Jenkins plugins are provided by the plugin maintainer and may be iterated due to
security risks.

Step 2 Add cluster access credentials to Jenkins.

Add cluster access credentials to Jenkins in advance. For details, see Setting
Cluster Access Credentials.

Step 3 Configure basic cluster information.

On the Jenkins dashboard page, click Manage Jenkins on the left and choose
System Configuration > Manage nodes and clouds. Click Configure Clouds on
the left to configure the cluster. Click Add a new cloud and select Kubernetes.
The cluster name can be customized.

Step 4 Enter Kubernetes Cloud details.

Set the following cluster parameters and retain the values for other parameters, as
shown in Figure 4-10.
● Kubernetes URL: cluster API server address. You can enter https://

kubernetes.default.svc.cluster.local:443.
● Credentials: Select the cluster credential added in Step 2. You can click Test

Connection to check whether the cluster is connected.
● Jenkins URL: Jenkins access path. Enter the IP address of port 8080 set in

Step 6 (ports 8080 and 50000 must be enabled for the IP address, that is,
the intra-cluster access address), for example, http://10.247.222.254:8080.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

https://plugins.jenkins.io/kubernetes-cli/

Figure 4-10 Example

Step 5 Pod Template: Click Add Pod Template > Pod Template details and set pod
template parameters.
● Set the basic parameters of the pod template, as shown in Figure 4-11.

– Name: jenkins-agent
– Namespace: cicd
– Labels: jenkins-agent
– Usage: Select Use this node as much as possible.

Figure 4-11 Basic parameters of the pod template

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

● Add a container. Click Add Container > Container Template. Figure 4-12
shows the parameters.
– Name: The value must be jnlp.
– Docker image: jenkins/inbound-agent:4.13.3-1. The image version may

change with time. Select an image version as required or use the latest
version.

– Working directory: /home/jenkins/agent is selected by default.
– Command to run/Arguments to pass to the command: Delete the

existing default value and leave these two parameters empty.
– Allocate pseudo-TTY: Select this parameter.
– Select Run in privileged mode and set Run As User ID to 0 (root user).

Figure 4-12 Container template parameters

● Add a volume: Choose Add Volume > Host Path Volume to mount the host
path in Table 4-5 to the corresponding path of the container.

Table 4-5 Mounting path

Storage
Type

Host Path Mounting Path

hostPath /var/run/docker.sock /var/run/docker.sock

hostPath /usr/bin/docker /usr/bin/docker

hostPath /usr/lib64/libltdl.so.7 /usr/lib/x86_64-linux-gnu/
libltdl.so.7

hostPath /usr/bin/kubectl /usr/local/bin/kubectl

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

After the mounting is complete, the page shown in Figure 4-13 is displayed.

Figure 4-13 Mounting the host paths to the corresponding container paths

● Run As User ID: 0 (root user)
● Workspace Volume: working directory of the agent. Persistence is

recommended. Select Host Path Workspace Volume and set Host path to /
home/jenkins/agent.

Step 6 Click Save.

NO TE

After the Agent is configured, you are advised to set the number of concurrent build jobs of
the Master to 0. That is, you use the Agent for build. For details, see Modifying the
Number of Concurrent Build Jobs.

----End

Setting Cluster Access Credentials

The certificate file that can be identified in Jenkins is in PKCS#12 format.
Therefore, convert the cluster certificate to a PFX certificate file in PKCS#12
format.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
Choose Overview in the navigation pane. On the page displayed, locate the
Connection Information area, and download the cluster certificate. The
certificate contains ca.crt, client.crt, and client.key files.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Step 2 Log in to a Linux host, place the three certificate files in the same directory, and
use OpenSSL to convert the certificate into a cert.pfx certificate. After the
certificate is generated, the system prompts you to enter a custom password.
openssl pkcs12 -export -out cert.pfx -inkey client.key -in client.crt -certfile ca.crt

Step 3 On the Jenkins console, choose Manage Jenkins > Manage Credentials and click
Global. You can also create a domain.

Step 4 Click Add Credential.
● Kind: Select Certificate.
● Scope: Select Global.
● Certificate: Select Upload PKCS#12 certificate and upload the cert.pfx file

generated in Step 2.
● Password: The password customized during cert.pfx conversion.
● ID: Set this parameter to k8s-test-cert, which can be customized.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

----End

4.1.3.3 Using Jenkins to Build a Pipeline

Obtaining a Long-Term Valid Login Command
During Jenkins installation and deployment, the Docker commands have been
configured in the container (see 9). Therefore, no additional configuration is
required for interconnecting Jenkins with SWR. You can directly run the Docker
commands. You only need to obtain a long-term valid SWR login command. For
details, see Obtaining a Long-Term Valid Login Command.

For example, the command of this account is as follows:

docker login -u ap-southeast-1@xxxxx -p xxxxx swr.ap-southeast-1.myhuaweicloud.com

Creating a Pipeline to Build and Push Images
In this example, Jenkins is used to build a pipeline to pull code from the code
repository, package the code into an image, and push the image to SWR.

The pipeline creation procedure is as follows:

Step 1 Click New Item on the Jenkins page.

Step 2 Enter a task name and select Create Pipeline.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

Step 3 Configure only the pipeline script.

The following pipeline scripts are for reference only. You can customize the script.
For details about the syntax, see Pipeline.

Some parameters in the example need to be modified:

● git_url: Address of your code repository. Replace it with the actual address.

● swr_login: The login command obtained in Obtaining a Long-Term Valid
Login Command.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

https://www.jenkins.io/doc/book/pipeline/

● swr_region: SWR region.
● organization: The actual organization name in SWR.
● build_name: Name of the created image.
● credential: The cluster credential added to Jenkins. Enter the credential ID. If

you want to deploy the service in another cluster, add the access credential of
the cluster to Jenkins again. For details, see Setting Cluster Access
Credentials.

● apiserver: IP address of the API server where the application cluster is
deployed. Ensure that the IP address can be accessed from the Jenkins cluster.

//Define the code repository address.
def git_url = 'https://github.com/lookforstar/jenkins-demo.git'
//Define the SWR login command.

//Define the SWR region.
def swr_region = 'ap-southeast-1'
//Define the name of the SWR organization to be uploaded.
def organization = 'container'
//Define the image name.
def build_name = 'jenkins-demo'
//Certificate ID of the cluster to be deployed
def credential = 'k8s-token'
//API server address of the cluster. Ensure that the address can be accessed from the Jenkins cluster.
def apiserver = 'https://192.168.0.100:6443'

pipeline {
 agent any
 stages {
 stage('Clone') {
 steps{
 echo "1.Clone Stage"
 git url: git_url
 script {
 build_tag = sh(returnStdout: true, script: 'git rev-parse --short HEAD').trim()
 }
 }
 }
 stage('Test') {
 steps{
 echo "2.Test Stage"
 }
 }
 stage('Build') {
 steps{
 echo "3.Build Docker Image Stage"
 sh "docker build -t swr.${swr_region}.myhuaweicloud.com/${organization}/${build_name}:$
{build_tag} ."
 //${build_tag} indicates that the build_tag variable is obtained as the image tag. It is the return
value of the git rev-parse --short HEAD command, that is, commit ID.
 }
 }
 stage('Push') {
 steps{
 echo "4.Push Docker Image Stage"
 sh swr_login
 sh "docker push swr.${swr_region}.myhuaweicloud.com/${organization}/${build_name}:$
{build_tag}"
 }
 }
 stage('Deploy') {
 steps{
 echo "5. Deploy Stage"
 echo "This is a deploy step to test"
 script {
 sh "cat k8s.yaml"
 echo "begin to config kubenetes"

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

 try {
 withKubeConfig([credentialsId: credential, serverUrl: apiserver]) {
 sh 'kubectl apply -f k8s.yaml'
 //The YAML file is stored in the code repository. The following is only an example. Replace
it as required.
 }
 println "hooray, success"
 } catch (e) {
 println "oh no! Deployment failed! "
 println e
 }
 }
 }
 }
 }
}

Step 4 Save the settings and execute the Jenkins job.

----End

4.1.3.4 Interconnecting Jenkins with RBAC of Kubernetes Clusters (Example)

Prerequisites
RBAC must be enabled for the cluster.

Scenario 1: Namespace-based Permissions Control
Create a service account and a role, and add a RoleBinding.

kubectl create ns dev
kubectl -n dev create sa dev

cat <<EOF > dev-user-role.yml
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: dev
 name: dev-user-pod
rules:
- apiGroups: ["*"]
 resources: ["deployments", "pods", "pods/log"]
 verbs: ["get", "watch", "list", "update", "create", "delete"]
EOF
kubectl create -f dev-user-role.yml

kubectl create rolebinding dev-view-pod \
 --role=dev-user-pod \
 --serviceaccount=dev:dev \
 --namespace=dev

Generate the kubeconfig file of a specified service account.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

NO TE

● In clusters earlier than v1.21, a token is obtained by mounting the secret of the service
account to a pod. Tokens obtained this way are permanent. This approach is no longer
recommended starting from version 1.21. Service accounts will stop auto creating
secrets in clusters from version 1.25.
In clusters of version 1.21 or later, you can use the TokenRequest API to obtain the
token and use the projected volume to mount the token to the pod. Such tokens are
valid for a fixed period. When the mounting pod is deleted, the token automatically
becomes invalid. For details, see Service Account Token Security Improvement.

● If you need a token that never expires, you can also manually manage secrets for
service accounts. Although a permanent service account token can be manually
created, you are advised to use a short-lived token by calling the TokenRequest API for
higher security.

Because the cluster version used in this case is v1.25, the ServiceAccount will not
have a secret created automatically. This example shows how to manually create a
secret named dev-secret and associate it with the ServiceAccount named dev.

NO TICE

The manually created secret must be in the same namespace as the
ServiceAccount to be associated with. Otherwise, the creation may fail.

kubectl apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 namespace: dev # Namespace
 name: dev-secret
 annotations:
 kubernetes.io/service-account.name: dev
type: kubernetes.io/service-account-token
EOF

Check whether dev-secret has been created. If dev-secret is present in secrets of
the dev namespace, then it has been created.

kubectl get secrets -n dev
NAME TYPE DATA AGE
default-secret kubernetes.io/dockerconfigjson 1 2d22h
dev-secret kubernetes.io/service-account-token 3 4h14m
paas.elb cfe/secure-opaque 1 2d22h

Generate a kubeconfig file using dev-secret.

API_SERVER="https://172.22.132.51:6443"
CA_CERT=$(kubectl -n dev get secret dev-secret -o yaml | awk '/ca.crt:/{print $2}')
cat <<EOF > dev.conf
apiVersion: v1
kind: Config
clusters:
- cluster:
 certificate-authority-data: $CA_CERT
 server: $API_SERVER
 name: cluster
EOF

TOKEN=$(kubectl -n dev get secret dev-secret -o go-template='{{.data.token}}')
kubectl config set-credentials dev-user \
 --token=`echo ${TOKEN} | base64 -d` \
 --kubeconfig=dev.conf

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0477.html
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

kubectl config set-context default \
 --cluster=cluster \
 --user=dev-user \
 --kubeconfig=dev.conf

kubectl config use-context default \
 --kubeconfig=dev.conf

Verify the configuration.

kubectl --kubeconfig=dev.conf get po
Error from server (Forbidden): pods is forbidden: User "system:serviceaccount:dev:dev" cannot list pods in
the namespace "default"

kubectl -n dev --kubeconfig=dev.conf run nginx --image nginx --port 80 --restart=Never
kubectl -n dev --kubeconfig=dev.conf get po
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 39s

Verify whether the permissions meet the expectation in Jenkins.

Step 1 Add the kubeconfig file with permissions control settings to Jenkins.

Step 2 Start the Jenkins job. In this example, Jenkins fails to be deployed in namespace
default but is successfully deployed in namespace dev.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

----End

Scenario 2: Resource-based Permissions Control

Step 1 Generate the service account, role, and binding.
kubectl -n dev create sa sa-test0304

cat <<EOF > test0304-role.yml
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: dev
 name: role-test0304
rules:
- apiGroups: ["*"]
 resources: ["deployments"]
 resourceNames: ["tomcat03", "tomcat04"]
 verbs: ["get", "update", "patch"]
EOF
kubectl create -f test0304-role.yml

kubectl create rolebinding test0304-bind \
 --role=role-test0304 \
 --serviceaccount=dev:sa-test0304\
 --namespace=dev

Step 2 Generate a kubeconfig file.

NO TE

● In clusters earlier than v1.21, a token is obtained by mounting the secret of the service
account to a pod. Tokens obtained this way are permanent. This approach is no longer
recommended starting from version 1.21. Service accounts will stop auto creating
secrets in clusters from version 1.25.

In clusters of version 1.21 or later, you can use the TokenRequest API to obtain the
token and use the projected volume to mount the token to the pod. Such tokens are
valid for a fixed period. When the mounting pod is deleted, the token automatically
becomes invalid. For details, see Service Account Token Security Improvement.

● If you need a token that never expires, you can also manually manage secrets for
service accounts. Although a permanent service account token can be manually
created, you are advised to use a short-lived token by calling the TokenRequest API for
higher security.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0477.html
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

Because the cluster version used in this case is v1.25, the ServiceAccount will not
have a secret created automatically. This example shows how to manually create a
secret named test-secret and associate it with the ServiceAccount named sa-
test0304.

kubectl apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 namespace: dev
 name: test-secret
 annotations:
 kubernetes.io/service-account.name: sa-test0304
type: kubernetes.io/service-account-token
EOF

Check whether test-secret has been created. If test-secret is present in secrets of
the dev namespace, then it has been created.

kubectl get secrets -n dev
NAME TYPE DATA AGE
default-secret kubernetes.io/dockerconfigjson 1 2d22h
dev-secret kubernetes.io/service-account-token 3 4h14m
paas.elb cfe/secure-opaque 1 2d22h
test-secret kubernetes.io/service-account-token 3 25m

Generate a kubeconfig file using test-secret.

API_SERVER=" https://192.168.0.153:5443"
CA_CERT=$(kubectl -n dev get secret test-secret -o yaml | awk '/ca.crt:/{print $2}')
cat <<EOF > test0304.conf
apiVersion: v1
kind: Config
clusters:
- cluster:
 certificate-authority-data: $CA_CERT
 server: $API_SERVER
 name: cluster
EOF

TOKEN=$(kubectl -n dev get secret test-secret -o go-template='{{.data.token}}')
kubectl config set-credentials test0304-user \
 --token=`echo ${TOKEN} | base64 -d` \
 --kubeconfig=test0304.conf

kubectl config set-context default \
 --cluster=cluster \
 --user=test0304-user \
 --kubeconfig=test0304.conf

kubectl config use-context default \
 --kubeconfig=test0304.conf

Step 3 Verify that Jenkins is running as expected.

In the pipeline script, update the Deployments of tomcat03, tomcat04, and
tomcat05 in sequence.

 try {
 kubernetesDeploy(
 kubeconfigId: "test0304",
 configs: "test03.yaml")
 println "hooray, success"
 } catch (e) {
 println "oh no! Deployment failed! "
 println e
 }
 echo "test04"

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

 try {
 kubernetesDeploy(
 kubeconfigId: "test0304",
 configs: "test04.yaml")
 println "hooray, success"
 } catch (e) {
 println "oh no! Deployment failed! "
 println e
 }
 echo "test05"
 try {
 kubernetesDeploy(
 kubeconfigId: "test0304",
 configs: "test05.yaml")
 println "hooray, success"
 } catch (e) {
 println "oh no! Deployment failed! "
 println e
 }

The following shows examples of the running results.

Figure 4-14 test03

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Figure 4-15 test04

----End

4.2 Interconnecting GitLab with SWR and CCE for
CI/CD

Background
GitLab is an open-source version management system developed with Ruby on
Rails for Git project repository management. It supports web-based access to
public and private projects. Similar to GitHub, GitLab allows you to browse source
code, manage bugs and comments, and control team member access to
repositories. You will find it very easy to view committed versions and file history
database. Team members can communicate with each other using the built-in
chat program (Wall).

GitLab provides powerful CI/CD functions and is widely used in software
development.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Figure 4-16 GitLab CI/CD process

This section describes how to interconnect GitLab with SWR and CCE for CI/CD.

Preparations
1. Create a CCE cluster and a node and bind an EIP to the node for downloading

an image during GitLab Runner installation.
2. Download and configure kubectl to connect to the cluster.

Log in to the CCE console and click the cluster name to access the cluster
console. In the navigation pane, choose Overview, locate the Connection
Information area, click Configure next to kubectl, and configure kubectl as
instructed.

3. Install Helm 3.

Installing GitLab Runner

Log in to GitLab, choose Settings > CI/CD in the project view, click Expand next
to Runners, and search for the GitLab Runner registration URL and token.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://helm.sh/docs/intro/install/
https://www.gitlab.com/

Create the values.yaml file and fill in the following information:

Registration URL
gitlabUrl: https://gitlab.com/
Registration token
runnerRegistrationToken: "******"
rbac:
 create: true
runners:
 privileged: true

Create a GitLab namespace.

kubectl create namespace gitlab

Install GitLab Runner using Helm.

helm repo add gitlab https://charts.gitlab.io
helm install --namespace gitlab gitlab-runner -f values.yaml gitlab/gitlab-runner --version=0.43.1

After the installation, you can obtain the gitlab-runner workload on the CCE
console and view the connection information in GitLab later.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Creating an Application
Place the application to be created in the GitLab project repository. This section
takes Nginx modification as an example. For details, visit https://gitlab.com/
c8147/cidemo/-/tree/main.

The following files are included:

● .gitlab-ci.yml: Gitlab CI file, which will be described in detail in Creating a
Pipeline.

● Dockerfile: used to build Docker images.
● index.html: used to replace the index page of Nginx.
● k8s.yaml: used to deploy the Nginx app. A Deployment named nginx-test

and a Service named nginx-test will be created.

The preceding files are only examples. You can replace or modify them
accordingly.

Configuring Global Variables
When using pipelines, build an image, upload it to SWR, and run kubectl
commands to deploy the image in the cluster. Before performing these operations,
you must log in to SWR and obtain the credential for connecting to the cluster.
You can define the information as variables in GitLab.

Log in to GitLab, choose Settings > CI/CD in the project view, and click Expand
next to Variables to add variables.

● kube_config
kubeconfig.json file used for kubectl command authentication. Run the
following command on the host where kubectl is configured to convert the
file to the Base64 format:
echo $(cat ~/.kube/config | base64) | tr -d " "
The command output is the content of kubeconfig.json.

● project: project name.
Log in to the management console, hover the cursor on your username in the
upper right corner, and choose My Credentials. In the Projects area on the
API Credentials page, check the name of the project in your current region.

● swr_ak: access key.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://gitlab.com/c8147/cidemo/-/tree/main
https://gitlab.com/c8147/cidemo/-/tree/main
https://www.gitlab.com/

Log in to the management console, hover the cursor on your username in the
upper right corner, and choose My Credentials. In the navigation pane,
choose Access Keys. Click Create Access Key, enter the description, and click
OK. In the displayed Information dialog box, click Download. After the
certificate is downloaded, obtain the AK and SK information from the
credentials file.

● swr_sk: secret key for logging in to SWR.
Run the following command to obtain the key pair. Replace $AK and $SK with
the AK and SK obtained in the preceding steps.
printf "$AK" | openssl dgst -binary -sha256 -hmac "$SK" | od -An -vtx1 |
sed 's/[\n]//g' | sed 'N;s/\n//'
The command output displays the login key pair.

Creating a Pipeline
Log in to Gitlab and add the .gitlab-ci.yml file to Repository.

The content is as follows:

Define pipeline stages, including package, build, and deploy.
stages:
 - package
 - build
 - deploy
If no image is specified in each stage, the default image docker:latest is used.
image: swr.ap-southeast-3.myhuaweicloud.com/container/docker:latest
In the package stage, only printing is performed.
package:
 stage: package
 script:
 - echo "package"
In the build stage, the Docker-in-Docker mode is used.
build:
 stage: build
 # Define environment variables for the build stage.
 variables:
 DOCKER_HOST: tcp://docker:2375
 # Define the image for running Docker-in-Docker.
 services:
 - docker:18.09-dind
 script:
 - echo "build"
 # Log in to SWR.
 - docker login -u $project@$swr_ak -p $swr_sk swr.ap-southeast-3.myhuaweicloud.com
 # Build an image. k8s-dev is the organization name in SWR. Replace it to the actual name.
 - docker build -t swr.ap-southeast-3.myhuaweicloud.com/k8s-dev/nginx:$CI_PIPELINE_ID .
 # Push the image to SWR.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://www.gitlab.com/

 - docker push swr.ap-southeast-3.myhuaweicloud.com/k8s-dev/nginx:$CI_PIPELINE_ID
deploy:
 # Use the kubectl image.
 image:
 name: swr.ap-southeast-3.myhuaweicloud.com/container/kubectl:latest
 entrypoint: [""]
 stage: deploy
 script:
 # Configure the kubeconfig file.
 - mkdir -p $HOME/.kube
 - export KUBECONFIG=$HOME/.kube/config
 - echo $kube_config |base64 -d > $KUBECONFIG
 # Replace the image in the k8s.yaml file.
 - sed -i "s/<IMAGE_NAME>/swr.ap-southeast-3.myhuaweicloud.com\/k8s-dev\/nginx:$CI_PIPELINE_ID/g"
k8s.yaml
 - cat k8s.yaml
 # Deploy an application.
 - kubectl apply -f k8s.yaml

After the .gitlab-ci.yml file is saved, the pipeline is started immediately. You can
view the pipeline execution status in GitLab.

Verifying Deployment

After the pipeline is deployed, locate the nginx-test Service on the CCE console,
query its access address, and run the curl command to access the Service.

curl xxx.xxx.xxx.xxx:31111
Hello Gitlab!

If the preceding information is displayed, the deployment is correct.

Common Issues
● If the following problem occurs during the deployment:

Or

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Check whether the following commands are missing in the .gitlab-ci.yml file.
If yes, add them to the .gitlab-ci.yml file.
...
 script:
 # Configure the kubeconfig file.
 - mkdir -p $HOME/.kube
 - export KUBECONFIG=$HOME/.kube/config
 - echo $kube_config |base64 -d > $KUBECONFIG
 # Replace the image in the k8s.yaml file.
...

● If Docker cannot be executed, information similar to the following will display.

The privileged: true parameter fails to be transferred during GitLab Runner
installation. As a result, you do not have the permissions to run the Docker
command. To resolve this issue, find GitLab Runner in the workload list on the
CCE console, add the environment variable KUBERNETES_PRIVILEGED, and
set its value to true.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

4.3 Continuous Delivery Using Argo CD

Background

ArgoCD is a declarative, GitOps continuous delivery tool for Kubernetes. Argo CD
automates the deployment of applications to Kubernetes.

Figure 4-17 Argo CD workflow

This section describes how to interconnect ArgoCD with CCE to perform
continuous deployment.

Preparations
1. Create a CCE cluster and a node and bind an EIP to the node for downloading

an image during Argo CD installation.
2. Create an ECS, bind an EIP to the ECS, and download and configure kubectl to

connect to the cluster. For details, see Connecting to a Cluster Using
kubectl.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://github.com/argoproj/argo-cd
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

3. Prepare an application in the Git repository. This section uses the Nginx
sample application in the https://gitlab.com/c8147/examples.git repository.

Installing Argo CD

Step 1 Install the Argo CD server in the cluster.
kubectl create namespace argocd
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/v2.4.0/manifests/
install.yaml

Check whether the installation is successful. If all pods in the argocd namespace
are in the Running status, the installation is successful.

kubectl get pod -A
NAMESPACE NAME READY STATUS RESTARTS AGE
argocd argocd-application-controller-0 1/1 Running 0 8m32s
argocd argocd-applicationset-controller-789457b498-6n6l5 1/1 Running 0 8m32s
argocd argocd-dex-server-748bddb496-bxj2c 1/1 Running 0 8m32s
argocd argocd-notifications-controller-8668ffdd75-q7wdb 1/1 Running 0 8m32s
argocd argocd-redis-55d64cd8bf-g85np 1/1 Running 0 8m32s
argocd argocd-repo-server-778d695657-skprm 1/1 Running 0 8m32s
argocd argocd-server-59c9ccff4c-vd9ww 1/1 Running 0 8m32s

Run the following commands to change the Service type of argocd-server to
NodePort:

kubectl patch svc argocd-server -n argocd -p '{"spec": {"type": "NodePort"}}'
service/argocd-server patched

Check the result.

kubectl -n argocd get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
argocd-applicationset-controller ClusterIP 10.247.237.53 <none> 7000/TCP,8080/TCP
18m
argocd-dex-server ClusterIP 10.247.164.111 <none> 5556/TCP,5557/TCP,5558/TCP
18m
argocd-metrics ClusterIP 10.247.138.98 <none> 8082/TCP 18m
argocd-notifications-controller-metrics ClusterIP 10.247.239.85 <none> 9001/TCP
18m
argocd-redis ClusterIP 10.247.220.90 <none> 6379/TCP 18m
argocd-repo-server ClusterIP 10.247.1.142 <none> 8081/TCP,8084/TCP 18m
argocd-server NodePort 10.247.57.16 <none> 80:30118/TCP,443:31221/TCP
18m
argocd-server-metrics ClusterIP 10.247.206.190 <none> 8083/TCP 18m

To access Argo CD using the argocd-server Service, use Node IP:Port number. In
this example, the port number is 31221.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

https://gitlab.com/c8147/examples.git

The login username is admin, and the password can be obtained by running the
following command:

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}" | base64 -d;echo

Step 2 Install the Argo CD client on the ECS.
wget https://github.com/argoproj/argo-cd/releases/download/v2.4.0/argocd-linux-amd64
cp argocd-linux-amd64 /usr/local/bin/argocd
chmod +x /usr/local/bin/argocd

Run the following commands. If the following information is displayed, the
installation is successful.

argocd version
argocd: v2.4.0+91aefab
 BuildDate: 2022-06-10T17:44:14Z
 GitCommit: 91aefabc5b213a258ddcfe04b8e69bb4a2dd2566
 GitTreeState: clean
 GoVersion: go1.18.3
 Compiler: gc
 Platform: linux/amd64
FATA[0000] Argo CD server address unspecified

----End

Deploying an Application Using Argo CD

Step 1 Add a CCE cluster to Argo CD.

1. Log in to an ECS.

2. Check the kubectl context configuration.
kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* internal internalCluster user

3. Log in to the Argo CD server. The username is admin. You can obtain the
server IP address and password from Step 1. If the ECS and the cluster are in
the same VPC, the node IP address can be a private IP address.
argocd login <Node IP address:Port number> --username admin --password <password>

Information similar to the following is displayed:
argocd login 192.168.0.52:31221 --username admin --password ******
WARNING: server certificate had error: x509: cannot validate certificate for 192.168.0.52 because it
doesn't contain any IP SANs. Proceed insecurely (y/n)? y
'admin:login' logged in successfully
Context '192.168.0.52:31221' updated

4. Add a CCE cluster.
argocd cluster add internal --kubeconfig /root/.kube/config --name argocd-01

In the preceding command, internal is the context name queried in Step
1.2, /root/.kube/config is the path of the kubectl configuration file, and
argocd-01 is the cluster name defined in Argo CD.

Information similar to the following is displayed:
WARNING: This will create a service account `argocd-manager` on the cluster referenced by context
`internal` with full cluster level privileges. Do you want to continue [y/N]? y
INFO[0002] ServiceAccount "argocd-manager" already exists in namespace "kube-system"
INFO[0002] ClusterRole "argocd-manager-role" updated
INFO[0002] ClusterRoleBinding "argocd-manager-role-binding" updated
Cluster "https://192.168.0.113:5443"" added

Log in to the Argo CD page. You can see that the connection is successful.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Step 2 Connect to the Git repository.
argocd repo add https://gitlab.com/c8147/examples.git --username <username> --password
<password>

In the preceding command, https://gitlab.com/c8147/examples.git indicates the
repository address, and <username> and <password> indicate the repository
login username and password. Replace them with the actual values.

Information similar to the following is displayed:
Repository 'https://gitlab.com/c8147/cidemo.git' added

Log in to the Argo CD page. You can see that the cluster has been added.

Step 3 Add an application to Argo CD.
argocd app create nginx --repo https://gitlab.com/c8147/examples.git --path nginx --dest-server
https://192.168.0.113:5443 --dest-namespace default

https://gitlab.com/c8147/examples.git indicates the repository address, nginx
indicates the repository path, https://192.168.0.113:5443 indicates the address of
the cluster to be deployed, and default indicates the namespace.

In this example, the nginx directory in the GitLab repository contains a YAML file
of the Nginx application. The file includes a Deployment and a Service.

After the application is created, you can view its details.
argocd app list
NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH SYNCPOLICY CONDITIONS
REPO PATH TARGET
nginx https://192.168.0.113:5443 default default OutOfSync Missing <none> <none> https://
gitlab.com/c8147/examples.git nginx

Log in to the Argo CD page. You can see that the application has been added.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Step 4 Synchronize the application.

Synchronize the application and deploy it on a specified cluster. Run the following
commands:

argocd app sync nginx
TIMESTAMP GROUP KIND NAMESPACE NAME STATUS HEALTH
HOOK MESSAGE
2022-10-24T12:15:10+08:00 Service default nginx OutOfSync Missing
2022-10-24T12:15:10+08:00 apps Deployment default nginx OutOfSync Missing
2022-10-24T12:15:10+08:00 Service default nginx Synced Healthy
2022-10-24T12:15:10+08:00 Service default nginx Synced Healthy service/
nginx created
2022-10-24T12:15:10+08:00 apps Deployment default nginx OutOfSync Missing
deployment.apps/nginx created
2022-10-24T12:15:10+08:00 apps Deployment default nginx Synced Progressing
deployment.apps/nginx created

Name: nginx
Project: default
Server: https://192.168.0.113:5443
Namespace: default
URL: https://192.168.0.178:32459/applications/nginx
Repo: https://gitlab.com/c8147/examples.git
Target:
Path: nginx
SyncWindow: Sync Allowed
Sync Policy: <none>
Sync Status: Synced to (dd15906)
Health Status: Progressing

Operation: Sync
Sync Revision: dd1590679856bd9288036847bdc4a5556c169267
Phase: Succeeded
Start: 2022-10-24 12:15:10 +0800 CST
Finished: 2022-10-24 12:15:10 +0800 CST
Duration: 0s
Message: successfully synced (all tasks run)

GROUP KIND NAMESPACE NAME STATUS HEALTH HOOK MESSAGE
 Service default nginx Synced Healthy service/nginx created
apps Deployment default nginx Synced Progressing deployment.apps/nginx created

You can see that an Nginx workload and a Service are deployed in a CCE cluster.

kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 2m47s
kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 5h12m
nginx ClusterIP 10.247.177.24 <none> 80/TCP 2m52s

Log in to the Argo CD page. You can see that the application status has changed
to Synced.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

----End

Using Argo Rollouts for Grayscale Release
Argo Rollouts is a Kubernetes controller that provides advanced deployment
capabilities such as blue-green, grayscale (canary) release, and progressive
delivery.

Step 1 Install an argo-rollouts server in the cluster.
kubectl create namespace argo-rollouts
kubectl apply -f https://github.com/argoproj/argo-rollouts/releases/download/v1.2.2/install.yaml -n argo-
rollouts

NO TE

If the application is deployed in multiple clusters, install the argo-rollouts server in each
target cluster.

Step 2 Install the kubectl add-on of argo-rollouts on the ECS.
curl -LO https://github.com/argoproj/argo-rollouts/releases/download/v1.2.2/kubectl-argo-rollouts-linux-
amd64
chmod +x ./kubectl-argo-rollouts-linux-amd64
sudo mv ./kubectl-argo-rollouts-linux-amd64 /usr/local/bin/kubectl-argo-rollouts

Run the following commands to check whether the add-on has been installed:

kubectl argo rollouts version
kubectl-argo-rollouts: v1.2.2+22aff27
 BuildDate: 2022-07-26T17:24:43Z
 GitCommit: 22aff273bf95646e0cd02555fbe7d2da0f903316
 GitTreeState: clean
 GoVersion: go1.17.6
 Compiler: gc
 Platform: linux/amd64

Step 3 Prepare two sample Nginx application images whose versions are v1 and v2,
respectively. The welcome pages are displayed as "nginx:v1!" and "nginx:v2!",
respectively.

Create a Dockerfile. The content of the Dockerfile for v1 is as follows. For v2,
replace nginx:v1! with nginx:v2!.
FROM nginx:latest
RUN echo '<h1>nginx:v1!</h1>' > /usr/share/nginx/html/index.html

Create a v1 image.

docker build -t nginx:v1 .

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

https://github.com/argoproj/argo-rollouts

Log in to SWR and push the image to SWR. For details, see Uploading an Image
Through a Container Engine Client. During the push, container indicates the
organization name in SWR. Set it as required.

docker login -u {region}@xxx -p xxx swr.{region}.myhuaweicloud.com
docker tag nginx:v1 swr.cn-east-3.myhuaweicloud.com/container/nginx:v1
docker push swr.cn-east-3.myhuaweicloud.com/container/nginx:v1

Create a v2 image and push it to SWR in the same way.

Step 4 Deploy an Argo Rollouts controller. In this example, the controller first shifts 20%
of all service traffic to the new version. Then, manually increase the traffic
proportion. After that, the controller automatically and gradually increases traffic
until the release is complete.

Create a file named rollout-canary.yaml:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: rollout-canary # Custom Rollout name
spec:
 replicas: 5 # Five replicas
 strategy: # Upgrade policy
 canary: # Grayscale (canary) release
 steps: # Release pace (duration can be set for each phase)
 - setWeight: 20 # Traffic weight
 - pause: {} # If this field is not specified, the release is paused.
 - setWeight: 40
 - pause: {duration: 10} # Pause duration, in seconds.
 - setWeight: 60
 - pause: {duration: 10}
 - setWeight: 80
 - pause: {duration: 10}
 revisionHistoryLimit: 2
 selector:
 matchLabels:
 app: rollout-canary
 template:
 metadata:
 labels:
 app: rollout-canary
 spec:
 containers:
 - name: rollout-canary
 image: swr.cn-east-3.myhuaweicloud.com/container/nginx:v1 # The pushed image, whose version is
v1.
 ports:
 - name: http
 containerPort: 80
 protocol: TCP
 resources:
 requests:
 memory: 32Mi
 cpu: 5m
 imagePullSecrets:
 - name: default-secret

apiVersion: v1
kind: Service
metadata:
 name: rollout-canary
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 nodePort: 31270 # The custom node port number

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html

 selector:
 app: rollout-canary

Run the following command to create the preceding two resource objects:

kubectl apply -f rollout-canary.yaml

NO TE

The Argo Rollouts controller does not trigger upgrade during initial creation and the
configured release policy does not take effect. Only the number of replicas increases to
100% immediately.

Step 5 Argo Rollouts visualizes the rollout process and related resource objects to display
real-time changes. You can run the get rollout --watch command to observe the
deployment process, for example:
kubectl argo rollouts get rollout rollout-canary --watch

In the preceding command, rollout-canary indicates the custom Rollout name.

Step 6 After the creation is complete, you can access the Nginx application using Node
EIP:Port number. The port number is specified in the Service resource in the
rollout-canary.yaml file. In this example, the port number is 31270.

Step 7 Use the v2 image to update the application.
kubectl argo rollouts set image rollout-canary rollout-canary=swr.cn-east-3.myhuaweicloud.com/
container/nginx:v2

The controller will update the application according to the update policy. In this
example, a 20% traffic weight is set in the first step, and the release is paused
until the user cancels or continues. You can run the following command to view
the detailed process. The release is paused.

kubectl argo rollouts get rollout rollout-canary --watch

You can view that only one of the five replicas runs the new version, that is, the
weight of 20% defined in setWeight: 20.

If you run the following command for multiple times, 20% of the response results
are the response of v2.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

for i in {1..10}; do curl <Node EIP:Port number>; done;

Verification result:
<h1>nginx:v2!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v1!</h1>
<h1>nginx:v2!</h1>
<h1>nginx:v1!</h1>

Step 8 Manually update the version.
kubectl argo rollouts promote rollout-canary

In this example, the remaining steps are fully automated until the release is
complete. Run the following command to view the detailed process. The controller
gradually switches all traffic to the new version.
kubectl argo rollouts get rollout rollout-canary --watch

Step 9 You can run the following command to use more Argo Rollouts functions, such as
terminating or rolling back a release:
kubectl argo rollouts --help

----End

4.4 Implementing Separate DevOps Processes for
Multiple Clusters Using Jenkins and GitLab

4.4.1 Solution Overview
DevOps is a set of processes, methods, and systems that promote close
communication, efficient collaboration, and integration between development
(applications or software engineering), technical operations, and quality assurance
(QA) departments. By using automatic software delivery and architecture change
processes, DevOps enables faster, more frequent, and more reliable planning,
development, build, tests, releases, deployment, and maintenance, resulting in
stable and reliable development outcomes. As microservices and middle-end
architectures continue to emerge, DevOps becomes increasingly crucial.

Solution Architecture
This solution uses GitLab and Jenkins to automate the building and continuous
deployment of containerized applications. GitLab handles source code

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

management and versioning, while Jenkins is responsible for building and
deploying the containerized applications. To maintain high isolation between the
production and testing environments, two separate Kubernetes clusters are used,
one for each environment.

The following shows an example of the complete process, starting from source
code compilation and image building, to application testing, production, and
rollout:

1. Create a Git repository in GitLab and associate it with Jenkins.
2. Create a build job in Jenkins and allow it to use the Git repository of GitLab.
3. In the build job, configure the compiler and build parameters so that the

source code can be obtained from the Git repository and compiled.
4. Push the compiled image to the SWR image repository.
5. Deploy the image in a Kubernetes cluster in the testing environment.
6. After the image passes the test and is approved, deploy it in a Kubernetes

cluster in the production environment.

Figure 4-18 Architecture

Solution Highlights
● The entire process, from code submission to deployment and rollout, is

automated, resulting in a significant improvement in delivery efficiency.
● Containerized applications are ready to use out-of-the-box, and they can be

reused at a low cost.
● To ensure that the testing and production environments operate

independently and do not interfere with each other, multiple Kubernetes
clusters are isolated.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

4.4.2 Resource Planning
In this example, you need to create a VPC, an ECS, a CCE cluster, and a VPC
peering connection. For details about the resource planning, see Table 4-6.

NO TE

The following resource planning details are only examples for your reference. You need to
plan resources based on actual service requirements.

Table 4-6 Resource and cost planning

Resource Description

VPC In this example, there are three VPCs, including the VPC
where the ECS resides and the VPC where the testing cluster
and production cluster reside. These VPCs are located in the
same region, and the subnet CIDR blocks of these VPCs do
not overlap.
● vpc-X: 192.168.0.0/16 (VPC where the ECS with GitLab

and Jenkins installed resides)
● vpc-A: 172.16.0.0/16 (VPC to which the testing cluster

resides)
● vpc-B: 172.17.0.0/16 (VPC where the production cluster

resides)

ECS In this example, there is one ECS located in vpc-X (with
CIDR block of 192.168.0.0/16).
● Node flavor: 4 vCPUs | 16 GiB
● OS: Huawei Cloud EulerOS 2.0
● EIP: An EIP is automatically created for the node to

access the public network and pull images.

CCE cluster In this example, there are two CCE clusters, including the
testing and production clusters.
The following lists some key parameter configurations. (You
can configure other parameters as required or use their
default values.)
● Cluster type: CCE Turbo cluster
● VPC: The testing cluster is located in vpc-A

(172.16.0.0/16), and the production cluster is located in
vpc-B (172.17.0.0/16).

● Actual number of nodes: 1 per cluster
● Node configurations:

– Node flavor: 4 vCPUs | 16 GiB
– OS: Huawei Cloud EulerOS 2.0
– EIP: An EIP is automatically created for the node to

access the public network and pull images.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Resource Description

VPC peering
connection

In this example, there are two VPC peering connections. The
network connection requirements are as follows:
● peer-XA: connects vpc-X to vpc-A.
● peer-XB: connects vpc-X to vpc-B.

4.4.3 Procedure

4.4.3.1 Setting Up the Jenkins and GitLab Environments

Prerequisites
● A new VPC has been created. In this example, the VPC is named vpc-X and

the CIDR block is 192.168.0.0/16.
● An ECS in vpc-X (with CIDR block of 192.168.0.0/16) has been created. The

recommended flavors for this ECS are 4 vCPUs and 16 GiB, and it runs Huawei
Cloud EulerOS 2.0. An EIP has been bound to the ECS to pull images from the
Internet.

Installing Docker of a Specified Version

Step 1 Log in to the ECS.

Step 2 Quickly install Docker of the latest version on the device running Huawei Cloud
EulerOS 2.0. You can also manually install Docker. For details, see Docker Engine
installation.
dnf install docker

Step 3 Check whether Docker is installed.
docker info

----End

Installing and Configuring GitLab

Step 1 Pull the GitLab image.
docker pull gitlab/gitlab-ce

Step 2 Run the container.
docker run -d -p 443:443 -p 80:80 -p 222:22 --name gitlab --restart always -v /home/gitlab/config:/etc/
gitlab -v /home/gitlab/logs:/var/log/gitlab -v /home/gitlab/data:/var/opt/gitlab gitlab/gitlab-ce

Step 3 Check the container status.
docker ps | grep gitlab

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/#server

Step 4 Configure gitlab.rb (with the node path of /home/gitlab/config/gitlab.rb).
GitLab generates a project URL based on the container's host name (that is, the
container ID) when a project is created. However, a fixed URL is required for the
GitLab server. To achieve this, you must configure gitlab.rb.

1. Run the vi command on the node to open /home/gitlab/config/gitlab.rb.
vi /home/gitlab/config/gitlab.rb

Add the following content to it:
external_url 'http://**.**.**.**' //External IP address of the node, for example, EIP
gitlab_rails['gitlab_ssh_host'] = '**.**.**.**' //External IP address of the node, for example, EIP
gitlab_rails['gitlab_shell_ssh_port'] = 222 //This port is mapped when the container is started. (222-
>22)

2. Save the changes.

Step 5 Restart the container.
docker restart gitlab

Step 6 Use a browser to access ECS EIP:80 and log in to the GitLab service.

The default username is root, and the initial login password is stored in the /etc/
gitlab/initial_root_password directory of the GitLab container.

You can run the following command to obtain the password:
docker exec gitlab cat /etc/gitlab/initial_root_password

----End

Installing and Configuring Jenkins

Step 1 Pull the Jenkins image.
docker pull jenkins/jenkins:lts

Step 2 Run the Jenkins container.

To execute commands like docker build within the container, the container must
have the capability of docker in docker (dind). This requires mounting docker.sock
and docker to the container.

docker run -d -p 8000:8080 -p 50000:50000 \
 -v /var/jenkins_home:/var/jenkins_home \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /usr/bin/docker:/usr/bin/docker \
 --name myjenkins --privileged=true -u root jenkins/jenkins:lts

Step 3 Test whether the docker command can be executed in the Jenkins container.
docker exec myjenkins docker ps

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

CA UTION

If the error message "docker: error while loading shared libraries: libltdl.so.7:
cannot open shared object file: No such file or directory" is displayed, run the
following command to address this issue:
docker exec myjenkins sh -c "apt-get update && apt-get install -y libltdl7"

Step 4 Use a browser to access ECS EIP:8000 and log in to the Jenkins service.

The default username is root, and the initial login password is stored in the /var/
jenkins_home/secrets/initialAdminPassword directory of the container.

You can run the following command to obtain the password:

docker exec myjenkins cat /var/jenkins_home/secrets/initialAdminPassword

Step 5 Install the recommended plugins.

After the initial configuration is complete, the Jenkins page is displayed.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Step 6 Install the kubectl command line tool.

1. Download kubectl to the local PC.
It is recommended that kubectl be of the same version as the cluster to be
used. For details, see kubectl.
wget https://dl.k8s.io/release/v*.*.*/bin/linux/amd64/kubectl // v*.*.* specifies the cluster version.

2. Copy kubectl to the Jenkins container.
docker cp kubectl myjenkins:/usr/bin/
docker exec myjenkins chmod +x /usr/bin/kubectl

Step 7 Configure Jenkins to obtain GitLab code without a password.

1. Obtain the SSH public key.
docker exec -it myjenkins ssh-keygen -t rsa

Press Enter to skip configuring other parameters.
You do not have to adjust the settings for parameters that are already set to
their default values.
Check the generated public key.
docker exec myjenkins cat /root/.ssh/id_rsa.pub

2. Search for SSH in GitLab and add a new key.

3. Enter an SSH public key.

4. Save the SSH key.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

https://kubernetes.io/docs/tasks/tools/#kubectl

----End

4.4.3.2 Configuring Cluster Environments

Prerequisites

Two new VPCs have been created, and their CIDR blocks do not overlap. In this
example, the VPC is named vpc-A and the CIDR block is 172.16.0.0/16. The other
VPC is named vpc-B and the CIDR block is 172.17.0.0/16.

Creating a Cluster in the Testing Environment

Step 1 Log in to the CCE console and click Buy Cluster in the upper right corner on the
Clusters page.

Step 2 Configure the cluster. The following lists some key parameter configurations. You
can configure other parameters as required or use their default values. For details,
see Buying a CCE Standard/Turbo Cluster.
● Type: CCE Turbo Cluster
● Cluster Version: Select the latest version.
● VPC: Select vpc-A with the CIDR block of 172.16.0.0/16.

Step 3 Configure other parameters, complete the cluster creation, and wait until the
cluster is running.

Step 4 In the navigation pane, choose Nodes, click the Nodes tab, and click Create Node
in the upper right corner.

Step 5 Configure the node. The following lists some key parameter configurations. You
can configure other parameters as required or use their default values. For details,
see Creating a Node.
● Specifications: Select a flavor with 4 vCPUs and 16 GiB of memory.
● OS: Huawei Cloud EulerOS 2.0
● EIP: Select Auto create and bind an EIP to the node. The EIP can be used to

pull public network images and perform other operations.

Step 6 Confirm the specifications and create the node.

One node can meet the basic requirements in this practice.

----End

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html

Creating a Cluster in the Production Environment

Step 1 Log in to the CCE console and click Buy Cluster in the upper right corner on the
Clusters page.

Step 2 Configure the cluster. The following lists some key parameter configurations. You
can configure other parameters as required or use their default values. For details,
see Buying a CCE Standard/Turbo Cluster.
● Type: CCE Turbo Cluster
● Cluster Version: Select the latest version.
● VPC: Select vpc-B with the CIDR block of 172.17.0.0/16.

Step 3 Configure other parameters, complete the cluster creation, and wait until the
cluster is running.

Step 4 In the navigation pane, choose Nodes, click the Nodes tab, and click Create Node
in the upper right corner.

Step 5 Configure the node pool. The following lists some key parameter configurations.
You can configure other parameters as required or use their default values. For
details, see Creating a Node.
● Specifications: Select a flavor with 4 vCPUs and 16 GiB of memory.
● OS: Huawei Cloud EulerOS 2.0
● EIP: Select Auto create and bind an EIP to the node. The EIP can be used to

pull public network images and perform other operations.

Step 6 Confirm the specifications and create the node. One node can meet the basic
requirements in this practice.

----End

Creating VPC Peering Connections
To enable Jenkins to access the API servers of the testing and production clusters,
VPC peering connections need to be created since they are located in different
VPCs.

Step 1 Log in to the VPC console. In the navigation pane, choose Virtual Private Cloud >
VPC Peering Connections.

Step 2 Enable the network between the Jenkins server and the testing cluster.

1. In the upper right corner, click Create VPC Peering Connection. Configure
the parameters following instructions.
– VPC Peering Connection Name: peering-XA
– Local VPC: vpc-X where the Jenkins server resides
– Peer VPC: vpc-A where the testing cluster resides

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html

Figure 4-19 Creating a VPC peering connection

2. Click Create Now.
3. Click the name of the created VPC peering connection and add routes.

Click Add Route and add the CIDR block of vpc-A (172.16.0.0/16) to the route
table of vpc-X.
Select Add a route for the other VPC and add the CIDR block of vpc-X
(192.168.0.0/16) to the route table of vpc-A.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Figure 4-20 Adding a route

4. Click OK.

Step 3 Repeat the preceding steps to enable the networking between the Jenkins server
and the production cluster.

1. In the upper right corner, click Create VPC Peering Connection. Configure
the parameters following instructions.
– VPC Peering Connection Name: peering-XB
– Local VPC: vpc-X where the Jenkins server belongs
– Peer VPC: vpc-B where the testing cluster resides

2. Click OK.
3. Click the name of the created VPC peering connection and add routes.

Click Add Route and add the CIDR block of vpc-B (172.17.0.0/16) to the route
table of vpc-X.
Select Add a route for the other VPC and add the CIDR block of vpc-X
(192.168.0.0/16) to the route table of vpc-B.

4. Click OK.

----End

Interconnecting with SWR

This solution uses SoftWare Repository for Container (SWR) to store container
images built using Jenkins.

Step 1 Log in to the SWR console.

Step 2 Create an organization to manage images. For details, see Organization
Management.

Step 3 Obtain the long-term valid docker login login command. For details, see
Obtaining a Long-Term Valid Login Command.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0014.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0014.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

This login command will be used when images are uploaded through pipelines.
For details, see Implementing Continuous Integration and Deployment.

----End

4.4.3.3 Configuring a GitLab Project

Step 1 Obtain the source code and save it to the local. A Java example is used.

Step 2 Create the ccedemo group on GitLab.

Step 3 Add the java-demo project to the ccedemo group.

Step 4 Upload the project code to the local GitLab repository.
cd ~/java-demo-main //Change the directory address as needed.
git init
git remote add origin http://**.**.**.**/ccedemo/java-demo.git // Project URL of java-demo in step 3
git config --global user.name "Administrator"
git config --global user.email "admin@example.com"
git add .
git commit -m "Initial commit"
git push -u origin main

Enter the user name root and its password. (If the default password is not
changed, obtain it by referring to Step 6.)

----End

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

https://gitee.com/jiaogepengyou1/springboot-demo.git

4.4.3.4 Implementing Continuous Integration and Deployment

To implement this solution, Jenkins must be triggered for compilation and
packaging via a code push event. Once the request is approved via email, the
application can be deployed in a Kubernetes cluster.

Installing Jenkins Plugins

In addition to the default plugins installed during Jenkins installation, you also
need to install the GitLab, Kubernetes CLI, and Email Extension Template plugins.
For details, see the Jenkins official documentation.

On the Jenkins dashboard page, click Manage Jenkins on the left and choose
System Configuration > Manage Plugins. On the Available tab, search for
GitLab, Kubernetes CLI, and Email Extension Template, and install them.

The versions of the preceding plugins may change over time.

Configuring GitLab Hooks

Once you push your code, GitLab will notify Jenkins of the event using webhooks.
To ensure this process runs smoothly, you must first configure GitLab hooks.

Step 1 Log in to Jenkins, click New Item, and create a pipeline.

Step 2 Copy the URL and click Advanced.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://www.jenkins.io/doc/book/managing/plugins/

Step 3 Click Generate to generate a token, record it, retain the default values for other
parameters, and save the changes.

Step 4 Log in to GitLab and enable webhooks.

Allow requests to local network. To enhance security, GitLab 10.6 and later
versions prohibit webhook requests from being sent to the local network.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Step 5 Log in to the java-demo project on GitLab, choose Settings > Webhooks, and
enter the values recorded in Jenkins in URL and Secret token.

Step 6 At the bottom of the page, confirm that the webhook is added and perform tests.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

----End

Configuring Email Notifications

Jenkins often uses email for message notifications and approvals. This solution
also employs email as the approval method.

Step 1 On the Manage Jenkins page, select System.

Step 2 Configure basic mailbox information and enter the email address of the
administrator.

NO TICE

The password is not the email password but the email authorization code.

----End

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Configuring a Credential
Accessing Kubernetes clusters through HTTPS is crucial for maintaining security. To
achieve this, you must configure the credentials for accessing the clusters on
Jenkins.

Step 1 Obtain the kubeconfig configuration of the Kubernetes cluster client. For details,
see Connecting to a Cluster Using kubectl.

Step 2 Log in to Jenkins, click Manage Jenkins, choose Manage Credentials under
Security, and create a cluster credential using the secret file.

Step 3 Repeat the preceding steps to create an access credential for the production
cluster.

----End

Writing Pipeline Scripts
Pipeline is a workflow framework that operates within Jenkins. It links tasks that
would typically run independently on one or more nodes, allowing for the
orchestration and visualization of complex processes that cannot be completed by
a single task. As the primary feature of Jenkins 2.X, it enables Jenkins to transition
from CI to CD and DevOps. Consequently, the writing of pipeline scripts is crucial
to the successful implementation of the entire solution.

The following shows the concepts of pipeline scripts:

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

● Node
A node is a machine which is part of the Jenkins environment and is capable
of executing a pipeline.

● Stage
A stage block defines a group of specific tasks to be executed in different
stages such as the build, test, and deploy stages through the entire pipeline.

● Step
A step is a single task in a stage, such as running a test or deploying code. It
tells Jenkins what to do at a specific time, for example, to execute the shell
command. (For more Jenkins pipeline syntax, see the Jenkins official
documentation.)

Step 1 Go to the Jenkins pipeline and click Configuration in the navigation pane.

Step 2 Configure the pipeline scripts. The following pipeline scripts are for reference only.
You can customize the scripts based on your service requirements.

Some parameters in the example need to be changed:

● git_url: specifies the SSH address of the code repository in GitLab. You need
to replace it with the actual value.

● swr_login: The login command is the command obtained in Step 3.
● swr_region: specifies the region of SWR. You need to specify the region as

needed.
● organization: specifies the actual organization name in SWR.
● build_name: specifies the name of the created image.
● credential: specifies the testing cluster credential added to Jenkins. You need

to enter the credential ID. To deploy the service in another cluster, add the
access credential of the cluster to Jenkins again. For details, see cluster access
credential configurations.

● prod_credential: specifies the production cluster credential added to Jenkins.
You need to enter the credential ID. To deploy the service in another cluster,
add the access credential of the cluster to Jenkins again. For details, see
cluster access credential configurations.

● test_apiserver: specifies the API server address of the testing cluster. For
details, see Connecting to a Cluster Using kubectl. You have to ensure that
the address can be accessed from the Jenkins cluster.

● prod_apiserver: specifies the API server address of the production cluster. For
details, see Connecting to a Cluster Using kubectl. You have to ensure that
the address can be accessed from the Jenkins cluster.

● test_email: specifies the email address of the test personnel.
● admin_email: specifies the email address of the approver.
#!groovy
//Define the code repository address.
def git_url = 'ssh://git@xxxx:222/ccedemo/java-demo.git'
//Define the SWR login command.
def swr_login = 'docker login -u cn-north-4@xxxx -p xxxxxx swr.cn-north-4.myhuaweicloud.com'
//Define the SWR region.
def swr_region = 'cn-north-4'
// Specify the name of an SWR organization to which images are pushed.
def organization = 'testapp'
//Define the image name.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://www.jenkins.io/doc/book/pipeline/
https://www.jenkins.io/doc/book/pipeline/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

def build_name = 'demo01'
//Certificate ID of the testing cluster
def test_credential = 'test_config'
//Certificate ID of the production cluster
def prod_credential = 'prod_config'
//API server address of the testing cluster. You have to ensure that the address can be accessed from the
Jenkins cluster.
def test_apiserver = 'https://xxx:5443'
//API server address of the production cluster. You have to ensure that the address can be accessed from
the Jenkins cluster.
def prod_apiserver = 'https://xxxx:5443'
// Email addresses
def test_email="xxxxx@xx.com"
def admin_email="xxxx@xx.com"

pipeline{
agent any
stages{
 stage('Git code'){
 steps{
 echo "1. Git code"
 git url: git_url
 script {
 // Specify the return value of git rev-parse --short HEAD as the commit ID, which is then used
as the image tag.
 build_tag = sh(returnStdout: true, script: 'git rev-parse --short HEAD').trim()
 image_url = "swr.${swr_region}.myhuaweicloud.com/${organization}/${build_name}:$
{build_tag}"
 }
 }
 }
 stage('Build') {
 steps{
 echo "2. Build Docker Image Stage and Push Image"
 sh "docker build -t ${image_url} ."
 sh swr_login
 sh "docker push ${image_url}"
 // Replace the image URL with that in the Kubernetes resource file.
 sh "sed -i 's+demo01:v1+${image_url}+g' ./demo01.yaml"
 }
 }
 stage('Deploy Test Enviroment') {
 steps{
 // Configure the testing environment certificate.
 echo "3. Deploy Test Enviroment"
 script {
 try {
 withKubeConfig([credentialsId: test_credential, serverUrl: test_apiserver]) {
 sh 'kubectl apply -f ./demo01.yaml'
 //The YAML file is stored in the code repository. It is only used as an example here, so you
need to replace it as required.
 }
 println "deploy success"
 // Send an email to the test personnel.
 mail subject: "[Please Test] The application has been deployed in the test environment. Please
start the test.",
 body: """After the test is passed, click the link and use the
account to log in to the system. The test is successful.</h3>""",
 charset: 'utf-8',
 mimeType: 'text/html',
 to: "$test_email"
 } catch (e) {
 RUN_FLAG = false
 println "deploy failed!"
 println e
 }
 }
 }
 }

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

 stage('Test'){
 // Wait for the test personnel to make confirmation.
 input{
 message "Test Passed or Not"
 submitter "admin"
 }
 steps{
 script{
 println "4. Test Passed"
 // Send an email to the administrator.
 mail subject: "[Please Approve] Release to the production environment",
 body: """The test is passed, click the link and use the account to
log in to the system for approval.</h3>""",
 charset: 'utf-8',
 mimeType: 'text/html',
 to: "$test_email"
 }
 }
 }
 stage('Approve'){
 input{
 message "Release to Production Environment or Not"
 submitter "admin"
 }
 steps{
 script{
 println "5. Approved and release it to the production environment."
 }
 }
 }
 stage('Deploy Produce Enviroment'){
 steps{
 echo "6. Deploy Produce Enviroment"
 script {
 try {
 withKubeConfig([credentialsId: prod_credential, serverUrl: prod_apiserver]) {
 sh 'kubectl apply -f ./demo01.yaml'
 //The YAML file is stored in the code repository. It is only used as an example here, so you
need to replace it as required.
 }
 println "deploy success"
 } catch (e) {
 println "deploy failed!"
 println e
 }
 }
 }
 }
}

Step 3 Save the changes to complete the configurations of the entire project.

----End

Configuring Continuous Build and Deployment

Step 1 Modify the local code and submit it to trigger compilation.
git add . && git commit -m "add template" && git push

Step 2 Go back to the Jenkins page.

You can see that the project has automatically triggered compilation and building.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Step 3 Wait a few minutes for the email notification confirming the test.

Step 4 Log in to the testing cluster and verify that the java-demo workload has been
created.

Step 5 Click the link in the email to confirm the test. (In this example, the upgrade test is
considered to pass.)

Step 6 (For the approver) Receive an email requesting approval.

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Step 7 (For the approver) Determine that the service can be deployed in the production
environment, click the link, and agree to the request.

Step 8 Access the production cluster console and verify that the java-demo workload has
been created and released in the production environment.

----End

Cloud Container Engine
Best Practices 4 DevOps

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

5 Disaster Recovery

5.1 Recommended Configurations for HA CCE Clusters
This section describes the recommended configurations for a Kubernetes cluster in
which applications can run stably and reliably.

Item Description Recommended
Operations

Master
node

CCE is a hosted Kubernetes cluster
service. You do not need to perform
O&M on the master nodes. You can
configure your cluster specifications to
improve the stability and reliability.

● Deploying the Master
Nodes in Different
AZs

● Selecting a Network
Model

● Selecting a Service
Forwarding Mode

● Configuring Quotas
and Limits for the
Cloud Service
Resources and
Resources in a Cluster

● Monitoring Metrics of
the Master Nodes

Worker
node

In a Kubernetes cluster, the data plane
consists of worker nodes that can run
containerized applications and
transmit network traffic. When using
CCE, perform O&M on worker nodes
by yourself. To achieve HA, ensure the
worker nodes' scalability and
repairability and pay attention to the
running statuses of the worker nodes'
key components.

● Partitioning Data
Disks Attached to a
Node

● Running npd
● Configuring the DNS

Cache
● Properly Deploying

CoreDNS

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Item Description Recommended
Operations

Applicatio
n

If you want your applications to be
always available, especially during
peak hours, run them in a scalable
and elastic manner and pay attention
to their running statuses.

● Running Multiple
Pods

● Configuring Resource
Quotas for a
Workload

● Deploying an
Application in
Multiple AZs

● Deploying the System
Add-ons in Multiple
AZs

● Configuring Auto
Scaling

● Viewing Logs,
Monitoring Metrics,
and Adding Alarm
Rules

Deploying the Master Nodes in Different AZs

Multiple regions are provided for you to deploy your services, and there are
different availability zones (AZs) in each region. An AZ is a collection of one or
more physical data centers with independent cooling, fire extinguishing, moisture-
proof, and electricity facilities in each AZ. AZs within a region are connected using
high-speed optical fibers. This allows you to build cross-AZ HA systems.

When creating a cluster, enable the HA mode of the cluster and configure the
distribution mode of the master nodes. The master nodes are randomly deployed
in different AZs. This ensures a higher disaster recovery (DR) capability of the
cluster.

You can also customize the distribution mode. The following two modes are
supported:

● Random: Master nodes are deployed in different AZs for DR.

● Custom: Master nodes are deployed in specific AZs.

– Host: Master nodes are deployed on different hosts in the same AZ.

– Custom: Master nodes are deployed in the AZ you specify.

Figure 5-1 Configuring an HA cluster

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Selecting a Network Model
● Network model: CCE supports VPC network, Cloud Native 2.0 network, and

container tunnel network models for your clusters. Different models have
different performance and functions. For details, see Network Models.

● VPC network: To enable your applications to access other cloud services like
RDS, create related services in the same VPC network as your cluster which
runs these applications. This is because services using different VPC networks
are isolated from each other. If you have created instances, use VPC peering
connections to enable communications between VPCs.

● Container CIDR block: Do not configure a small container CIDR block.
Otherwise, the number of supported nodes will be limited.
– For a cluster using a VPC network, if the subnet mask of the container

CIDR block is /16, there are 256 x 256 IP addresses available. If the
maximum number of pods reserved on each node is 128, the maximum
number of nodes supported is 512.

– For a cluster using a container tunnel network, if the subnet mask of the
container CIDR block is /16, there are 256 x 256 IP addresses assigned to
your cluster. The container CIDR block allocates 16 IP addresses to the
nodes at a time by default. The maximum number of nodes supported by
your cluster is 4096 (65536/16=4096).

– For a cluster using a Cloud Native 2.0 network, the container CIDR block
is the VPC subnet, and the number of containers can be created depends
on the size of the selected subnet.

● Service CIDR block: The service CIDR block determines the upper limit of
Service resources in your cluster. Evaluate your actual needs and then
configure the CIDR block. A created CIDR block cannot be modified. Do not
configure an excessively small one.

For details, see Planning CIDR Blocks for a Cluster.

Selecting a Service Forwarding Mode
kube-proxy is a key component of a Kubernetes cluster. It is responsible for load
balancing and forwarding between a Service and its backend pod. When using
clusters, consider the potential performance problems of the forwarding mode.

CCE supports the iptables and IPVS forwarding modes.

● IPVS allows higher throughput and faster forwarding. It applies to scenarios
where the cluster scale is large or the number of Services is large.

● iptables is the traditional kube-proxy mode. This mode applies to the scenario
where the number of Services is small or there are a large number of short
concurrent connections on the client. When there are more than 1000
Services in the cluster, network delay may occur.

Configuring Quotas and Limits for the Cloud Service Resources and
Resources in a Cluster

CCE allows you to configure resource quotas and limits for your cloud service
resources and resources in your clusters. This prevents excessive use of resources.
When creating your applications for CCE clusters, consider these limits and

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0046809840.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0046809840.html

periodically review them. This will avoid scaling failures caused by insufficient
quotas during application running.

● Configuring resource quotas for cloud services: Cloud services like ECS, EVS,
VPC, ELB, and SWR are also used to run the CCE clusters. If the existing
resource quotas cannot meet your requirements, submit a service ticket to
increase the quotas.

● Configuring resource quotas for a cluster: You are allowed to configure the
namespace-level resource quotas to limit the number of objects of a certain
type created in a namespace and the total computing resources like CPU and
memory consumed by the objects. For details, see Configuring Resource
Quotas.

Monitoring Metrics of the Master Nodes
Monitoring metrics of the master nodes allows you to check the master nodes'
performance and efficiently identify problems occurred on them. The master
nodes which are not running properly may lower application reliability.

CCE can monitor kube-apiserver, kube-controller, kube-scheduler, and etcd-server
on master nodes. You need to install the Cloud Native Cluster Monitoring add-
on. With grafana, you can use the Kubernetes monitoring overview dashboard
to monitor metrics of Kubernetes API server requests and latency and etcd latency.

If an on-premises Prometheus instance is used, you can manually add monitoring
metrics. For details, see Monitoring Metrics of Master Node Components Using
Prometheus.

Partitioning Data Disks Attached to a Node
By default, the first data disk of a worker node is for storing the container runtime
and kubelet components. The remaining capacity of this data disk affects image
download and container startup and running. For details, see Space Allocation of
a Data Disk.

The default space of this date disk is 100 GiB. You can adjust the space as
required. Images, system logs, and application logs are stored on data disks.
Therefore, you need to evaluate the number of pods to be deployed on each node,
the size of logs, images, and temporary data of each pod, as well as some
reserved space for the system. For details, see Selecting a Data Disk for the
Node.

Running npd
A failure in a worker node may affect the availability of the applications. CCE
Node Problem Detector is used to monitor node exceptions. It helps you detect
and handle latent exceptions in a timely manner. You can also customize the
check items, including target node, check period, and triggering threshold. For
details, see Configuring Node Fault Detection Policies.

Configuring the DNS Cache
When the number of DNS requests in a cluster increases, the load of CoreDNS
increases and the following issues may occur:

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0287.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0287.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0406.html
https://grafana.com/grafana/dashboards/14623
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0341.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0341.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0132.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0132.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0659.html

● Increased delay: CoreDNS needs to process more requests, which may slow
down the DNS query and affect service performance.

● Increased resource usage: To ensure DNS performance, CoreDNS requires
higher specifications.

To minimize the impact of DNS delay, deploy NodeLocal DNSCache in the cluster
to improve the networking stability and performance. NodeLocal DNSCache runs a
DNS cache proxy on cluster nodes. All pods with DNS configurations use the DNS
cache proxy running on nodes instead of the CoreDNS service for domain name
resolution. This reduces CoreDNS' load and improves the cluster DNS performance.

You can install the NodeLocal DNSCache add-on. For details, see Using
NodeLocal DNSCache to Improve DNS Performance.

Properly Deploying CoreDNS
Deploy the CoreDNS instances in different AZs and nodes to mitigate the single-
node or single-AZ faults.

Ensure that the CPU and memory of the node where CoreDNS is running are not
fully used. Otherwise, the Queries per second (QPS) and response of domain
name resolution will be affected.

For details about how to properly configure CoreDNS, see Configuring CoreDNS.

Running Multiple Pods
If your application runs in one pod, the application will be unavailable if the pod is
abnormal. Use Deployments or other types of replicas to deploy your applications.
Each time a pod fails or is terminated, the controller automatically restarts a new
pod that has the same specifications as the original one to ensure that a specified
number of pods are always running in the cluster.

When creating a workload, set the number of instances to a value greater than 2.
If an instance is faulty, the remaining instances still run until Kubernetes
automatically creates another pod to compensate for the loss. You can also use
HPA and CA (Using HPA and CA for Auto Scaling of Workloads and Nodes) to
automatically scale in or out the workloads as required.

Using Containers to Isolate Processes
Containers provide process-level isolation. Each container has its own file system,
network, and resource allocation. This prevents interference between different
processes and avoids attacks and data leakage from malicious processes. Using
containers to isolate processes can improve the reliability, security, and portability
of applications.

If several processes work together, create multiple containers in a pod so that they
can share the same network, PV, and other resources. Taking the init container as
an example. The init containers run before the main containers are started to
complete some initialization tasks like configuring environment variables, loading
databases or data stores, and pulling Git repositories.

Note that multiple containers in a pod share the lifecycle of this pod. Therefore, if
one container is abnormal, the entire pod will be restarted.

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0404.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html

Configuring Resource Quotas for a Workload
Configure and adjust resource requests and limits for all workloads.

If too many pods are scheduled to one node, the node will be overloaded and
unable to provide services.

To avoid this problem, when deploying a pod, specify the resource request and
limit required by the pod. Kubernetes then selects a node with enough idle
resources for this pod. In the following example, the Nginx pod requires 1-core
CPU and 1024 MiB memory. The actual usage cannot exceed 2-core CPU and 4096
MiB memory.

Kubernetes statically schedules resources. The remaining resources on each node
are calculated as follows: Remaining resources on a node = Total resources on the
node – Allocated resources (not resources in use). If you manually run a resource-
consuming process, Kubernetes cannot detect it.

Additionally, the resource usage must be claimed for all pods. For a pod that does
not claim the resource usage, after it is scheduled to a node, Kubernetes does not
deduct the resources used by this pod from the node on which it is running. Other
pods may still be scheduled to this node.

Deploying an Application in Multiple AZs
You can run pods on nodes in multiple AZs to prevent an application from being
affected by faults of a single AZ.

When creating a node, manually specify an AZ for the node.

Figure 5-2 Specifying an AZ of a node

During application deployment, configure anti-affinity policies for pods so that the
scheduler can schedule pods across multiple AZs. For details, see Implementing
High Availability for Applications in CCE. The following is an example:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: web-server
 labels:
 app: web-server
spec:
 replicas: 4
 selector:
 matchLabels:
 app: web-server
 template:
 metadata:
 labels:
 app: web-server

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

 spec:
 containers:
 - name: web-app
 image: nginx
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Workload anti-affinity
 preferredDuringSchedulingIgnoredDuringExecution: # Indicates that the rule is met as much as
possible. Otherwise, scheduling cannot be performed when the number of pods exceeds the number of AZs.
 - podAffinityTerm:
 labelSelector: # Pod label matching rule. Configure anti-affinity policies between pods and their
own labels.
 matchExpressions:
 - key: app
 operator: In
 values:
 - web-server
 topologyKey: topology.kubernetes.io/zone # Topology domain of the AZ where the node is
located
 weight: 100

You can also use Pod Topology Spread Constraints to deploy pods in multiple
AZs.

Deploying the System Add-ons in Multiple AZs
The Deployment pods of CCE system add-ons like CoreDNS and Everest can be
deployed in multiple AZs, the same way as deploying an application. This function
can satisfy different user requirements.

Table 5-1 Deployment description

Mode Configuration
Description

Usage Description Recommended
Configuration
Scenario

Preferred Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for soft
anti-affinity
deployment, and the
anti-affinity type is
preferredDuring-
SchedulingIgnored-
DuringExecution.

Add-on pods will be
preferentially scheduled to
nodes in different AZs. If
resources in some AZs are
insufficient, some add-on
pods may be scheduled to
the same AZ which has
enough resources.

No mandatory
requirements for
multi-AZ DR

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Mode Configuration
Description

Usage Description Recommended
Configuration
Scenario

Required Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for hard
anti-affinity
deployment, and the
anti-affinity type is
requiredDuringSche
dulingIgnoredDur-
ingExecution.

A maximum of one pod of
the same add-on can be
deployed in each AZ. The
number of running pods
cannot exceed the number
of AZs in the cluster. If the
node where the add-on
pod runs is faulty, pods
running on the faulty
node cannot be
automatically migrated to
other nodes in the same
AZ.

Changing
number of AZs
(This mode is
used to prevent
all pods from
being scheduled
to the node in
the current AZ
in advance.)

Equivale
nt mode

Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for
configuring topology
spread constraints.
The pod difference
between different
topology domains
cannot exceed 1 for
add-on pods to be
evenly distributed in
different AZs.

The effect of this mode is
between that of the
preferred mode and that
of the required mode. In
the equivalent mode, add-
on pods can be deployed
in different AZs.
Additionally, multiple pods
can be deployed in a
single AZ when there are
more pods than AZs. To
use this mode, you need
to plan node resources in
each AZ in advance to
ensure that each AZ has
enough node resources for
deploying pods. (If there
are more than one add-on
pods in a single AZ, the
nodes to which the add-
on pods can be scheduled
in each AZ should be one
more than the actual add-
on pods in the current
AZ.) This ensures
successful deployment of
add-on pods although
node resources in some
AZ are insufficient and
smooth scheduling of
add-on pods during
update.

Scenarios have
high
requirements for
DR

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Configuring Health Check for a Container
Kubernetes automatically restarts pods that are not running properly. This
prevents service interruption caused by exceptions of pods. In some cases,
however, even if a pod is running, it does not mean that it can provide services
properly. For example, a deadlock may occur in a process in a running pod, but
Kubernetes does not automatically restart the pod because it is still running. To
solve this problem, configure a liveness probe to check whether the pod is healthy.
If the liveness probe detects a problem, Kubernetes will restart the pod.

You can also configure a readiness probe to check whether the pod can provide
normal services. After an application container is started, it may take some time
for initialization. During this process, the pod on which this container is running
cannot provide services to external systems. The Services forward requests to this
pod only when the readiness probe detects that the pod is ready. When a pod is
faulty, the readiness probe can prevent new traffic from being forwarded to the
pod.

The startup probe is used to check whether the application container is started.
The startup probe ensures that the containers can start successfully before the
liveness probe and readiness probe do their tasks. This ensures that the liveness
probe and readiness probe do not affect the startup of containers. Configuring the
startup probe ensures that the slow-start containers can be detected by the
liveness probe to prevent Kubernetes from terminating them before they are
started.

You can configure the preceding probes when creating an application. The
following is an example:

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 args:
 - /server
 livenessProbe:
 httpGet:
 path: /healthz
 port: 80
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 initialDelaySeconds: 3
 periodSeconds: 3
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5
 startupProbe:
 httpGet:
 path: /healthz
 port: 80
 failureThreshold: 30
 periodSeconds: 10

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

For details, see Configuring Container Health Check.

Configuring Auto Scaling
Auto scaling can automatically adjust the number of application containers and
nodes as required. Containers and nodes can be quickly scaled out or scaled in to
save resources and costs.

Typically, two types of auto scaling may occur during peak hours:

● Workload scaling: When deploying applications in pods, you can configure
requested resources and resource limits for the pods to prevent unlimited
usage of resources during peak hours. However, after the upper limit is
reached, an application error may occur. To resolve this issue, scale in the
number of pods to share workloads.

● Node scaling: After the number of pods grows, the resource usage of the
node may increase to a certain extent. This results in that the added pods
cannot be scheduled. To solve this problem, scale in or out nodes based on
the resource usage.

For details, see Using HPA and CA for Auto Scaling of Workloads and Nodes.

Viewing Logs, Monitoring Metrics, and Adding Alarm Rules
● Logging

– Control plane logs are reported from the master nodes. CCE supports
kube-controller-manager, kube-apiserver, kube-scheduler, and audit logs.
For details, see Collecting Control Plane Component Logs.

– Application logs are generated by pods. These logs include logs generated
by pods in which the service containers are running and Kubernetes
system components like CoreDNS. CCE allows you to configure policies
for collecting, managing, and analyzing logs periodically to prevent logs
from being over-sized. For details, see Logging Overview.

● Monitoring
– Metrics of the master nodes: Monitoring these metrics enables you to

efficiently identify problems occurred on the master nodes. For details,
see Monitoring Metrics of the Master Nodes.

– Metrics of the applications: CCE can comprehensively monitor
applications in clusters by checking these metrics. In addition to standard
metrics, you can configure custom metrics of your applications that
comply with their specifications to improve the observability. For details,
see Monitoring Center Overview.

● Alarm
You can add alarm rules for metrics to detect cluster faults and generate
warnings in a timely manner with the monitoring function. This helps you
maintain service stability. For details, see Customized Alarm Configurations.

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0112.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0554.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0557.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0413.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0394.html

5.2 Implementing High Availability for Applications in
CCE

Basic Principles
To achieve high availability for your CCE containers, you can do as follows:

1. Deploy three master nodes for the cluster.
2. Create nodes in different AZs. When nodes are deployed across AZs, you can

customize scheduling policies based on your requirements to maximize
resource utilization.

3. Create multiple node pools in different AZs and use them for node scaling.
4. Set the number of pods to be greater than 2 when creating a workload.
5. Set pod affinity rules to distribute pods to different AZs and nodes.

Procedure
Assume that there are four nodes in a cluster distributed in different AZs.

$ kubectl get node -L topology.kubernetes.io/zone,kubernetes.io/hostname
NAME STATUS ROLES AGE VERSION ZONE HOSTNAME
192.168.5.112 Ready <none> 42m v1.21.7-r0-CCE21.11.1.B007 zone01 192.168.5.112
192.168.5.179 Ready <none> 42m v1.21.7-r0-CCE21.11.1.B007 zone01 192.168.5.179
192.168.5.252 Ready <none> 37m v1.21.7-r0-CCE21.11.1.B007 zone02 192.168.5.252
192.168.5.8 Ready <none> 33h v1.21.7-r0-CCE21.11.1.B007 zone03 192.168.5.8

Create workloads according to the following podAntiAffinity rules:

● Pod anti-affinity in an AZ. Configure the parameters as follows:
– weight: A larger weight value indicates a higher priority of scheduling. In

this example, set it to 50.
– topologyKey: includes a default or custom key for the node label that

the system uses to denote a topology domain. A topology key determines
the scope where the pod should be scheduled to. In this example, set this
parameter to topology.kubernetes.io/zone, which is the label for
identifying the AZ where the node is located.

– labelSelector: Select the label of the workload to realize the anti-affinity
between this container and the workload.

● The second one is the pod anti-affinity in the node hostname. Configure the
parameters as follows:
– weight: Set it to 50.
– topologyKey: Set it to kubernetes.io/hostname.
– labelSelector: Select the label of the pod, which is anti-affinity with the

pod.
kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
 namespace: default
spec:
 replicas: 2

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 50
 podAffinityTerm:
 labelSelector: # Select the label of the workload to realize the anti-affinity
between this container and the workload.
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 namespaces:
 - default
 topologyKey: topology.kubernetes.io/zone # It takes effect in the same AZ.
 - weight: 50
 podAffinityTerm:
 labelSelector: # Select the label of the workload to realize the anti-affinity
between this container and the workload.
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 namespaces:
 - default
 topologyKey: kubernetes.io/hostname # It takes effect on the node.
 imagePullSecrets:
 - name: default-secret

Create a workload and view the node where the pod is located.

$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-dpwbk 1/1 Running 0 17s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-qhclc 1/1 Running 0 17s 10.0.1.133 192.168.5.252

Increase the number of pods to 3. The pod is scheduled to another node, and the
three nodes are in three different AZs.

$ kubectl scale --replicas=3 deploy/nginx
deployment.apps/nginx scaled
$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-8t7rv 1/1 Running 0 3s 10.0.0.9 192.168.5.8
nginx-6fffd8d664-dpwbk 1/1 Running 0 2m45s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-qhclc 1/1 Running 0 2m45s 10.0.1.133 192.168.5.252

Increase the number of pods to 4. The pod is scheduled to the last node. With
podAntiAffinity rules, pods can be evenly distributed to AZs and nodes.

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

$ kubectl scale --replicas=4 deploy/nginx
deployment.apps/nginx scaled
$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-8t7rv 1/1 Running 0 2m30s 10.0.0.9 192.168.5.8
nginx-6fffd8d664-dpwbk 1/1 Running 0 5m12s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-h796b 1/1 Running 0 78s 10.0.1.5 192.168.5.179
nginx-6fffd8d664-qhclc 1/1 Running 0 5m12s 10.0.1.133 192.168.5.252

5.3 Implementing High Availability for Add-ons in CCE

Application Scenarios

CCE offers various add-ons that enhance the cloud native capabilities of clusters.
These add-ons include features like container scheduling and elasticity, cloud
native observability, container networking, storage, and security. Helm charts are
used to deploy these add-ons. Workload pods of the add-ons are deployed on
worker nodes within the clusters.

As add-ons have become more popular, their stability and reliability have become
essential requirements. By default, CCE implements a policy for add-on
deployment where worker nodes have a hard anti-affinity configuration, and AZs
have a soft anti-affinity configuration. This section explains how to enhance the
CCE add-on scheduling policy, allowing you to customize the deployment policy
according to your requirements.

Deployment Solution

An add-on typically runs as Deployments or DaemonSets. By default, DaemonSet
pods are deployed on all nodes. To ensure HA of the add-on, there are multiple
pods, AZ affinity policies, and specified node scheduling configured for
Deployments.

Pod-level HA solution:

● Increasing the Number of Pods: Multi-pod deployment can effectively
prevent service unavailability caused by a single point of failure (SPOF).

Node-level HA solutions:

● Deploying the Add-on Pods on Dedicated Nodes: To prevent resource
preemption between service applications and core add-ons, it is best to
deploy the core add-on pods on dedicated nodes. This ensures that the add-
on resources are isolated and restricted on the node level.

● Deploying the Add-on in Multiple AZs: Multi-AZ deployment can effectively
prevent service unavailability caused by the failure of a single AZ.

Take the CoreDNS add-on as an example. This add-on is deployed as two pods by
default in the preferred mode, and the scheduling policies are hard anti-affinity for
nodes and soft anti-affinity for AZs. In this case, two nodes are needed to ensure
that all add-on pods in the cluster can run properly, and Deployment pods of the
add-on can be preferentially scheduled to nodes in different AZs.

The following sections describe how to further improve the add-on SLA.

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Increasing the Number of Pods

You can adjust the number of CoreDNS pods ensure high performance and HA.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Add-ons, locate CoreDNS on the right, and click
Edit.

Step 2 Increase the number of replicas.

Figure 5-3 Changing the pod quantity

Step 3 Click OK.

----End

Deploying the Add-on Pods on Dedicated Nodes

You can adjust the node affinity policy of CoreDNS and make the CoreDNS pods
run on dedicated nodes. This can prevent the CoreDNS resources from being
preempted by service applications.

A custom policy is used as an example.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Nodes.

Step 2 Click the Nodes tab, select the node dedicated for CoreDNS, and click Labels and
Taints above the node list.

Add the following labels:

● Key: node-role.kubernetes.io/coredns

● Value: true

Add the following taints:

● Key: node-role.kubernetes.io/coredns

● Value: true

● Effect: NoSchedule

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

Figure 5-4 Adding a label and a taint

Step 3 In the navigation pane, choose Add-ons, locate CoreDNS, and click Edit.

Step 4 Select Custom Policies for Node Affinity and add the preceding node label.

Add tolerations for the preceding taint.

Figure 5-5 Adding a toleration

Step 5 Click OK.

----End

Deploying the Add-on in Multiple AZs

By default, the add-on scheduling policy can handle single-node faults. However, if
your services require a higher SLA, you can create nodes with different AZ
specifications on the node pool page and set the multi-AZ deployment mode of
the add-on to the required mode.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 Create nodes in different AZs.

To create nodes in different AZs, you can simply repeat these steps. Alternatively,
you can create multiple node pools, associate them with different AZ

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

specifications, and increase the number of nodes in each pool to achieve the same
result.

1. In the navigation pane, choose Nodes, click the Nodes tab, and click Create
Node in the upper right corner.

2. On the page displayed, select an AZ for the node.

Figure 5-6 Creating a node

3. Configure other mandatory parameters following instructions to complete the
creation.

Step 3 In the navigation pane, choose Add-ons. In the right pane, locate CoreDNS and
click Edit.

Step 4 In the window that slides out from the right, set Multi AZ to Required and click
Install.

Figure 5-7 Changing the multi-AZ deployment mode to the required mode

Step 5 Choose Workload, click the Deployments tab, and view the CoreDNS pods. Select
the kube-system namespace to view the pod distribution of the add-on.

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Figure 5-8 Viewing the deployment and distribution of CoreDNS pods

Step 6 View that the Deployment pods of the add-on has been allocated to nodes in two
AZs.

Figure 5-9 Viewing CoreDNS pod distribution

----End

Cloud Container Engine
Best Practices 5 Disaster Recovery

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

6 Security

6.1 Overview
Based on the shared security responsibility model, CCE safeguards the master
nodes in a cluster and CCE components, and provides a series of hierarchical
security capabilities at the cluster and container levels. Users are responsible for
the security of cluster nodes and comply with the security best practices provided
by CCE to perform security configuration and O&M.

CCE Application Scenarios
CCE is a container service built on popular Docker and Kubernetes technologies
and offers a wealth of features best suited to enterprises' demand for running
container clusters at scale. With unique advantages in system reliability,
performance, and compatibility with open-source communities, CCE can suit the
diverse needs of enterprises interested in building container clouds.

CCE provides a function list and typical application scenarios. For details about the
function list, see Function Overview. For details about the application scenarios,
see Application Scenarios.

Exception Scenarios
You are not advised to use clusters in scenarios that require strong resource
isolation. CCE provides tenants with a dedicated, exclusive cluster. Currently,
resources such as nodes and networks are not strictly isolated. If no strict security
protection measures are available, security risks exist when the cluster is used by
multiple external uncontrollable users at the same time. For example, in a
development pipeline scenario, when multiple users are allowed to use the
pipeline, the service code logic of different users is uncontrollable, and the cluster
and services in the cluster may be attacked.

Enabling HSS
Host Security Service (HSS) provides host management, risk prevention, intrusion
detection, advanced defense, security operations, and web page anti-tamper
functions to comprehensively identify and manage information assets on hosts,

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

https://support.huaweicloud.com/intl/en-us/function-cce/index.html
https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0007.html

monitor risks on hosts in real time, and prevent unauthorized intrusions. You are
advised to enable HSS to protect hosts in CCE clusters. For details about HSS and
how to use it, see HSS.

6.2 Configuration Suggestions on CCE Cluster Security
For security purposes, you are advised to configure a cluster as follows.

Using the CCE Cluster of the Latest Version
Kubernetes releases a major version in about four months. CCE follows the same
frequency as Kubernetes to release major versions. To be specific, a new CCE
version is released about three months after a new Kubernetes version is released
in the community. For example, Kubernetes v1.19 was released in September 2020
and CCE v1.19 was released in March 2021.

The latest cluster version has known vulnerabilities fixed or provides a more
comprehensive security protection mechanism. You are advised to select the latest
cluster version when creating a cluster. Before a cluster version is deprecated and
removed, upgrade your cluster to a supported version.

Handling Vulnerabilities Released on the Official Website Promptly
CCE releases vulnerabilities irregularly. You need to handle the vulnerabilities in a
timely manner. For details, see Vulnerability Notice.

Disabling the Automatic Token Mounting Function of the Default Service
Account

By default, Kubernetes associates the default service account with every pod,
which means that the token is mounted to a container. The container can use this
token to pass the authentication by the kube-apiserver and kubelet components.
In a cluster with RBAC disabled, the service account who owns the token has the
control permissions for the entire cluster. In a cluster with RBAC enabled, the
permissions of the service account who owns the token depends on the roles
associated by the administrator. The service account's token is generally used by
workloads that need to access kube-apiserver, such as coredns, autoscaler, and
prometheus. For workloads that do not need to access kube-apiserver, you are
advised to disable the automatic association between the service account and
token.

Two methods are available:

● Method 1: Set the automountServiceAccountToken field of the service
account to false. After the configuration is complete, newly created workloads
will not be associated with the default service account by default. Configure
this field for each namespace as required.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: default
automountServiceAccountToken: false
...

When a workload needs to be associated with a service account, explicitly set
automountServiceAccountToken to true in the YAML file of the workload.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

https://support.huaweicloud.com/intl/en-us/qs-hss2.0/index.html
https://support.huaweicloud.com/intl/en-us/bulletin-cce/cce_bulletin_0011.html

...
 spec:
 template:
 spec:
 serviceAccountName: default
 automountServiceAccountToken: true
 ...

● Method 2: Explicitly disable the function of automatically associating service
accounts with workloads.
...
 spec:
 template:
 spec:
 automountServiceAccountToken: false
 ...

Configuring Proper Cluster Access Permissions for Users

CCE allows you to create multiple IAM users. Your account can create different
user groups, assign different access permissions to different user groups, and add
users to the user groups with corresponding permissions when creating IAM users.
In this way, users can control permissions on different regions and assign read-
only permissions. Your account can also assign namespace-level permissions for
users or user groups. To ensure security, it is advised that minimum user access
permissions are assigned.

If you need to create multiple IAM users, configure the permissions of the IAM
users and namespaces properly.

● For details about how to configure cluster permissions, see Cluster
Permissions (IAM-based).

● For details about how to configure namespace permissions, see Namespace
Permissions (Kubernetes RBAC-based).

Configuring Resource Quotas for Cluster Namespaces

CCE provides resource quota management, which allows users to limit the total
amount of resources that can be allocated to each namespace. These resources
include CPU, memory, storage volumes, pods, Services, Deployments, and
StatefulSets. Proper configuration can prevent excessive resources created in a
namespace from affecting the stability of the entire cluster.

For details, see Setting a Resource Quota.

Configuring LimitRange for Containers in a Namespace

With resource quotas, cluster administrators can restrict the use and creation of
resources by namespace. In a namespace, a pod or container can use the
maximum CPU and memory resources defined by the resource quota of the
namespace. In this case, a pod or container may monopolize all available
resources in the namespace. You are advised to configure LimitRange to restrict
resource allocation within the namespace. The LimitRange parameter has the
following restrictions:

● Limits the minimum and maximum resource usage of each pod or container
in a namespace.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0188.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0188.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0189.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0189.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0287.html

For example, create the maximum and minimum CPU usage limits for a pod
in a namespace as follows:
cpu-constraints.yaml
apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-min-max-demo-lr
spec:
 limits:
 - max:
 cpu: "800m"
 min:
 cpu: "200m"
 type: Container

Then, run kubectl -n <namespace> create -f cpu-constraints.yaml to
complete the creation. If the default CPU usage is not specified for the
container, the platform automatically configures the default CPU usage. That
is, the default configuration is automatically added after the container is
created.
...
spec:
 limits:
 - default:
 cpu: 800m
 defaultRequest:
 cpu: 800m
 max:
 cpu: 800m
 min:
 cpu: 200m
 type: Container

● Limits the maximum and minimum storage space that each
PersistentVolumeClaim can apply for in a namespace.
storagelimit.yaml
apiVersion: v1
kind: LimitRange
metadata:
 name: storagelimit
spec:
 limits:
 - type: PersistentVolumeClaim
 max:
 storage: 2Gi
 min:
 storage: 1Gi

Then, run kubectl -n <namespace> create -f storagelimit.yaml to complete
the creation.

Configuring Network Isolation in a Cluster
● Container tunnel network

If networks need to be isolated between namespaces in a cluster or between
workloads in the same namespace, you can configure network policies to
isolate the networks. For details, see Network Policies.

● Cloud Native 2.0 network
In the Cloud Native Network 2.0 model, you can configure security groups to
isolate networks between pods. For details, see Binding a Security Group to
a Workload Using a Security Group Policy.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0288.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0288.html

● VPC network
Network isolation is not supported.

Enabling the Webhook Authentication Mode with kubelet

NO TICE

CCE clusters of v1.15.6-r1 or earlier are involved, whereas versions later than
v1.15.6-r1 are not.
Upgrade the CCE cluster version to 1.13 or 1.15 and enable the RBAC capability for
the cluster. If the version is 1.13 or later, no upgrade is required.

When creating a node, you can enable the kubelet authentication mode by
injecting the postinstall file (by setting the kubelet startup parameter --
authorization-node=Webhook).

Step 1 Run the following command to create clusterrolebinding:

kubectl create clusterrolebinding kube-apiserver-kubelet-admin --
clusterrole=system:kubelet-api-admin --user=system:kube-apiserver

Step 2 For an existing node, log in to the node, change authorization mode in /var/
paas/kubernetes/kubelet/kubelet_config.yaml on the node to Webhook, and
restart kubelet.

sed -i s/AlwaysAllow/Webhook/g /var/paas/kubernetes/kubelet/
kubelet_config.yaml; systemctl restart kubelet

Step 3 For a new node, add the following command to the post-installation script to
change the kubelet permission mode:

sed -i s/AlwaysAllow/Webhook/g /var/paas/kubernetes/kubelet/
kubelet_config.yaml; systemctl restart kubelet

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

----End

Uninstalling web-terminal After Use

The web-terminal add-on can be used to manage CCE clusters. Keep the login
password secure and uninstall the add-on when it is no longer needed.

6.3 Configuration Suggestions on CCE Node Security

Handling Vulnerabilities Released on the Official Website Promptly

Before releasing a new image, fix the node vulnerabilities by referring to
Vulnerability Notice.

Preventing Nodes from Being Exposed to Public Networks
● Do not bind an EIP to a node unless necessary to reduce the attack surface.
● If an EIP must be used, properly configure the firewall or security group rules

to restrict access of unnecessary ports and IP addresses.

You may have configured the kubeconfig.json file on a node in your cluster.
kubectl can use the certificate and private key in this file to control the entire
cluster. You are advised to delete unnecessary files from the /root/.kube directory
on the node to prevent malicious use.

rm -rf /root/.kube

Hardening VPC Security Group Rules

CCE is a universal container platform. Its default security group rules apply to
common scenarios. Based on security requirements, you can harden the security

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

https://support.huaweicloud.com/intl/en-us/bulletin-cce/cce_bulletin_0011.html

group rules set for CCE clusters on the Security Groups page of Network
Console.

For details, see Configuring Cluster Security Group Rules.

Hardening Nodes on Demand

CCE cluster nodes use the default settings of open source OSs. After a node is
created, you need to perform security hardening according to your service
requirements.

In CCE, you can perform hardening as follows:

● Use the post-installation script after the node is created. For details, see the
description about Post-installation Script in Advanced Settings when
creating a node. This script is user-defined.

● Build custom images in CCE to create worker nodes. For details about the
creation process, see Creating a Custom CCE Node Image.

Forbidding Containers to Obtain Host Machine Metadata

If a single CCE cluster is shared by multiple users to deploy containers, containers
cannot access the management address (169.254.169.254) of OpenStack,
preventing containers from obtaining metadata of host machines.

For details about how to restore the metadata, see the "Notes" section in
Obtaining Metadata.

WARNING

This solution may affect the password change on the ECS console. Therefore, you
must verify the solution before rectifying the fault.

Step 1 Obtain the network model and container CIDR of the cluster.

On the Clusters page of the CCE console, view the network model and container
CIDR of the cluster.

Step 2 Prevent the container from obtaining host metadata.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00265.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cce/cce_bestpractice_00026.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_0166.html

● VPC network

a. Log in to each node in the cluster as user root and run the following
command:
iptables -I OUTPUT -s {container_cidr} -d 169.254.169.254 -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.
To ensure configuration persistence, write the command to the /etc/
rc.local script.

b. Run the following commands in the container to access the userdata and
metadata interfaces of OpenStack and check whether the request is
intercepted:
curl 169.254.169.254/openstack/latest/meta_data.json
curl 169.254.169.254/openstack/latest/user_data

● Container tunnel network

a. Log in to each node in the cluster as user root and run the following
command:
iptables -I FORWARD -s {container_cidr} -d 169.254.169.254 -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.
To ensure configuration persistence, write the command to the /etc/
rc.local script.

b. Run the following commands in the container to access the userdata and
metadata interfaces of OpenStack and check whether the request is
intercepted:
curl 169.254.169.254/openstack/latest/meta_data.json
curl 169.254.169.254/openstack/latest/user_data

● CCE Turbo cluster
No additional configuration is required.

----End

6.4 Configuration Suggestions on CCE Container
Runtime Security

Container technology uses Linux namespaces and cgroups to isolate and control
resources between containers and nodes. Namespaces provide kernel-level
isolation, allowing processes to be restricted from accessing specific sets of
resources, such as file systems, networks, processes, and users. Cgroups are a Linux
kernel feature that manages and limits the usage of resources, such as CPU,
memory, disk, and network, to prevent a single process from consuming too many
resources and negatively impacting the overall system performance.

While namespaces and cgroups isolate resources between containers and nodes in
an environment, node resources are not visible to containers. However, this
isolation does not provide true security isolation because containers share the
kernels of their nodes. If a container exhibits malicious behavior or a kernel
vulnerability is exploited by attackers, the container may breach resource isolation.
This can result in the container escaping and potentially compromising the node
and other containers on the node.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

To enhance runtime security, there are various mechanisms that can be used to
detect and prevent malicious activities in containers. These mechanisms, such as
capabilities, seccomp, AppArmor, and SELinux, can be integrated into Kubernetes.
By using these mechanisms, container security can be improved and potential
threats can be minimized.

Capabilities

Capabilities are a permission mechanism that enables a process to perform certain
system operations without requiring full root permissions. This mechanism divides
root permissions into smaller, independent permissions known as capabilities. By
doing so, the process only obtains the minimum permission set necessary to
complete its tasks. This approach enhances system security and helps mitigate
potential security risks.

In a containerized environment, you can manage a container's capabilities by
configuring its securityContext. The following is a configuration example:

...
securityContext:
 capabilities:
 add:
 - NET_BIND_SERVICE
 drop:
 -all

In this way, you can ensure that the container only has the necessary permissions
to complete its tasks. This approach eliminates the risk of security breaches caused
by excessive permissions. For more information about how to configure
capabilities for a container, see Set capabilities for a Container.

Seccomp

Seccomp is a mechanism that filters system calls, limiting the ones that processes
can use to decrease the potential attack surface. Linux has many system calls, but
not all are needed for containerized applications. By restricting the system calls
that containers can execute, you can greatly reduce the risk of attacks on your
applications.

Seccomp's main principle is to intercept all system calls and only allow trusted
ones to pass. Container runtimes, such as Docker and containerd, come with
default seccomp configurations that work for most common workloads.

In Kubernetes clusters, you can configure seccomp policies for containers to use
the default security configuration. The following shows how to configure seccomp
in different versions of Kubernetes clusters:

● For clusters of versions earlier than Kubernetes 1.19, you can use the
following annotations to specify the seccomp configuration:
annotations:
 seccomp.security.alpha.kubernetes.io/pod: "runtime/default"

● For clusters of Kubernetes 1.19 and later versions, you can use
securityContext to configure seccomp policies.
securityContext:
 seccompProfile:
 type: RuntimeDefault

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

These configurations use the default seccomp policy, which permits containers to
make a limited number of secure system calls. For more configuration options and
advanced settings of seccomp, see Restrict a Container's Syscalls with seccomp.

AppArmor and SELinux
AppArmor and SELinux are both Mandatory Access Control (MAC) systems that
offer a more stringent approach than traditional Discretionary Access Control
(DAC) to manage and restrict process permissions. While similar to seccomp in
concept, these systems provide more precise access control, including access to file
system paths, network ports, and other resources.

AppArmor and SELinux enable administrators to create policies that precisely
manage the resources that applications can access. They can limit read and write
permissions on specific files or directories, or regulate access to network ports.

Both systems are integrated into Kubernetes, allowing security policies to be
applied at the container level.
● For details about how to use AppArmor, see Restrict a Container's Access to

Resources with AppArmor.
● For SELinux, you can configure seLinuxOptions in securityContext.

...
securityContext:
 seLinuxOptions:
 level: "s0:c123,c456"

For details, see Assign SELinux labels to a Container.

6.5 Configuration Suggestions on CCE Container
Security

Controlling the Pod Scheduling Scope
The nodeSelector or nodeAffinity is used to limit the range of nodes to which
applications can be scheduled, preventing the entire cluster from being threatened
due to the exceptions of a single application. For details, see Node Affinity.

To achieve strong isolation, like in logical multi-tenancy situations, it is important
to have system add-ons run on separate nodes or node pools. This helps keep
them separated from service pods and reduces the risk of privilege escalation
within a cluster. To do this, you can set the node affinity policy to either Node
Affinity or Specified Node Pool Scheduling on the add-on installation page.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#assign-selinux-labels-to-a-container
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0232.html

Suggestions on Container Security Configuration
● Set the computing resource limits (request and limit) of a container. This

prevents the container from occupying too many resources and affecting the
stability of the host and other containers on the same node.

● Unless necessary, do not mount sensitive host directories to containers, such
as /, /boot, /dev, /etc, /lib, /proc, /sys, and /usr.

● Do not run the sshd process in containers unless necessary.
● Unless necessary, it is not recommended that containers and hosts share the

network namespace.
● Unless necessary, it is not recommended that containers and hosts share the

process namespace.
● Unless necessary, it is not recommended that containers and hosts share the

IPC namespace.
● Unless necessary, it is not recommended that containers and hosts share the

UTS namespace.
● Unless necessary, do not mount the sock file of Docker to any container.

Container Permission Access Control
When using a containerized application, comply with the minimum privilege
principle and properly set securityContext of Deployments or StatefulSets.

● Configure runAsUser to specify a non-root user to run a container.
● Configure privileged to prevent containers being used in scenarios where

privilege is not required.
● Configure capabilities to accurately control the privileged access permission of

containers.
● Configure allowPrivilegeEscalation to disable privilege escape in scenarios

where privilege escalation is not required for container processes.
● Configure seccomp to restrict the container syscalls. For details, see Restrict a

Container's Syscalls with seccomp in the official Kubernetes documentation.
● Configure ReadOnlyRootFilesystem to protect the root file system of a

container.
Example YAML for a Deployment:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: security-context-example
 namespace: security-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: security-context-example
 label: security-context-example
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 annotations:

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/seccomp/

 seccomp.security.alpha.kubernetes.io/pod: runtime/default
 labels:
 app: security-context-example
 label: security-context-example
 spec:
 containers:
 - image: ...
 imagePullPolicy: Always
 name: security-context-example
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 runAsUser: 1000
 capabilities:
 add:
 - NET_BIND_SERVICE
 drop:
 - all
 volumeMounts:
 - mountPath: /etc/localtime
 name: localtime
 readOnly: true
 - mountPath: /opt/write-file-dir
 name: tmpfs-example-001
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - hostPath:
 path: /etc/localtime
 type: ""
 name: localtime
 - emptyDir: {}
 name: tmpfs-example-001

Restricting the Access of Containers to the Management Plane
If application containers on a node do not need to access Kubernetes, you can
perform the following operations to disable containers from accessing kube-
apiserver:

Step 1 Query the container CIDR block and private API server address.

On the Clusters page of the CCE console, click the name of the cluster to find the
information on the details page.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Step 2 Configure access rules.

● CCE cluster: Log in to each node in the cluster as user root and run the
following command:

– VPC network:
iptables -I OUTPUT -s {container_cidr} -d {Private API server IP} -j REJECT

– Container tunnel network:
iptables -I FORWARD -s {container_cidr} -d {Private API server IP} -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.

To ensure configuration persistence, write the command to the /etc/rc.local
script.

● CCE Turbo cluster: Add an outbound rule to the ENI security group of the
cluster.

a. Log in to the VPC console.

b. In the navigation pane, choose Access Control > Security Groups.

c. Locate the ENI security group corresponding to the cluster and name it in
the format of {Cluster name}-cce-eni-{Random ID}. Click the security
group name and configure rules.

d. Click the Outbound Rules tab and click Add Rule to add an outbound
rule for the security group.

▪ Priority: Set it to 1.

▪ Action: Select Deny, indicating that the access to the destination
address is denied.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

▪ Type: Select IPv4.

▪ Protocol & Port: Enter 5443 based on the port in the intranet API
server address.

▪ Destination: Select IP address and enter the IP address of the
internal API server.

e. Click OK.

Step 3 Run the following command in the container to access kube-apiserver and check
whether the request is intercepted:
curl -k https://{Private API server IP}:5443

----End

6.6 Configuration Suggestions on CCE Container Image
Security

Container images are the primary defense against external attacks and are crucial
for securing applications, systems, and the entire supply chain. If an image is
insecure, it can become a vulnerability for attackers to exploit. This can lead to the
container escaping to its node, allowing attackers to access sensitive data on the
node or use it as a launching pad to gain control over the entire cluster or tenant
account. This section describes some recommended configurations to mitigate
such risks.

Minimizing a Container Image

To improve container image security, it is recommended that you remove any
unnecessary binary files. When using an unknown image from Docker Hub, you
are advised to review the image content with a tool like Dive. Dive provides layer-
by-layer details of an image, helping to identify potential security risks. For details,
see Dive.

For improved security, it is recommended that you delete binary files with setuid
and setgid permissions, because these can be exploited to elevate permissions. It is
also wise to remove shell tools and applications that could be used maliciously,
like nc and curl. To locate files with setuid and setgid bits, use the following
command:

find / -perm /6000 -type f -exec ls -ld {} \;

To remove special permissions from the obtained files, add the following
command to your container image:

RUN find / -xdev -perm /6000 -type f -exec chmod a-s {} \; || true

Using Multi-Stage Builds

Multi-stage builds are a great way to create container images efficiently, especially
in the CI process. With multi-stage builds, you can perform lint checks on source
code or static code analysis during the build process, providing quick feedback to
developers. There is no need to wait for the entire build to finish.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

https://github.com/wagoodman/dive

Multi-stage builds offer significant security advantages by allowing developers to
include only necessary components in container images, excluding build tools and
other unnecessary binary files. This approach reduces the attack surface of images
and improves overall security.

For more information about the concepts, best practices, and advantages of multi-
stage builds, see the Docker documentation. This will help you create
streamlined and secure container images while optimizing development and
deployment processes.

Using SWR
SWR provides easy, secure, reliable management of container images throughout
their lifecycles, featuring image push, pull, and deletion.

SWR stands out for its precise permissions management, allowing administrators
to customize access permissions for different users with read, edit, and manage
levels. This ensures image security and compliance, meeting the needs of team
collaboration.

Additionally, SWR offers automatic deployment capabilities. You can set a trigger
to automatically deploy updated image versions. When a new image version is
released, SWR automatically triggers the application that uses the image in CCE to
update it, streamlining CI/CD.

To further enhance SWR's security and flexibility, fine-grained permissions control
can be added to IAM users. For details about authorization management, see User
Permissions.

Scanning an Image Using SWR
With SWR, you can easily scan and secure your images with just a few clicks.
Image scanning provides a thorough security check for your private images in
repositories. It detects potential vulnerabilities and offers rectification suggestions.

Using an Image Signature and Configuring a Signature Verification Policy
Image signature verification is a security measure that confirms whether a
container image has been tampered with after its creation. The image creator can
sign the image content, and a user can verify the image's integrity and source by
checking the signature.

This verification is crucial in maintaining container image security. By using image
signature verification, organizations can guarantee the security and reliability of
their containerized applications and safeguard them from potential security risks.

Adding the USER Instruction to a Dockerfile to Run Commands as a Non-
root User

Properly configuring user permissions during container build and deployment can
greatly enhance container security. This not only helps prevent potential malicious
activities, but also aligns with the principle of least privilege (PoLP).

By setting the USER instruction in Dockerfiles, subsequent commands are executed
as non-root users, which is a standard security practice.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

https://docs.docker.com/develop/develop-images/multistage-build/
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0015.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0015.html

● Limited permissions: Running a container as a non-root user can also mitigate
potential security risks, because attackers cannot gain full control over the
node even if the container is attacked.

● Restricted access: Non-root users typically have limited permissions, which
restrict their access to and operation capabilities on node resources.

In addition to Dockerfiles, the securityContext field in podSpec of Kubernetes can
be used to configure user and group IDs and enforce security policies during
container deployment.

6.7 Configuration Suggestions on CCE Secret Security
Currently, CCE has configured static encryption for secret resources. The secrets
created by users will be encrypted and stored in etcd of the CCE cluster. Secrets
can be used in two modes: environment variable and file mounting. No matter
which mode is used, CCE still transfers the configured data to users. Therefore, it is
recommended that:

1. Do not record sensitive information in logs.
2. For the secret that uses the file mounting mode, the default file permission

mapped in the container is 0644. Configure stricter permissions for the file.
For example:
apiversion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 defaultMode: 256

In defaultMode: 256, 256 is a decimal number, which corresponds to the
octal number 0400.

3. When the file mounting mode is used, configure the secret file name to hide
the file in the container.
apiVersion: v1
kind: Secret
metadata:
 name: dotfile-secret
data:
 .secret-file: dmFsdWUtMg0KDQo=

apiVersion: v1
kind: Pod
metadata:
 name: secret-dotfiles-pod
spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: dotfile-secret
 containers:
 - name: dotfile-test-container

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

 image: k8s.gcr.io/busybox
 command:
 - ls
 - "-1"
 - "/etc/secret-volume"
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"

In this way, .secret-file cannot be seen by running ls -l in the /etc/secret-
volume/ directory, but can be viewed by running ls -al.

4. Encrypt sensitive information before creating a secret and decrypt the
information when using it.

Using a Bound ServiceAccount Token to Access a Cluster
The secret-based ServiceAccount token does not support expiration time or auto
update. In addition, after the mounting pod is deleted, the token is still stored in
the secret. Token leakage may incur security risks. A bound ServiceAccount token
is recommended for CCE clusters of version 1.23 or later. In this mode, the
expiration time can be set and is the same as the pod lifecycle, reducing token
leakage risks. Example:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: security-token-example
 namespace: security-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: security-token-example
 label: security-token-example
 template:
 metadata:
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
 labels:
 app: security-token-example
 label: security-token-example
 spec:
 serviceAccountName: test-sa
 containers:
 - image: ...
 imagePullPolicy: Always
 name: security-token-example
 volumes:
 - name: test-projected
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 expirationSeconds: 1800
 path: token
 - configMap:
 items:
 - key: ca.crt
 path: ca.crt
 name: kube-root-ca.crt
 - downwardAPI:
 items:
 - fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 path: namespace

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

For details, see Managing Service Accounts.

Using the CCE Secrets Manager for DEW Add-on
The CCE Secrets Manager for DEW add-on (dew-provider) is used to interconnect
with DEW. This add-on allows you to mount secrets stored outside a cluster (DEW
for storing sensitive information) to pods. In this way, sensitive information can be
decoupled from the cluster environment, which prevents information leakage
caused by program hardcoding or plaintext configuration. For details, see CCE
Secrets Manager for DEW.

6.8 Configuration Suggestions on CCE Workload
Identity Security

A workload identity enables workloads within a cluster to act as IAM users,
granting them access to cloud services without the need for an IAM account's AK
and SK. This helps to minimize security risks.

This section describes how to use workload identities in CCE.

Notes and Constraints
The cluster version must be 1.19.16 or later.

Procedure

Step 1 Obtain the public key of the cluster serviceAccountToken from CCE. For details, see
Step 1: Obtain the Public Key for Signature of the CCE Cluster.

Step 2 Create an identity provider on IAM. For details, see Step 2: Configure an Identity
Provider.

Step 3 Obtain an IAM token from the workload to simulate an IAM user to access a
cloud service. For details, see Step 3: Use a Workload Identity.

The procedure is as follows:

1. Deploy the application pod and obtain the OpenID Connect ID token file by
mounting the identity provider.

2. Use the mounted OpenID Connect ID token file in programs in the pod to
access IAM and obtain a temporary IAM token.

3. Access the cloud service using the IAM token in programs in the pod.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0370.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0370.html

Figure 6-1 Workflow

----End

Step 1: Obtain the Public Key for Signature of the CCE Cluster

Step 1 Use kubectl to access the target cluster.

Step 2 Obtain the public key:

kubectl get --raw /openid/v1/jwks

kubectl get --raw /openid/v1/jwks
{"keys":[{"use":"sig","kty":"RSA","kid":"*****","alg":"RS256","n":"*****","e":"AQAB"}]}

The returned field is the public key of the cluster.

----End

Step 2: Configure an Identity Provider

Step 1 Log in to the IAM console, choose Identity Providers in the navigation pane, and
click Create Identity Provider in the upper right corner. On the displayed page,
set Protocol to OpenID Connect and SSO Type to Virtual user and click OK.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

Step 2 In the identity provider list, locate the row containing the new identity provider
and click Modify in the Operation column to modify the identity provider
information.

Access Type: Select Programmatic access.

Configuration Information

● Identity Provider URL: Enter https://kubernetes.default.svc.cluster.local.
● Client ID: Enter an ID, which will be used when you create a container.
● Signing Key: Enter the JWKS of the CCE cluster obtained in Step 1: Obtain

the Public Key for Signature of the CCE Cluster.

Identity Conversion Rules

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

An identity conversion rule maps the ServiceAccount of a workload to IAM user.

For example, create a ServiceAccount named oidc-token in namespace default of
the cluster and map it to user group demo. If you use the identity provider ID to
access cloud services, you have the permissions of the demo user group. The
attribute must be sub. The value format is
system:serviceaccount:Namespace:ServiceAccountName.

Rules are in the JSON format as follows:

[
 {
 "local": [
 {
 "user": {
 "name": "test"
 }
 },
 {
 "group": {
 "name": "demo"
 }
 }
],
 "remote": [
 {
 "type": "sub",
 "any_one_of": [
 "system:serviceaccount:default:oidc-token"
]
 }
]
 }
]

Step 3 Click OK.

----End

Step 3: Use a Workload Identity

Step 1 Create a ServiceAccount, whose name must be the value of ServiceAccountName
set in Step 2: Configure an Identity Provider.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: oidc-token

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

Step 2 Mount the identity provider to the workload and obtain the OpenID Connect ID
token file.

An example is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 version: v1
 template:
 metadata:
 labels:
 app: nginx
 version: v1
 spec:
 containers:
 - name: container-1
 image: nginx:latest
 volumeMounts:
 - mountPath: "/var/run/secrets/tokens" # Mount the serviceAccountToken generated by Kubernetes
to the /var/run/secrets/tokens/oidc-token file.
 name: oidc-token
 imagePullSecrets:
 - name: default-secret
 serviceAccountName: oidc-token # Name of the created ServiceAccount
 volumes:
 - name: oidc-token
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 audience: client_id # Must be the client ID of the identity provider.
 expirationSeconds: 7200 # Expiry period
 path: oidc-token # Path name, which can be customized

Step 3 After the creation is complete, log in to the container. The content of
the /var/run/secrets/tokens/oidc-token file is the serviceAccountToken generated
by Kubernetes.

NO TE

If the serviceAccountToken is used for more than 24 hours or 80% of its expiry period,
kubelet will automatically rotate the serviceAccountToken.

Step 4 Use the OpenID Connect ID token to call the API for Obtaining a Token with an
OpenID Connect ID Token. The X-Subject-Token field in the response header is
the IAM token. Then, you can use this token to access cloud services.

The following shows an example:

curl -i --location --request POST 'https://{{iam endpoint}}/v3.0/OS-AUTH/id-token/tokens' \
 --header 'X-Idp-Id: workload_identity' \
 --header 'Content-Type: application/json' \
 --data @token_body.json

Specifically:

● {{iam endpoint}} indicates the endpoint of IAM. For details, see Regions and
Endpoints.

● workload_identity is the identity provider name, which is the same as that
configured in Step 2: Configure an Identity Provider.

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

https://support.huaweicloud.com/intl/en-us/api-iam/iam_13_0605.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_13_0605.html
https://developer.huaweicloud.com/intl/en-us/endpoint
https://developer.huaweicloud.com/intl/en-us/endpoint

● token_body.json is a local file and its content is as follows:
 {
 "auth" : {
 "id_token" : {
 "id" : "eyJhbGciOiJSU..."
 },
 "scope": {
 "project" : {
 "id" : "46419baef4324...",
 "name" : ******
 }
 }
 }
 }

– $.auth.id_token.id: The value is the content of the /var/run/secrets/
tokens/oidc-token file in the container.

– $.auth.scope.project.id: indicates the project ID. For details about how to
obtain the project ID, see Obtaining a Project ID.

– $.auth.scope.project.name: indicates the project name, for example, cn-
north-4.

----End

Cloud Container Engine
Best Practices 6 Security

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

https://support.huaweicloud.com/intl/en-us/api-cce/cce_02_0341.html

7 Auto Scaling

7.1 Using HPA and CA for Auto Scaling of Workloads
and Nodes

Application Scenarios
The best way to handle surging traffic is to automatically adjust the number of
machines based on the traffic volume or resource usage, which is called scaling.

When deploying applications in pods, you can configure requested resources and
resource limits for the pods to prevent unlimited usage of resources during peak
hours. However, after the upper limit is reached, an application error may occur.
Pod scaling can effectively resolve this issue. If the resource usage on the node
increases to a certain extent, newly added pods cannot be scheduled to this node.
In this case, CCE will add nodes accordingly.

Solution
Two major auto scaling policies are HPA (Horizontal Pod Autoscaling) and CA
(Cluster AutoScaling). HPA is for workload auto scaling and CA is for node auto
scaling.

HPA and CA work with each other. HPA requires sufficient cluster resources for
successful scaling. When the cluster resources are insufficient, CA is needed to add
nodes. If HPA reduces workloads, the cluster will have a large number of idle
resources. In this case, CA needs to release nodes to avoid resource waste.

As shown in Figure 7-1, HPA performs scale-out based on the monitoring metrics.
When cluster resources are insufficient, newly created pods are in Pending state.
CA then checks these pending pods and selects the most appropriate node pool
based on the configured scaling policy to scale out the node pool. For details
about how HPA and CA work, see Workload Scaling Mechanisms and Node
Scaling Mechanisms.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0290.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0296.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0296.html

Figure 7-1 HPA and CA working flows

Using HPA and CA enables automatic scaling for most scenarios while also
providing monitoring capabilities.

This section uses an example to describe the auto scaling process using HPA and
CA policies together.

Preparations

Step 1 Create a cluster with one node. The node should have 2 cores of vCPUs and 4 GiB
of memory, or a higher specification, as well as an EIP to allow external access. If
no EIP is bound to the node during node creation, you can manually bind one on
the ECS console after creating the node.

Step 2 Install add-ons for the cluster.
● autoscaler: node scaling add-on
● metrics-server: an aggregator of resource usage data in a Kubernetes cluster.

It can collect measurement data of major Kubernetes resources, such as pods,
nodes, containers, and Services.

Step 3 Log in to the cluster node and run a computing-intensive application. When a user
sends a request, the result needs to be calculated before being returned to the
user.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

1. Create a PHP file named index.php to calculate the square root of the
request for 1,000,000 times before returning OK!.
vi index.php

The file content is as follows:
<?php
 $x = 0.0001;
 for ($i = 0; $i <= 1000000; $i++) {
 $x += sqrt($x);
 }
 echo "OK!";
?>

2. Compile a Dockerfile file to build an image.
vi Dockerfile

The content is as follows:
FROM php:5-apache
COPY index.php /var/www/html/index.php
RUN chmod a+rx index.php

3. Run the following command to build an image named hpa-example with the
tag latest.
docker build -t hpa-example:latest .

4. (Optional) Log in to the SWR console, choose Organizations in the
navigation pane, and click Create Organization in the upper right corner.
Skip this step if you already have an organization.

5. In the navigation pane, choose My Images and then click Upload Through
Client. On the page displayed, click Generate a temporary login command

and click to copy the command.
6. Run the login command copied in the previous step on the cluster node. If the

login is successful, the message "Login Succeeded" is displayed.
7. Tag the hpa-example image.

docker tag {Image name 1:Tag 1}/{Image repository address}/{Organization
name}/{Image name 2:Tag 2}
– {Image name 1:Tag 1}: name and tag of the local image to be uploaded.
– {Image repository address}: the domain name at the end of the login

command in login command. It can be obtained on the SWR console.
– {Organization name}: name of the created organization.
– {Image name 2:Tag 2}: desired image name and tag to be displayed on

the SWR console.
The following is an example:
docker tag hpa-example:latest swr.ap-southeast-1.myhuaweicloud.com/
cloud-develop/hpa-example:latest

8. Push the image to the image repository.
docker push {Image repository address}/{Organization name}/{Image name
2:Tag 2}
The following is an example:
docker push swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/hpa-
example:latest
The following information will be returned upon a successful push:
6d6b9812c8ae: Pushed
...

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

fe4c16cbf7a4: Pushed
latest: digest: sha256:eb7e3bbd*** size: **

To view the pushed image, go to the SWR console and refresh the My Images
page.

----End

Creating a Node Pool and a Node Scaling Policy

Step 1 Log in to the CCE console, access the created cluster, click Nodes on the left, click
the Node Pools tab, and click Create Node Pool in the upper right corner.

Step 2 Configure the node pool.
● Node Type: Select a node type.
● Specifications: 2 vCPUs | 4 GiB

Retain the defaults for other parameters. For details, see Creating a Node Pool.

Step 3 Locate the row containing the newly created node pool and click Auto Scaling in
the upper right corner. For details, see Creating a Node Scaling Policy.

If the CCE Cluster Autoscaler add-on is not installed in the cluster, install it first.
For details, see CCE Cluster Autoscaler.
● Customize scale-out rules.: Click Add Rule. In the dialog box displayed,

configure parameters. If the CPU allocation rate is greater than 70%, a node
is added to each associated node pool. A node scaling policy needs to be
associated with a node pool. Multiple node pools can be associated. When
you need to scale nodes, node with proper specifications will be added or
reduced from the node pool based on the minimum waste principle.

● Nodes: Modify the node quantity range. The number of nodes in a node pool
will always be within the range during auto scaling.

● Cooldown Period: a period during which the nodes added in the current node
pool cannot be scaled in

Step 4 Click OK.

----End

Creating a Workload
Use the hpa-example image to create a Deployment with one replica. The image
path is related to the organization uploaded to the SWR repository and needs to
be replaced with the actual value.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hpa-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hpa-example
 template:
 metadata:
 labels:
 app: hpa-example
 spec:

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0012.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0209.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0154.html

 containers:
 - name: container-1
 image: 'hpa-example:latest' # Replace it with the address of the image you uploaded to SWR.
 resources:
 limits: # The value of limits must be the same as that of requests to prevent flapping
during scaling.
 cpu: 500m
 memory: 200Mi
 requests:
 cpu: 500m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Then, create a NodePort Service for the workload so that the workload can be
accessed from external networks.

NO TE

To allow external access to NodePort Services, allocate an EIP for the node in the cluster.
After the allocation, synchronize node data. For details, see Synchronizing Data with
Cloud Servers. If the node has already bound with an EIP, you do not need to create one.

Alternatively, you can create a Service with an ELB load balancer for external access. For
details, see Using kubectl to Create a Service (Automatically Creating a Load Balancer).

kind: Service
apiVersion: v1
metadata:
 name: hpa-example
spec:
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 31144
 selector:
 app: hpa-example
 type: NodePort

Creating an HPA Policy
Create an HPA policy. As shown below, the policy is associated with the hpa-
example workload, and the target CPU usage is 50%.

There are two other annotations. One annotation defines the CPU thresholds,
indicating that scaling is not performed when the CPU usage is between 30% and
70% to prevent impact caused by slight fluctuation. The other is the scaling time
window, indicating that after the policy is successfully executed, a scaling
operation will not be triggered again in this cooling interval to prevent impact
caused by short-term fluctuation.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-policy
 annotations:
 extendedhpa.metrics: '[{"type":"Resource","name":"cpu","targetType":"Utilization","targetRange":
{"low":"30","high":"70"}}]'
 extendedhpa.option: '{"downscaleWindow":"5m","upscaleWindow":"3m"}'
spec:
 scaleTargetRef:
 kind: Deployment
 name: hpa-example
 apiVersion: apps/v1

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0184.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0184.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0681.html#section4

 minReplicas: 1
 maxReplicas: 100
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

Configure the parameters as follows if you are using the console.

Observing the Auto Scaling Process

Step 1 Check the cluster node status. In the following example, there are two nodes.
kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.0.183 Ready <none> 2m20s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.26 Ready <none> 55m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8

Check the HPA policy. The CPU usage of the target workload is 0%.

kubectl get hpa hpa-policy
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 4m

Step 2 Run the following command to access the workload. In the following command,
{ip:port} indicates the access address of the workload, which can be queried on
the workload details page.

while true;do wget -q -O- http://{ip:port}; done

NO TE

If no EIP is displayed, the cluster node has not been assigned any EIP. Allocate one, bind it
to the node, and synchronize node data. For details, see Synchronizing Data with Cloud
Servers.

Observe the scaling process of the workload.

kubectl get hpa hpa-policy --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 4m
hpa-policy Deployment/hpa-example 190%/50% 1 100 1 4m23s
hpa-policy Deployment/hpa-example 190%/50% 1 100 4 4m31s
hpa-policy Deployment/hpa-example 200%/50% 1 100 4 5m16s
hpa-policy Deployment/hpa-example 200%/50% 1 100 4 6m16s
hpa-policy Deployment/hpa-example 85%/50% 1 100 4 7m16s
hpa-policy Deployment/hpa-example 81%/50% 1 100 4 8m16s
hpa-policy Deployment/hpa-example 81%/50% 1 100 7 8m31s
hpa-policy Deployment/hpa-example 57%/50% 1 100 7 9m16s
hpa-policy Deployment/hpa-example 51%/50% 1 100 7 10m
hpa-policy Deployment/hpa-example 58%/50% 1 100 7 11m

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0184.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0184.html

You can see that the CPU usage of the workload is 190% at 4m23s, which exceeds
the target value. In this case, scaling is triggered to expand the workload to four
replicas/pods. In the subsequent several minutes, the CPU usage does not decrease
until 7m16s. This is because the new pods may not be successfully created. The
possible cause is that resources are insufficient and the pods are in the pending
state. During this period, nodes are being scaled out.

At 7m16s, the CPU usage decreases, indicating that the pods are successfully
created and start to bear traffic. The CPU usage decreases to 81% at 8m, still
greater than the target value (50%) and the high threshold (70%). Therefore, 7
pods are added at 9m16s, and the CPU usage decreases to 51%, which is within
the range of 30% to 70%. From then on, the number of pods remains 7.

In the following output, you can see the workload scaling process and the time
when the HPA policy takes effect.

kubectl describe deploy hpa-example
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 25m deployment-controller Scaled up replica set hpa-example-79dd795485
to 1
 Normal ScalingReplicaSet 20m deployment-controller Scaled up replica set hpa-example-79dd795485
to 4
 Normal ScalingReplicaSet 16m deployment-controller Scaled up replica set hpa-example-79dd795485
to 7
kubectl describe hpa hpa-policy
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 20m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 16m horizontal-pod-autoscaler New size: 7; reason: cpu resource utilization
(percentage of request) above target

Check the number of nodes. The following output shows that two nodes are
added.

kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.0.120 Ready <none> 3m5s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.136 Ready <none> 6m58s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.183 Ready <none> 18m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.26 Ready <none> 71m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8

You can also view the scaling history on the console. For example, the CA policy is
executed once when the CPU allocation rate in the cluster is greater than 70%,
and the number of nodes in the node pool is increased from 2 to 3. The new node
is automatically added by autoscaler based on the pending state of pods in the
initial phase of HPA.

The node scaling process is as follows:

1. After the number of pods changes to 4, the pods are in Pending state due to
insufficient resources. As a result, the default scale-out policy of the
autoscaler add-on is triggered, and the number of nodes is increased by one.

2. The second node scale-out is triggered because the CPU allocation rate in the
cluster is greater than 70%. As a result, the number of nodes is increased by
one, which is recorded in the scaling history on the console. Scaling based on
the allocation rate ensures that the cluster has sufficient resources.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Step 3 Stop accessing the workload and check the number of pods.
kubectl get hpa hpa-policy --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 50%/50% 1 100 7 12m
hpa-policy Deployment/hpa-example 21%/50% 1 100 7 13m
hpa-policy Deployment/hpa-example 0%/50% 1 100 7 14m
hpa-policy Deployment/hpa-example 0%/50% 1 100 7 18m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 18m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 23m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 23m
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 23m

You can see that the CPU usage is 21% at 13m. The number of pods is reduced to
3 at 18m, and then reduced to 1 at 23m.

In the following output, you can see the workload scaling process and the time
when the HPA policy takes effect.

kubectl describe deploy hpa-example
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 25m deployment-controller Scaled up replica set hpa-example-79dd795485
to 1
 Normal ScalingReplicaSet 20m deployment-controller Scaled up replica set hpa-example-79dd795485
to 4
 Normal ScalingReplicaSet 16m deployment-controller Scaled up replica set hpa-example-79dd795485
to 7
 Normal ScalingReplicaSet 6m28s deployment-controller Scaled down replica set hpa-
example-79dd795485 to 3
 Normal ScalingReplicaSet 72s deployment-controller Scaled down replica set hpa-
example-79dd795485 to 1
kubectl describe hpa hpa-policy
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 20m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 16m horizontal-pod-autoscaler New size: 7; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 6m45s horizontal-pod-autoscaler New size: 3; reason: All metrics below target
 Normal SuccessfulRescale 90s horizontal-pod-autoscaler New size: 1; reason: All metrics below target

You can also view the HPA policy execution history on the console. Wait until the
one node is reduced.

The reason why the other two nodes in the node pool are not reduced is that they
both have pods in the kube-system namespace (and these pods are not created by
DaemonSets). For details, see Node Scaling Mechanisms.

----End

Summary

By using HPA and CA, auto scaling can be effortlessly implemented in various
scenarios. Additionally, the scaling process of nodes and pods can be conveniently
tracked.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0296.html

7.2 Elastic Scaling of CCE Pods to CCI
The bursting add-on functions as a virtual kubelet to connect Kubernetes clusters
to APIs of other platforms. This add-on is mainly used to extend Kubernetes APIs
to serverless container services such as Huawei Cloud CCI.

With this add-on, you can schedule Deployments, StatefulSets, jobs, and CronJobs
running in CCE clusters to CCI during peak hours. In this way, you can reduce
consumption caused by cluster scaling.

Installing the Add-on
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane, choose Add-ons.
4. Select the CCE Cloud Bursting Engine for CCI add-on and click Install.
5. Configure the add-on parameters.

Table 7-1 Add-on parameters

Paramete
r

Description

Version Add-on version. There is a mapping between add-on versions
and CCE cluster versions. For more details, see "Change
History" in CCE Cloud Bursting Engine for CCI.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

https://support.huaweicloud.com/intl/en-us/cci/index.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0135.html#section8

Paramete
r

Description

Specificati
ons

Number of pods required for running the add-on.
● If you select Preset, you can select Single or HA.
● If you select Custom, you can modify the number of

replicas, vCPUs, and memory of each add-on component as
required.

NOTE
● The bursting add-on 1.5.2 or later uses more node resources. You

need to reserve sufficient pods before upgrading the add-on.
● Single (only one pod for the add-on): There must be a node that

has at least seven schedulable pods. If Networking is enabled,
eight schedulable pods are required.

● HA (two pods for the add-on): There must be two nodes, each
of which must have at least seven schedulable pods, a total of
14 schedulable pods. If Networking is enabled, eight
schedulable pods are required on each node, a total of 16
schedulable pods.

● The resource usage of the add-on varies depending on the
workloads scaled to CCI. The pods, secrets, ConfigMaps, PVs, and
PVCs requested by the services occupy VM resources. You are
advised to evaluate the service usage and apply for VMs based on
the following specifications: For 1,000 pods and 1,000 ConfigMaps
(300 KB), nodes with 2 vCPUs and 4-GiB memory are
recommended. For 2,000 pods and 2,000 ConfigMaps, nodes with 4
vCPUs and 8-GiB memory are recommended. For 4,000 pods and
4,000 ConfigMaps, nodes with 8 vCPUs and 16-GiB memory are
recommended.

Networki
ng

If this option is enabled, pods in the CCE cluster can
communicate with pods in CCI through Services. The
component proxy will be automatically deployed upon add-on
installation. For details, see Networking.

Creating a Workload
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane, choose Workloads.
4. Click Create Workload. For details, see Creating a Workload.
5. Specify basic information. Set Burst to CCI to Force scheduling. For more

information about scheduling policies, see Scheduling Pods to CCI.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0120.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0673.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0116.html

CA UTION

When you schedule a workload in a CCE cluster to CCI, TCP probes cannot be
used for health check.

6. Configure the container parameters.
7. Click Create Workload.
8. On the Workloads page, click the name of the created workload to go to the

workload details page.
9. View the node where the workload is running. If the workload is running on a

CCI node, it has been scheduled to CCI.

Uninstalling the Add-on
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane, choose Add-ons.
4. Select the CCE Cloud Bursting Engine for CCI add-on and click Uninstall.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

Table 7-2 Special scenarios for uninstalling the add-on

Scenario Symptom Description

There are no nodes
in the CCE cluster
that the bursting
add-on needs to be
uninstalled from.

Failed to uninstall the
bursting add-on.

If the bursting add-on is
uninstalled from the
cluster, a job for clearing
resources will be started
in the cluster. To ensure
that the job can be
started, there is at least
one node in the cluster
that can be scheduled.

The CCE cluster is
deleted, but the
bursting add-on is
not uninstalled.

There are residual
resources in the
namespace on CCI. If
the resources are not
free, additional
expenditures will be
generated.

The cluster is deleted,
but the resource clearing
job is not executed. You
can manually clear the
namespace and residual
resources.

For more information about the bursting add-on, see CCE Cloud Bursting
Engine for CCI.

7.3 Auto Scaling Based on Prometheus Metrics
Kubernetes' default HPA policy only allows for auto scaling based on CPU and
memory usage. However, in more complex service scenarios, this may not be
sufficient to meet routine O&M requirements. To address this, CCE offers a Cloud
Native Cluster Monitoring (kube-prometheus-stack) add-on that integrates into
the open-source Prometheus ecosystem. This add-on allows for monitoring of
various components and provides multiple preset monitoring dashboards that are
ready to use out-of-the-box. This document describes how to convert Huawei
Cloud Prometheus metrics into metrics that can be used by HPA, providing a more
convenient scaling mechanism for applications.

Prerequisites
● A cluster has been created.
● You can access the cluster using kubectl. For details, see Connecting to a

Cluster Using kubectl.

Step 1: Install Cloud Native Cluster Monitoring

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Add-ons.

Step 2 Locate the Cloud Native Cluster Monitoring add-on and click Install.

You are advised to focus on the following configurations, and adjust any other
configurations as necessary. For details, see Cloud Native Cluster Monitoring.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0136.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0136.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0406.html

● Local Data Storage: Enable this option to store the monitoring data in local
storage. You can determine whether to report the monitoring data to AOM or
a third-party monitoring platform.

● Custom Metric Collection: Enable this option in this practice. If this option is
not enabled, custom metrics cannot be collected.

Step 3 Click Install.

----End

Step 2: Obtain Prometheus Monitoring Data
In this section, HPA is performed based on metrics related to pods, for example,
pod metrics. You can also perform HPA based on metrics irrelevant to pods, for
example, external load balancer metrics. For details, see Auto Scaling Based on
ELB Monitoring Metrics.

The following describes how to deploy a sample-app application and expose the
container_memory_working_set_bytes_per_second metric in Prometheus
standard mode to identify the number of bytes per second in the working set of
the container memory. For more information about Prometheus metrics, see
METRIC TYPES.

Step 1 Deploy the test application.

1. Write a sample-app.yaml file. The file content is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: sample-app
 labels:
 app: sample-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sample-app
 template:
 metadata:
 labels:
 app: sample-app
 spec:
 containers:
 - image: swr.cn-east-3.myhuaweicloud.com/container/autoscale-demo:v0.1.2 # Sample image
 name: metrics-provider
 resources:
 requests:
 cpu: 250m
 memory: 512Mi
 limits:
 cpu: 250m
 memory: 512Mi
 ports:
 - name: http
 containerPort: 8080 #Container port
 imagePullSecrets:
 - name: default-secret

apiVersion: v1
kind: Service
metadata:
 name: sample-app
 namespace: default
 labels:

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

https://prometheus.io/docs/concepts/metric_types/

 app: sample-app
spec:
 ports:
 - port: 80
 name: http
 protocol: TCP
 targetPort: 8080
 selector:
 app: sample-app
 type: ClusterIP

NO TE

The application exposes container_memory_working_set_bytes_per_second, which is
used to check the working memory size of a container per second.

2. Create a workload.
kubectl apply -f sample-app.yaml

Step 2 Create a ServiceMonitor to monitor custom metrics.

1. Create a servicemonitor.yaml file. The file content is as follows:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: sample-app # ServiceMonitor name
 namespace: default
spec:
 endpoints: # Endpoints of the service to be monitored, including the name, port number, path,
protocol, and more
 - interval: 30s # Prometheus operator checks whether a service needs to be added to the
monitored target list every 30 seconds.
 port: http
 path: /metrics
 namespaceSelector:
 any: true
 selector:
 matchLabels:
 app: sample-app # Label of the object whose data needs to be collected

2. Create ServiceMonitor.
kubectl apply -f servicemonitor.yaml

----End

Step 3: Modify Configuration Files

Step 1 Modify Prometheus' adapter-config.

You can modify the rules field in adapter-config to convert the metrics exposed
by Prometheus to metrics that can be associated with HPA.

kubectl -n monitoring edit configmap user-adapter-config

Step 2 Add a custom metric collection rule to the rules field. You can add multiple
collection rules by adding multiple configurations under the rules field. For details,
see Metrics Discovery and Presentation Configuration.

The following is an example of a custom collection rule:
rules:
- seriesQuery: container_memory_working_set_bytes{namespace!="",pod!=""}
 resources:
 overrides:
 namespace:
 resource: namespace
 pod:
 resource: pod

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md

 name:
 matches: ^(.*)_bytes
 as: ${1}_bytes_per_second #The value of ${1} is the value that matches ^(.*) in matches:"^(.*)_bytes".
 metricsQuery: sum(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>)

● seriesQuery: indicates the PromQL request data. It specifies the metrics to be
obtained by users. You can configure this parameter as needed.

● metricsQuery: aggregates the data requested by PromQL in seriesQuery.
● resources: specifies data label in PromQL, which is used to match resources.

The resources here refer to the api-resource in a cluster, such as pods,
namespaces, and nodes. You can run kubectl api-resources -o wide to check
the resources. The key corresponds to LabelName in the Prometheus data.
You have to ensure that the Prometheus metric data contains LabelName.

● name: indicates that Prometheus metric names are converted to readable
metric names based on regular expression matching. In this example,
container_memory_working_set_bytes is converted to
container_memory_working_set_bytes_per_second.

Step 3 Redeploy the custom-metrics-apiserver workload in the monitoring namespace.
kubectl -nmonitoring delete pod -l app=custom-metrics-apiserver

Step 4 Run the following command to check whether the metric is added:
kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/
container_memory_working_set_bytes_per_second

----End

Step 4: Create an HPA Policy

Step 1 Create an HPA policy using custom metrics.

1. Create an hpa.yaml file. The file content is as follows:
kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2
metadata:
 name: sample-app-memory-high
spec:
Description of an HPA object. HPA dynamically changes the number of pods of the object.
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: sample-app
Minimum number of pods and maximum number of pods of the HPA
 minReplicas: 1
 maxReplicas: 10
#Monitored metric array. Multiple types of metrics can coexist.
 metrics:
 - type: Pods
 pods:
 metric:
 name: container_memory_working_set_bytes_per_second # Use the custom container metrics.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

 target:
 type: AverageValue # Target value of the AverageValue type. For the pod metrics, only the
target values of the AverageValue type are supported.
 averageValue: 1024000m # 1024000m specifies 1 KB.

2. Create the HPA policy.
kubectl apply -f hpa.yaml

Step 2 Check whether the HPA policy takes effect.
kubectl get hpa sample-app-memory-high

The number of replicas has been increased from 1 to 10.

----End

7.4 Auto Scaling Based on ELB Monitoring Metrics

Background
By default, Kubernetes scales a workload based on resource usage metrics such as
CPU and memory. However, this mechanism cannot reflect the real-time resource
usage when traffic bursts arrive, because the collected CPU and memory usage
data lags behind the actual load balancer traffic metrics. For some services (such
as flash sale and social media) that require fast auto scaling, scaling based on this
rule may not be performed in a timely manner and cannot meet these services'
actual needs. In this case, auto scaling based on ELB QPS data can respond to
service requirements more timely.

Solution
This section describes an auto scaling solution based on ELB monitoring metrics.
Compared with CPU/memory usage-based auto scaling, auto scaling based on ELB
QPS data is more targeted and timely.

The key of this solution is to obtain the ELB metric data and report the data to
Prometheus, convert the data in Prometheus to the metric data that can be
identified by HPA, and then perform auto scaling based on the converted data.

The implementation scheme is as follows:

1. Develop a Prometheus exporter to obtain ELB metric data, convert the data
into the format required by Prometheus, and report it to Prometheus. This
section uses cloudeye-exporter as an example.

2. Convert the Prometheus data into the Kubernetes metric API for the HPA
controller to use.

3. Set an HPA rule to use ELB monitoring data as auto scaling metrics.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

https://github.com/huaweicloud/cloudeye-exporter

Figure 7-2 ELB traffic flows and monitoring data

NO TE

Other metrics can be collected in the similar way.

Prerequisites
● You are familiar with Prometheus.
● You have installed the Cloud Native Cluster Monitoring add-on (kube-

prometheus-stack) of version 3.10.1 or later in the cluster.

NO TE

Local Data Storage must be enabled for Data Storage Configuration.

Building an Exporter Image
This section uses cloudeye-exporter to monitor load balancer metrics. To develop
an exporter, see Appendix: Developing an Exporter.

Step 1 Log in to a VM that can access the Internet and has Docker installed and write a
Dockerfile.
vi Dockerfile

The content is as follows:
FROM ubuntu:18.04
RUN apt-get update \
 && apt-get install -y git ca-certificates curl \
 && update-ca-certificates \
 && curl -O https://dl.google.com/go/go1.14.14.linux-amd64.tar.gz \
 && tar -zxf go1.14.14.linux-amd64.tar.gz -C /usr/local \
 && git clone -b master https://github.com/huaweicloud/cloudeye-exporter \
 && export PATH=$PATH:/usr/local/go/bin \
 && export GO111MODULE=on \
 && export GOPROXY=https://goproxy.cn,direct \
 && export GONOSUMDB=* \
 && cd cloudeye-exporter \

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

https://github.com/huaweicloud/cloudeye-exporter

 && go build
CMD ["/cloudeye-exporter/cloudeye-exporter -config=/tmp/clouds.yml"]

Step 2 Build an image. The image name is cloudeye-exporter and the image version is
1.0.
docker build --network host . -t cloudeye-exporter:1.0

Step 3 Push the image to SWR.

1. (Optional) Log in to the SWR console, choose Organizations in the
navigation pane, and click Create Organization in the upper right corner of
the page.
Skip this step if you already have an organization.

2. In the navigation pane, choose My Images and then click Upload Through
Client. On the page displayed, click Generate a temporary login command

and click to copy the command.
3. Run the login command copied in the previous step on the cluster node. If the

login is successful, the message "Login Succeeded" is displayed.
4. Tag the cloudeye-exporter image.

docker tag {Image name 1:Tag 1}/{Image repository address}/{Organization
name}/{Image name 2:Tag 2}
– {Image name 1:Tag 1}: name and tag of the local image to be uploaded.
– {Image repository address}: The domain name at the end of the login

command in Step 3.2 is the image repository address, which can be
obtained on the SWR console.

– {Organization name}: name of the organization created in Step 3.1.
– {Image name 2:Tag 2}: desired image name and tag to be displayed on

the SWR console.
The following is an example:
docker tag cloudeye-exporter:1.0 swr.ap-
southeast-1.myhuaweicloud.com/cloud-develop/cloudeye-exporter:1.0

5. Push the image to the image repository.
docker push {Image repository address}/{Organization name}/{Image name
2:Tag 2}
The following is an example:
docker push swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/
cloudeye-exporter:1.0
The following information will be returned upon a successful push:
...
030***: Pushed
1.0: digest: sha256:eb7e3bbd*** size: **

To view the pushed image, go to the SWR console and refresh the My Images
page.

----End

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

Deploying the Exporter

Prometheus can dynamically monitor pods if you add Prometheus annotations to
the pods (the default path is /metrics). This section uses cloudeye-exporter as an
example.

Common annotations in Prometheus are as follows:

● prometheus.io/scrape: If the value is true, the pod will be monitored.
● prometheus.io/path: URL from which the data is collected. The default value

is /metrics.
● prometheus.io/port: port number of the endpoint to collect data from.
● prometheus.io/scheme: Defaults to http. If HTTPS is configured for security

purposes, change the value to https.

Step 1 Use kubectl to connect to the cluster.

Step 2 Create a secret, which will be used by cloudeye-exporter for authentication.

1. Create the clouds.yml file with the following content:
 global:
 prefix: "huaweicloud"
 scrape_batch_size: 10
 auth:
 auth_url: "https://iam.ap-southeast-1.myhuaweicloud.com/v3"
 project_name: "ap-southeast-1"
 access_key: "********"
 secret_key: "***********"
 region: "ap-southeast-1"

Parameters in the preceding content are described as follows:
– auth_url: indicates the IAM endpoint, which can be obtained from

Regions and Endpoints.
– project_name: indicates the project name. On the My Credential page,

view the project name and project ID in the Projects area.
– access_key and secret_key: You can obtain them from Access Keys.
– region: indicates the region name, which must correspond to the project

in project_name.
2. Obtain the Base64-encrypted string of the preceding file.

cat clouds.yml | base64 -w0 ;echo

Information similar to the following is displayed:
ICAga*****

3. Create the clouds-secret.yaml file with the following content:
apiVersion: v1
kind: Secret
data:
 clouds.yml: ICAga***** # Replace it with the Base64-encrypted string.
metadata:
 annotations:
 description: ''
 name: 'clouds.yml'
 namespace: default #Namespace where the secret is in, which must be the same as the
deployment's namespace.
 labels: {}
type: Opaque

4. Create a secret.
kubectl apply -f clouds-secret.yaml

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

https://github.com/huaweicloud/cloudeye-exporter
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html

Step 3 Create the cloudeye-exporter-deployment.yaml file with the following content:
kind: Deployment
apiVersion: apps/v1
metadata:
 name: cloudeye-exporter
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 app: cloudeye-exporter
 version: v1
 template:
 metadata:
 labels:
 app: cloudeye-exporter
 version: v1
 spec:
 volumes:
 - name: vol-166055064743016314
 secret:
 secretName: clouds.yml
 defaultMode: 420
 containers:
 - name: container-1
 image: swr.ap-southeast-1.myhuaweicloud.com/cloud-develop/cloudeye-exporter:1.0 # exporter
image path built above
 command:
 - /cloudeye-exporter/cloudeye-exporter
 - '-config=/tmp/clouds.yml'
 resources: {}
 volumeMounts:
 - name: vol-166055064743016314
 readOnly: true
 mountPath: /tmp
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 imagePullPolicy: IfNotPresent
 restartPolicy: Always
 terminationGracePeriodSeconds: 30
 dnsPolicy: ClusterFirst
 securityContext: {}
 imagePullSecrets:
 - name: default-secret
 schedulerName: default-scheduler
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 25%
 revisionHistoryLimit: 10
 progressDeadlineSeconds: 600

Create the preceding workload.

kubectl apply -f cloudeye-exporter-deployment.yaml

Step 4 Create the cloudeye-exporter-service.yaml file.
apiVersion: v1
kind: Service
metadata:
 name: cloudeye-exporter
 namespace: default
 labels:
 app: cloudeye-exporter
 version: v1
 annotations:
 prometheus.io/port: '8087' #Port number of the endpoint to collect data from.
 prometheus.io/scrape: 'true' #If it is set to true, the resource is the monitoring target.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

 prometheus.io/path: "/metrics" #URL from which the data is collected. The default value is /metrics.
 prometheus.io/scheme: "http" #The default value is http. If https is set for security purposes, you need
to change it to https.
spec:
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 8087
 targetPort: 8087
 selector:
 app: cloudeye-exporter
 version: v1
 type: ClusterIP

Create the preceding Service.

kubectl apply -f cloudeye-exporter-service.yaml

----End

Interconnecting with Prometheus

After collecting monitoring data, Prometheus needs to convert the data into the
Kubernetes metric API for the HPA controller to perform auto scaling.

In this example, the ELB metrics associated with the workload need to be
monitored. Therefore, the target workload must use the Service or ingress of the
LoadBalancer type.

Step 1 View the access mode of the workload to be monitored and obtain the ELB
listener ID.

1. On the CCE cluster console, choose Networking. On the Services or
Ingresses tab page, view the Service or ingress of the LoadBalancer type and
click the load balancer to access the load balancer page.

2. On the Listeners tab, view the listener corresponding to the workload and
copy the listener ID.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Step 2 Use kubectl to connect to the cluster and add Prometheus configurations. In this
example, collect load balancer metrics. For details about advanced usage, see
Configuration.

1. Create the prometheus-additional.yaml file, add the following content to
the file, and save the file:
- job_name: elb_metric
 params:
 services: ['SYS.ELB']
 kubernetes_sd_configs:
 - role: endpoints
 relabel_configs:
 - action: keep
 regex: '8087'
 source_labels:
 - __meta_kubernetes_service_annotation_prometheus_io_port
 - action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 source_labels:
 - __address__
 - __meta_kubernetes_service_annotation_prometheus_io_port
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_service_label_(.+)
 - action: replace
 source_labels:
 - __meta_kubernetes_namespace
 target_label: kubernetes_namespace
 - action: replace
 source_labels:
 - __meta_kubernetes_service_name
 target_label: kubernetes_service

2. Use the preceding configuration file to create a secret named additional-
scrape-configs.
kubectl create secret generic additional-scrape-configs --from-file prometheus-additional.yaml -n
monitoring --dry-run=client -o yaml | kubectl apply -f -

3. Edit the persistent-user-config configuration item to enable
AdditionalScrapeConfigs.
kubectl edit configmap persistent-user-config -n monitoring

Add --common.prom.default-additional-scrape-configs-key=prometheus-
additional.yaml under operatorConfigOverride to enable
AdditionalScrapeConfigs as follows:
...
data:
 lightweight-user-config.yaml: |
 customSettings:
 additionalScrapeConfigs: []
 agentExtraArgs: []
 metricsDeprecated:
 globalDeprecateMetrics: []
 nodeExporterConfigOverride: []
 operatorConfigOverride:
 - --common.prom.default-additional-scrape-configs-key=prometheus-additional.yaml
...

4. Go to Prometheus to check whether custom metrics are successfully collected.

Step 3 Modify the user-adapter-config configuration item.
kubectl edit configmap user-adapter-config -nmonitoring

Add the following content to the rules field, replace lbaas_listener_id with the
listener ID obtained in Step 1, and save the file.
apiVersion: v1
data:

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

 config.yaml: |-
 rules:
 - metricsQuery: sum(<<.Series>>{<<.LabelMatchers>>,lbaas_listener_id="*****"}) by (<<.GroupBy>>)
 resources:
 overrides:
 kubernetes_namespace:
 resource: namespace
 kubernetes_service:
 resource: service
 name:
 matches: huaweicloud_sys_elb_(.*)
 as: "elb01_${1}"
 seriesQuery: '{lbaas_listener_id="*****"}'
 ...

Step 4 Redeploy the custom-metrics-apiserver workload in the monitoring namespace.

----End

Creating an HPA Policy

After the data reported by the exporter to Prometheus is converted into the
Kubernetes metric API by using the Prometheus adapter, you can create an HPA
policy for auto scaling.

Step 1 Create an HPA policy. The inbound traffic of the ELB load balancer is used to
trigger scale-out. When the value of m7_in_Bps (inbound traffic rate) exceeds
1000, the nginx Deployment will be scaled.
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: nginx
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: nginx
 minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Object
 object:
 metric:
 name: elb01_listener_m7_in_Bps #Monitoring metric name
 describedObject:
 apiVersion: v1
 kind: Service
 name: cloudeye-exporter
 target:

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

 type: Value
 value: 1000

Figure 7-3 Created HPA Policy

Step 2 After the HPA policy is created, perform a pressure test on the workload
(accessing the pods through ELB). Then, the HPA controller determines whether
scaling is required based on the configured value.

In the Events dialog box, obtain scaling records in the Kubernetes Event column.

Figure 7-4 Scaling events

----End

ELB Listener Metrics
The following table lists the ELB listener metrics that can be collected using the
method described in this section.

Table 7-3 ELB listener metrics

Metric Name Unit Description

m1_cps Concurrent
Connections

Count Number of concurrent
connections processed by a load
balancer.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

Metric Name Unit Description

m1e_server_r
ps

Reset Packets
from Backend
Servers

Count/
Second

Number of reset packets sent
from the backend server to
clients. These reset packages are
generated by the backend server
and then forwarded by load
balancers.

m1f_lvs_rps Reset Packets
from Load
Balancers

Count/
Second

Number of reset packets sent
from load balancers.

m21_client_rp
s

Reset Packets
from Clients

Count/
Second

Number of reset packets sent
from clients to the backend
server. These reset packages are
generated by the clients and
then forwarded by load
balancers.

m22_in_band
width

Inbound
Bandwidth

bit/s Inbound bandwidth of a load
balancer.

m23_out_ban
dwidth

Outbound
Bandwidth

bit/s Outbound bandwidth of a load
balancer.

m2_act_conn Active
Connections

Count Number of current active
connections.

m3_inact_con
n

Inactive
Connections

Count Number of current inactive
connections.

m4_ncps New
Connections

Count Number of current new
connections.

m5_in_pps Incoming
Packets

Count Number of packets sent to a
load balancer.

m6_out_pps Outgoing
Packets

Count Number of packets sent from a
load balancer.

m7_in_Bps Inbound Rate byte/s Number of incoming bytes per
second on a load balancer.

m8_out_Bps Outbound Rate byte/s Number of outgoing bytes per
second on a load balancer.

Appendix: Developing an Exporter
Prometheus periodically calls the /metrics API of the exporter to obtain metric
data. Applications only need to report monitoring data through /metrics. You can
select a Prometheus client in a desired language and integrate it into applications
to implement the /metrics API. For details about the client, see Prometheus
CLIENT LIBRARIES. For details about how to write the exporter, see WRITING
EXPORTERS.

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/

The monitoring data must be in the format that Prometheus supports. Each data
record provides the ELB ID, listener ID, namespace where the Service is located,
Service name, and Service UID as labels, as shown in the following figure.

To obtain the preceding data, perform the following steps:

Step 1 Obtain all Services.

The annotations field in the returned information contains the ELB associated
with the Service.

● kubernetes.io/elb.id
● kubernetes.io/elb.class

Step 2 Use APIs in Querying Listeners to get the listener ID based on the load balancer
ID obtained in the previous step.

Step 3 Obtain the ELB monitoring data.

The ELB monitoring data is obtained using the CES APIs described in Querying
Monitoring Data of Multiple Metrics . For details about ELB monitoring metrics,
see Monitoring Metrics. Example:

● m1_cps: number of concurrent connections
● m5_in_pps: number of incoming data packets
● m6_out_pps: number of outgoing data packets
● m7_in_Bps: incoming rate
● m8_out_Bps: outgoing rate

Step 4 Aggregate data in the format that Prometheus supports and expose the data
through the /metrics API.

The Prometheus client can easily call the /metrics API. For details, see CLIENT
LIBRARIES. For details about how to develop an exporter, see WRITING
EXPORTERS.

----End

7.5 Auto Scaling of Multiple Applications Using Nginx
Ingresses

Deploying applications in multiple pods in a production environment can enhance
their stability and reliability, but it can also lead to increased resource waste and
costs. To strike a balance between resource utilization and application
performance, manually adjusting the number of pods may not be efficient or
effective.

However, if the application uses Nginx ingresses to route and forward external
traffic, you can configure HPA policies using the

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

https://support.huaweicloud.com/intl/en-us/api-elb/elb_zq_jt_0002.html
https://support.huaweicloud.com/intl/en-us/api-ces/ces_03_0034.html
https://support.huaweicloud.com/intl/en-us/api-ces/ces_03_0034.html
https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_ug_jk_0001.html
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/

nginx_ingress_controller_requests metric. This allows for dynamic adjustment of
pods based on traffic changes, optimizing resource utilization.

Prerequisites
● The NGINX Ingress Controller add-on has been installed in the cluster.

● You have installed the Cloud Native Cluster Monitoring add-on in the cluster
and enabled Local Data Storage for the add-on.

● You have connected the cluster with the kubectl command line tool or
CloudShell.

● The pressure testing tool Apache Benchmark has been installed.

Creating a Workload and a Service for the Workload

This section provides an example of how to route external traffic for two Services
using Nginx ingresses.

Step 1 Create a test-app workload and a Service for it.

1. Write a test-app.yaml file.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: test-app
 labels:
 app: test-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test-app
 template:
 metadata:
 labels:
 app: test-app
 spec:
 containers:
 - image: skto/sample-app:v2
 name: metrics-provider
 ports:
 - name: http
 containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: test-app
 namespace: default
 labels:
 app: test-app
spec:
 ports:
 - port: 8080
 name: http
 protocol: TCP
 targetPort: 8080
 selector:
 app: test-app
 type: ClusterIP

2. Deploy the test-app workload and the corresponding Service.
kubectl apply -f test-app.yaml

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

Step 2 Create a sample-app workload and a Service for it.

1. Write a sample-app.yaml file.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: sample-app
 labels:
 app: sample-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sample-app
 template:
 metadata:
 labels:
 app: sample-app
 spec:
 containers:
 - image: skto/sample-app:v2
 name: metrics-provider
 ports:
 - name: http
 containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: sample-app
 namespace: default
 labels:
 app: sample-app
spec:
 ports:
 - port: 80
 name: http
 protocol: TCP
 targetPort: 8080
 selector:
 app: sample-app
 type: ClusterIP

2. Deploy the sample-app workload and the corresponding Service.
kubectl apply -f sample-app.yaml

Step 3 Deploy an ingress.

1. Write an ingress.yaml file.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: test-ingress
 namespace: default
spec:
 ingressClassName: nginx
 rules:
 - host: test.example.com
 http:
 paths:
 - backend:
 service:
 name: sample-app
 port:
 number: 80
 path: /
 pathType: ImplementationSpecific
 - backend:
 service:
 name: test-app

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

 port:
 number: 8080
 path: /home
 pathType: ImplementationSpecific

– host: specifies the Service access domain name. In this example,
test.example.com is used.

– path: specifies the URL to be accessed. After receiving a request, the
system matches the request with the corresponding Service based on the
routing rules and accesses the corresponding pod through the Service.

– backend: consists of the Service name and Service port and specifies the
Service forwarded by the current path.

2. Deploy an ingress.
kubectl apply -f ingress.yaml

3. Obtain an ingress.
kubectl get ingress -o wide

4. After the deployment is successful, log in to the target node and add the
service domain name and the IP address of the load balancer associated with
NGINX Ingress Controller to the local hosts file of the node. The IP address of
the load balancer associated with NGINX Ingress Controller is that obtained in
Step 3.3.
export NGINXELB=xx.xx.xx.xx
echo -n "${NGINXELB} test.example.com" >> /etc/hosts

5. Log in to the cluster node and access the host address through the / and /
home paths.
NGINX Ingress Controller accesses sample-app and test-app based on the
preceding configurations.
curl test.example.com/
Hello from '/' path!

curl test.example.com/home
Hello from '/home' path!

----End

Modifying user-adapter-config in Prometheus

Step 1 Run the following command to edit user-adapter-config:
kubectl -n monitoring edit configmap user-adapter-config

Step 2 Add the following rules to the ConfigMap of the adapter:
apiVersion: v1
data:
 config.yaml: |
 rules:
 - metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)
 name:
 as: ${1}_per_second
 matches: ^(.*)_requests
 resources:
 namespaced: false
 overrides:
 exported_namespace:
 resource: namespace
 service:

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

 resource: service
 seriesQuery: nginx_ingress_controller_requests
 resourceRules:
 cpu:
 containerQuery: sum(rate(container_cpu_usage_seconds_total{<<.LabelMatchers>>,container!="",pod!
=""}[1m])) by (<<.GroupBy>>)
 nodeQuery: sum(rate(container_cpu_usage_seconds_total{<<.LabelMatchers>>, id='/'}[1m])) by
(<<.GroupBy>>)
 resources:
 overrides:
 instance:
 resource: node
 namespace:
 resource: namespace
 pod:
 resource: pod
 containerLabel: container
 memory:
 containerQuery: sum(container_memory_working_set_bytes{<<.LabelMatchers>>,container!="",pod!
=""}) by (<<.GroupBy>>)
 nodeQuery: sum(container_memory_working_set_bytes{<<.LabelMatchers>>,id='/'}) by (<<.GroupBy>>)
 resources:
 overrides:
 instance:
 resource: node
 namespace:
 resource: namespace
 pod:
 resource: pod
 containerLabel: container

Step 3 Restart custom-metrics-apiserver.
kubectl -n monitoring delete pod -l app=custom-metrics-apiserver

Step 4 Log in to the cluster node and access the host address through the / and /home
paths for multiple times.
curl test.example.com/
Hello from '/' path!

curl test.example.com/home
Hello from '/home' path!

Step 5 Run the following command to check whether the metric is added:
kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/namespaces/default/services/*/
nginx_ingress_controller_per_second | python -m json.tool

----End

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Creating an HPA Policy

Step 1 Create an hpa.yaml file and configure auto scaling for the test-app and sample-
app workloads based on Prometheus metrics.
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: sample-hpa # HPA name
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: sample-app # Deployment name
 minReplicas: 1 # Minimum number of pods
 maxReplicas: 10 # Maximum number of pods
 metrics:
 - type: Object
 object:
 metric:
 name: nginx_ingress_controller_per_second # Metric
 describedObject:
 apiVersion: v1
 kind: service
 name: sample-app # Service of the Deployment
 target:
 type: Value
 value: 30 # Scaling is triggered when the metric value is within the range of (Actual value/30)±0.1.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: test-hpa
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: test-app
 minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Object
 object:
 metric:
 name: nginx_ingress_controller_per_second
 describedObject:
 apiVersion: v1
 kind: service
 name: test-app
 target:
 type: Value
 value: 30

Step 2 Deploy the HPA policy.
kubectl apply -f hpa.yaml

Step 3 Check the HPA deployment.
kubectl get hpa

----End

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Verifying Scaling

Step 1 Log in to the target cluster node and perform a pressure testing on the /home
path.
ab -c 50 -n 5000 test.example.com/home

Step 2 Check the HPA.
kubectl get hpa

Step 3 Log in to the target cluster node and perform a pressure testing on the root path.
ab -c 50 -n 5000 test.example.com/

Step 4 Check the HPA.
kubectl get hpa

Compared with the HPA metrics obtained before the pressure testing, the service
application is scaled out when the number of requests exceeds the threshold.

----End

Cloud Container Engine
Best Practices 7 Auto Scaling

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

8 Monitoring

8.1 Monitoring Multiple Clusters Using Prometheus

Application Scenarios

Generally, a user has different clusters for different purposes, such as production,
testing, and development. To monitor, collect, and view metrics of these clusters,
you can deploy a set of Prometheus.

Solution Architecture

Multiple clusters are connected to the same Prometheus monitoring system, as
shown in the following figure. This reduces maintenance and resource costs and
facilitates monitoring information aggregation.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Prerequisites
● The target cluster has been created.
● Prometheus has been properly connected to the target cluster.
● Prometheus has been installed on a Linux host using a binary file. For details,

see Installation.

Procedure

Step 1 Obtain the bearer_token information of the target cluster.

1. Create the RBAC permission in the target cluster.
Log in to the background node of the target cluster and create the
prometheus_rbac.yaml file.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: prometheus-test
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: prometheus-test
rules:
- apiGroups:
 - ""
 resources:
 - nodes
 - services
 - endpoints
 - pods
 - nodes/proxy
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - "extensions"
 resources:
 - ingresses
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - configmaps
 - nodes/metrics
 verbs:
 - get
- nonResourceURLs:
 - /metrics
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: prometheus-test
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

https://prometheus.io/docs/prometheus/latest/installation/

 name: prometheus-test
subjects:
- kind: ServiceAccount
 name: prometheus-test
 namespace: kube-system

Run the following command to create the RBAC permission:
kubectl apply -f prometheus_rbac.yaml

2. Obtain the bearer_token information of the target cluster.

NO TE

– In clusters earlier than v1.21, a token is obtained by mounting the secret of the
service account to a pod. Tokens obtained this way are permanent. This approach
is no longer recommended starting from version 1.21. Service accounts will stop
auto creating secrets in clusters from version 1.25.
In clusters of version 1.21 or later, you can use the TokenRequest API to obtain
the token and use the projected volume to mount the token to the pod. Such
tokens are valid for a fixed period. When the mounting pod is deleted, the token
automatically becomes invalid. For details, see Service Account Token Security
Improvement.

– If you need a token that never expires, you can also manually manage secrets for
service accounts. Although a permanent service account token can be manually
created, you are advised to use a short-lived token by calling the TokenRequest
API for higher security.

Obtain the serviceaccount information.
kubectl describe sa prometheus-test -n kube-system

kubectl describe secret prometheus-test-token-hdhkg -n kube-system

Record the token value, which is the bearer_token information to be
collected.

Step 2 Configure bearer_token information.

Log in to the host where Prometheus is located, go to the Prometheus installation
directory, and save the token information of the target cluster in a file.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0477.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0477.html
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

Step 3 Configure a Prometheus monitoring job.

The example job monitors container metrics. To monitor other metrics, you can
add jobs and compile capture rules.
 - job_name: k8s_cAdvisor
 scheme: https
 bearer_token_file: k8s_token # Token file in the previous step.
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs: # kubernetes automatic discovery configuration
 - role: node # Automatic discovery of the node type
 bearer_token_file: k8s_token # Token file in the previous step
 api_server: https://192.168.0.153:5443 # API server address of the Kubernetes cluster
 tls_config:
 insecure_skip_verify: true # Skip the authentication on the server.
 relabel_configs: ## Modify the existing label of the target cluster before capturing metrics.
 - target_label: __address__
 replacement: 192.168.0.153:5443
 action: replace
 ## Convert metrics_path to /api/v1/nodes/${1}/proxy/metrics/cadvisor.
 # Obtain data from kubelet using the API server proxy.
 - source_labels: [__meta_kubernetes_node_name] # Specifies the source label to be processed.
 regex: (.+) # Matched value of the source label. (.+) indicates that any value of the source label can
be matched.
 target_label: __metrics_path__ # Specifies the label to be replaced.
 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor # Indicates the new label, that is, the value of
__metrics_path__. ${1} indicates the value that matches the regular expression, that is, node name.
 - target_label: cluster
 replacement: xxxxx ## (Optional) Enter the cluster information.

The following job monitors another cluster.
 - job_name: k8s02_cAdvisor
 scheme: https
 bearer_token_file: k8s02_token # Token file in the previous step
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs:
 - role: node
 bearer_token_file: k8s02_token # Token file in the previous step
 api_server: https://192.168.0.147:5443 # API server address of the Kubernetes cluster
 tls_config:
 insecure_skip_verify: true # Skip the authentication on the server.
 relabel_configs: ## Modify the existing label of the target cluster before capturing metrics.
 - target_label: __address__
 replacement: 192.168.0.147:5443
 action: replace

 - source_labels: [__meta_kubernetes_node_name]
 regex: (.+)
 target_label: __metrics_path__
 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

 - target_label: cluster
 replacement: xxxx ## (Optional) Enter the cluster information.

Step 4 Enable Prometheus.

After the configuration, enable Prometheus.

./prometheus --config.file=prometheus.yml

Step 5 Log in to Prometheus and view the monitoring information.

----End

8.2 Monitoring GPU Metrics Using dcgm-exporter

Application Scenarios
If a cluster contains GPU nodes, learn about the GPU resources used by GPU
applications, such as the GPU usage, memory usage, running temperature, and
power. You can configure auto scaling policies or set alarm rules based on the
obtained GPU metrics. This section walks you through how to observe GPU
resource usage based on open source Prometheus and DCGM Exporter. For more
details about DCGM Exporter, see DCGM Exporter.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

https://github.com/NVIDIA/dcgm-exporter

NO TICE

DCGM Exporter is an open-source component that specifically applies to the
native GPUs (nvidia.com/gpu) within the Kubernetes community. It is important to
note that GPU virtualization resources provided by CCE cannot be monitored.

Prerequisites
● You have created a cluster and there are GPU nodes and GPU related services

running in the cluster.
● The CCE AI Suite (NVIDIA GPU) and Cloud Native Cluster Monitoring add-ons

have been installed in the cluster.
– CCE AI Suite (NVIDIA GPU) is a device management add-on that supports

GPUs in containers. To use GPU nodes in the cluster, this add-on must be
installed. Select and install the corresponding GPU driver based on the
GPU type and CUDA version.

– Cloud Native Cluster Monitoring monitors the cluster metrics. During the
installation, you can interconnect this add-on with Grafana to gain a
better observability of your cluster.

NO TE

● The deployment mode of the add-on should be Local Data Storage.
● The configuration for interconnecting with Grafana is supported by the Cloud

Native Cluster Monitoring add-on of a version earlier than 3.9.0. For the add-
on of version 3.9.0 or later, if Grafana is required, install the Grafana add-on
separately..

Collecting GPU Monitoring Metrics
This section describes how to deploy the dcgm-exporter component in the cluster
to collect GPU metrics and expose GPU metrics through port 9400.

Step 1 Log in to a node with an EIP bound and that uses the Docker container engine.

Step 2 Pull the dcgm-exporter image to the local host. The image address comes from
the DCGM official example. For details, see https://github.com/NVIDIA/dcgm-
exporter/blob/main/dcgm-exporter.yaml.
docker pull nvcr.io/nvidia/k8s/dcgm-exporter:3.0.4-3.0.0-ubuntu20.04

Step 3 Push the dcgm-exporter image to SWR.

1. (Optional) Log in to the SWR console, choose Organizations in the
navigation pane, and click Create Organization in the upper right corner of
the page.
Skip this step if you already have an organization.

2. In the navigation pane, choose My Images and then click Upload Through
Client. On the page displayed, click Generate a temporary login command

and click to copy the command.
3. Run the login command copied in the previous step on the cluster node. If the

login is successful, the message "Login Succeeded" is displayed.
4. Add a tag to the dcgm-exporter image.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

https://github.com/NVIDIA/dcgm-exporter/blob/main/dcgm-exporter.yaml
https://github.com/NVIDIA/dcgm-exporter/blob/main/dcgm-exporter.yaml

docker tag {Image name 1:Tag 1}/{Image repository address}/{Organization
name}/{Image name 2:Tag 2}
– {Image name 1:Tag 1}: name and tag of the local image to be uploaded.
– {Image repository address}: The domain name at the end of the login

command in 2 is the image repository address, which can be obtained on
the SWR console.

– {Organization name}: name of the organization created in 1.
– {Image name 2:Tag 2}: desired image name and tag to be displayed on

the SWR console.
The following is an example:
docker tag nvcr.io/nvidia/k8s/dcgm-exporter:3.0.4-3.0.0-ubuntu20.04 swr.cn-
east-3.myhuaweicloud.com/container/dcgm-exporter:3.0.4-3.0.0-ubuntu20.04

5. Push the image to the image repository.
docker push {Image repository address}/{Organization name}/{Image name
2:Tag 2}
The following is an example:
docker push swr.cn-east-3.myhuaweicloud.com/container/dcgm-exporter:3.0.4-3.0.0-ubuntu20.04

The following information will be returned upon a successful push:
489a396b91d1: Pushed
...
c3f11d77a5de: Pushed
3.0.4-3.0.0-ubuntu20.04: digest: sha256:bd2b1a73025*** size: 2414

6. To view the pushed image, go to the SWR console and refresh the My Images
page.

Step 4 Deploy dcgm-exporter.

When deploying dcgm-exporter on CCE, add some specific configurations to
monitor GPU information. The detailed YAML file is as follows. The information in
red is important.

NO TICE

After Cloud Native Cluster Monitoring is interconnected with AOM, metrics will be
reported to the AOM instance you select. Basic metrics are free. Custom metrics
are billed based on the standard pricing of AOM. For details, see Pricing Details.

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: "dcgm-exporter"
 namespace: "monitoring" # Select a namespace as required.
 labels:
 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
spec:
 updateStrategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
 template:
 metadata:

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

https://support.huaweicloud.com/intl/en-us/productdesc-aom2/aom_01_0023.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/aom

 labels:
 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
 name: "dcgm-exporter"
 spec:
 containers:
 - image: "swr.cn-east-3.myhuaweicloud.com/container/dcgm-exporter:3.0.4-3.0.0-ubuntu20.04" # The
SWR image address of dcgm-exporter. The address is the image address in 5.
 env:
 - name: "DCGM_EXPORTER_LISTEN" # Service port number
 value: ":9400"
 - name: "DCGM_EXPORTER_KUBERNETES" # Supports mapping of Kubernetes metrics to
pods.
 value: "true"
 - name: "DCGM_EXPORTER_KUBERNETES_GPU_ID_TYPE" # GPU ID type. The value can be uid or
device-name.
 value: "device-name"
 name: "dcgm-exporter"
 ports:
 - name: "metrics"
 containerPort: 9400
 resources: # Request and limit resources as required.
 limits:
 cpu: '200m'
 memory: '256Mi'
 requests:
 cpu: 100m
 memory: 128Mi
 securityContext: # Enable the privilege mode for the dcgm-exporter container.
 privileged: true
 runAsNonRoot: false
 runAsUser: 0
 volumeMounts:
 - name: "pod-gpu-resources"
 readOnly: true
 mountPath: "/var/lib/kubelet/pod-resources"
 - name: "nvidia-install-dir-host" # The environment variables configured in the dcgm-exporter
image depend on the file in the /usr/local/nvidia directory of the container.
 readOnly: true
 mountPath: "/usr/local/nvidia"
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: "pod-gpu-resources"
 hostPath:
 path: "/var/lib/kubelet/pod-resources"
 - name: "nvidia-install-dir-host" # The directory where the GPU driver is installed.
 hostPath:
 path: "/opt/cloud/cce/nvidia" #If the GPU add-on version is 2.0.0 or later, replace the driver
installation directory with /usr/local/nvidia.
 affinity: # Label generated when CCE creates GPU nodes. You can set node affinity for this
component based on this label.
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: accelerator
 operator: Exists

kind: Service
apiVersion: v1
metadata:
 name: "dcgm-exporter"
 namespace: "monitoring" # Select a namespace as required.
 labels:
 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
spec:
 selector:

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
 ports:
 - name: "metrics"
 port: 9400

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 app.kubernetes.io/name: "dcgm-exporter"
 app.kubernetes.io/version: "3.0.0"
 name: dcgm-exporter
 namespace: monitoring #Select a namespace as required.
spec:
 endpoints:
 - honorLabels: true
 interval: 15s
 path: /metrics
 port: metrics
 relabelings:
 - action: labelmap
 regex: __meta_kubernetes_service_label_(.+)
 - action: replace
 sourceLabels:
 - __meta_kubernetes_namespace
 targetLabel: kubernetes_namespace
 - action: replace
 sourceLabels:
 - __meta_kubernetes_service_name
 targetLabel: kubernetes_service
 scheme: http
 namespaceSelector:
 matchNames:
 - monitoring # Select a namespace as required.
 selector:
 matchLabels:
 app.kubernetes.io/name: "dcgm-exporter"

Step 5 Monitor application GPU metrics.

1. Run the following command to check whether the dcgm-exporter is running
properly:
kubectl get po -n monitoring -owide

Information similar to the following is displayed:
kubectl get po -n monitoring -owide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
alertmanager-alertmanager-0 0/2 Pending 0 19m <none> <none>
<none> <none>
custom-metrics-apiserver-5bb67f4b99-grxhq 1/1 Running 0 19m 172.16.0.6
192.168.0.73 <none> <none>
dcgm-exporter-hkr77 1/1 Running 0 17m 172.16.0.11 192.168.0.73
<none> <none>
grafana-785cdcd47-9jlgr 1/1 Running 0 19m 172.16.0.9 192.168.0.73
<none> <none>
kube-state-metrics-647b6585b8-6l2zm 1/1 Running 0 19m 172.16.0.8
192.168.0.73 <none> <none>
node-exporter-xvk82 1/1 Running 0 19m 192.168.0.73 192.168.0.73
<none> <none>
prometheus-operator-5ff8744d5f-mhbqv 1/1 Running 0 19m 172.16.0.7
192.168.0.73 <none> <none>
prometheus-server-0 2/2 Running 0 19m 172.16.0.10 192.168.0.73
<none> <none>

2. Call the dcgm-exporter API to verify the collected application GPU
information.
172.16.0.11 indicates the pod IP address of the dcgm-exporter.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

curl 172.16.0.11:9400/metrics | grep DCGM_FI_DEV_GPU_UTIL

Step 6 View metric monitoring information on the Prometheus page.

After prometheus and the related add-on are installed, a ClusterIP Service is
created by default. To allow external systems to access the Service, create a
NodePort or a LoadBalancer Service. For details, see Monitoring Custom Metrics
Using Prometheus.

As shown in the following figure, you can view the GPU usage and other related
metrics on the GPU node. For more GPU metrics, see Observable Metrics.

Step 7 Log in to the Grafana page to view GPU information.

If you have installed Grafana, you can import NVIDIA DCGM Exporter dashboard
to display GPU metrics.

For details, see Manage dashboards.

----End

Observable Metrics

The following table lists some observable GPU metrics. For details about more
metrics, see Field Identifiers.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0373.html
https://grafana.com/grafana/dashboards/12239
https://grafana.com/docs/grafana/latest/dashboards/manage-dashboards/#import-a-dashboard
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-api/dcgm-api-field-ids.html#

Table 8-1 Usage

Metric Name Metric
Type

Unit Description

DCGM_FI_DEV_GP
U_UTIL

Gauge % GPU usage

DCGM_FI_DEV_M
EM_COPY_UTIL

Gauge % Memory usage

DCGM_FI_DEV_EN
C_UTIL

Gauge % Encoder usage

DCGM_FI_DEV_DE
C_UTIL

Gauge % Decoder usage

Table 8-2 Memory

Metric Name Metric
Type

Unit Description

DCGM_FI_DEV_FB
_FREE

Gauge MB Number of remaining frame
buffers. The frame buffer is called
VRAM.

DCGM_FI_DEV_FB
_USED

Gauge MB Number of used frame buffers.
The value is the same as the value
of memory-usage in the nvidia-
smi command.

Table 8-3 Temperature and power

Metric Name Metric
Type

Unit Description

DCGM_FI_DEV_GP
U_TEMP

Gauge °C Current GPU temperature of the
device

DCGM_FI_DEV_P
OWER_USAGE

Gauge W Power usage of the device

8.3 Reporting Prometheus Monitoring Data to a Third-
Party Monitoring Platform

Application Scenarios
The Cloud Native Cluster Monitoring add-on can report Prometheus metrics
collected from clusters to a specified platform, for example, AOM or a third-party

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

platform that supports Prometheus metrics. This section explains how to configure
settings for Cloud Native Cluster Monitoring to send collected metrics to a third-
party's Prometheus instance.

Step 1: Obtain the Data Reporting Address
Prometheus provides standard Remote Write APIs. You can enter the source
address (Remote Write URL) in the Cloud Native Cluster Monitoring add-on for
storing the locally collected monitoring data in a Prometheus instance remotely.

● If the Prometheus instance for receiving data is provided by a third-party
vendor, view the Remote Write URL on the vendor's console.

● If the Prometheus instance for receiving data is an on-premises one, the
Remote Write URL is https:// {prometheus_addr} /api/v1/write, where
{prometheus_addr} indicates the IP address and port number for external
access.

Step 2: Obtain the Authentication Mode
● For the third-party Prometheus instance, go to the vendor's console to view

the token or account password used for authorized access.
● For the on-premises Prometheus instance, perform the following steps to

obtain a token:

a. If this Prometheus instance is deployed in a Kubernetes cluster, view the
token in the corresponding container. If this Prometheus instance is
deployed on a VM, skip this step.
kubectl exec -ti -n monitoring prometheus-server-0 sh

Replace the variables in the command as needed:

▪ monitoring: indicates the namespace where a Prometheus pod is in.

▪ prometheus-server-0: indicates the name of a Prometheus pod.

b. Check the location of the configuration file.
ps -aux | grep prometheus

Information similar to the following is displayed:

c. View and record the token information in prometheus.env.yaml.
cat /etc/prometheus/config_out/prometheus.env.yaml

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

Step 3: Connect to a Third-Party Monitoring Platform
Step 1 Log in to the CCE console, click the name of a cluster with the Cloud Native

Cluster Monitoring add-on installed to access the cluster console.

Step 2 In the navigation pane, choose Settings and click the Monitoring tab.

Step 3 Enable Connect with third-party monitoring platforms so that the data
collected by Cloud Native Cluster Monitoring can be reported to a third-party
monitoring platform.
● Source Address: Remote Write URL obtained in step 1, for example, https://

127.0.0.1:9090/api/v1/write.
● Authentication method: Select the authentication method supported by the

third-party monitoring platform in step 2.
– Basic Auth: Enter the user name and password.
– Bearer Token: Enter the identity credential (token).

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Step 4 Click Confirm Configuration.

----End

Step 4: Check the Data Sending and Receiving Statuses
After the preceding configuration is complete, log in to the Prometheus console
supported by the third-party platform and view the Prometheus metrics with
remote write on the Graph page.

8.4 Obtaining Prometheus Data Using PromQL
Statements

Prometheus Query Language (PromQL) is a language that retrieves and
consolidates time series data. Prometheus, an open-source monitoring system, is
responsible for collecting and storing this data. Each time series has a unique
identifier and a series of timestamp-value pairs. PromQL is a fundamental part of
Prometheus, using simple expressions that include identifiers and tags to retrieve
and consolidate time series data. This allows you to quickly identify and resolve
issues as needed.

For details about how to use PromQL, see QUERYING PROMETHEUS.

Obtaining Huawei Cloud Prometheus Monitoring Data from the Console

Step 1 Install the Cloud Native Cluster Monitoring add-on in a cluster to collect
Prometheus monitoring data.

1. Log in to the CCE console and click the cluster name to access the cluster
console. In the navigation pane, choose Add-ons.

2. Locate the Cloud Native Cluster Monitoring add-on and click Install.
You are advised to focus on the following configurations, and adjust any other
configurations as necessary. For details, see Cloud Native Cluster
Monitoring.
– Report Monitoring Data to AOM: After this function is enabled, the

add-on will report monitoring data to AOM.
– Target AOM Instance: Select an AOM instance for the add-on to report

metrics.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0406.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0406.html

3. Click Install.

Step 2 Go to the AOM console to check monitoring data.

1. Log in to the AOM 2.0 console. In the navigation pane, choose Metric
Browsing.

2. Select the Prometheus instance interconnected with AOM, select Prometheus
statement.
For example, to obtain the number of requests received by CoreDNS and the
response success rate, run the following PromQL statement:
sum(rate(coredns_dns_responses_total{instance=~"10.0.0.2:9153",rcode=~"NOERROR|NXDOMAIN"}
[5m]))/sum(rate(coredns_dns_responses_total{instance=~"10.0.0.2:9153"}[5m]))

10.0.0.2 is the IP address of the CoreDNS container. The following figure
shows the command output.

----End

Obtaining Open-Source Prometheus Monitoring Data Through the Console

Step 1 After the Cloud Native Cluster Monitoring add-on is installed in a cluster, create a
NodePort or LoadBalancer Service for Prometheus to access the external networks.

NO TICE

After external access is provided, you can access the Prometheus web page
without authentication, which poses security risks. If you have high security
requirements, you can do security hardening. You can use, for example, the Nginx
reverse proxy and HTTP basic authentication to protect the console and restrict
users who can access the Prometheus web page.

The following shows an example for creating a NodePort Service:
apiVersion: v1
kind: Service

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

metadata:
 name: prom-np
 labels:
 app.kubernetes.io/name: prometheus
 prometheus: server
 namespace: monitoring
spec:
 selector:
 app.kubernetes.io/name: prometheus
 prometheus: server
 externalTrafficPolicy: Cluster
 ports:
 - name: cce-service-0
 targetPort: 9090
 nodePort: 0
 port: 9090
 protocol: TCP
 type: NodePort

Step 2 After an EIP is bound to a node, enter Node EIP:Node port in the address box of a
browser to obtain the monitoring data through PromQL.

----End

Obtaining Huawei Cloud Prometheus Monitoring Data Through APIs

Step 1 Log in to the AOM 2.0 console. In the navigation pane, choose Prometheus
Monitoring > Instances.

Step 2 Click the name of the Prometheus instance interconnected with AOM and click
Settings.

Step 3 Check the Grafana data source configurations and copy the public or intranet
HTTP URL as required.

NO TE

If no access code is created, create one first.

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

Step 4 Use an HTTP URL to obtain Prometheus monitoring data.

The following shows an example. (For more information about how to use HTTP
APIs to obtain Prometheus monitoring data, see HTTP API.)

GET <HTTP URL>/api/v1/query
Content-Type: application/json
Authorization: <Token>
{
"query":" coredns_dns_responses_total",
"time":" 1708655317.719",
"timeout":"1000"
}

In the preceding command, <HTTP URL> specifies the HTTP URL in the previous
step, and <Token> specifies the password obtained in the previous step. Other URL
query parameters are as follows:

● query: Prometheus expression query string
● time: timestamp for obtaining monitoring data
● timeout: timeout interval, in milliseconds

The following shows an example command:

curl -H 'Authorization: <Token>' -H 'Content-Type: application/json' -X GET '<HTTP URL>/api/v1/query?
query=coredns_dns_responses_total&time=1708655317.719&timeout=1000'

The expected results are as follows:

----End

Obtaining Open-Source Prometheus Monitoring Data Through APIs

Step 1 Obtain the HTTP API URL.
● If you access open-source Prometheus in a cluster, the HTTP API UR is the

default Service address http://<cluster IP>:9090 of Prometheus server.
● If you use the public network to access open-source Prometheus, you need to

associate a LoadBalancer Service to the Prometheus server. http://<ELB
IP>:9090 is the HTTP API URL.

Step 2 Use HTTP APIs to obtain Prometheus monitoring data.

The following describes how to obtain open-source Prometheus monitoring data
through the HTTP APIs in the cluster.

● Obtain instantaneous monitoring data.
GET <HTTP API>/api/v1/query
Content-Type: application/json
Param:
{
"query":" coredns_dns_responses_total",

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

https://prometheus.io/docs/prometheus/latest/querying/api/

"time":" 1708655317.719",
"timeout":"1000"
}

The following shows an example command:
curl -X GET -H "Content-Type: application/json" '<HTTP API>/api/v1/query?
query=coredns_dns_responses_total&time=1708655317&timeout=1000'

The expected results are as follows:

● Obtain monitoring data within a specified time range.
GET <HTTP API>/api/v1/query
Content-Type: application/json
Param:
{
"query":" coredns_dns_responses_total",
"start":1708655317,
"end":1708655318,
"step":30
}

Other URL query parameters are as follows:
– start: time when you start to obtain monitoring data
– end: time when you stop obtaining the monitoring data
– step: step of the data interval when the monitoring data is returned
The following shows an example statement:
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" '<HTTP API>/api/v1/
query?query=coredns_dns_responses_total&start=1708655317&end=1708655318&setp=30'

The expected results are as follows:

----End

Cloud Container Engine
Best Practices 8 Monitoring

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

9 Cluster

9.1 Suggestions on CCE Cluster Selection
When you use CCE to create a Kubernetes cluster, there are multiple configuration
options and terms. This section compares the key configurations for CCE clusters
and provides recommendations to help you create a cluster that better suits your
needs.

Cluster Types
CCE supports CCE Turbo clusters and CCE standard clusters to meet your
requirements. This section describes the differences between these two types of
clusters.

Table 9-1 Cluster types

Categ
ory

Subcate
gory

CCE Turbo Cluster CCE Standard Cluster

Cluste
r

Positioni
ng

Next-gen container cluster
designed for Cloud Native 2.0,
with accelerated computing,
networking, and scheduling

Standard cluster for
common commercial use

Node
type

Deployment of VMs and bare-
metal servers

Deployment of VMs and
bare-metal servers

Netw
orkin
g

Model Cloud Native Network 2.0:
applies to large-scale and
high-performance scenarios.
Max networking scale: 2,000
nodes

Cloud Native Network
1.0: applies to common,
smaller-scale scenarios.
● Tunnel network model
● VPC network model

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Categ
ory

Subcate
gory

CCE Turbo Cluster CCE Standard Cluster

Performa
nce

Flattens the VPC network and
container network into one,
achieving zero performance
loss.

Overlays the VPC network
with the container network,
causing certain
performance loss.

Containe
r
network
isolation

Associates pods with security
groups. Unifies security
isolation in and out the
cluster via security groups'
network policies.

● Tunnel network model:
supports network
policies for intra-cluster
communications.

● VPC network model:
supports no isolation.

Securi
ty

Isolation ● Physical machine: runs
Kata containers, allowing
VM-level isolation.

● VM: runs common
containers, isolated by
cgroups.

Runs common containers,
isolated by cgroups.

Cluster Versions
Due to the fast iteration, many bugs are fixed and new features are added in the
new Kubernetes versions. The old versions will be gradually eliminated. When
creating a cluster, select the latest commercial version supported by CCE.

Network Models
This section describes the network models supported by CCE clusters. You can
select one model based on your requirements.

NO TICE

After clusters are created, the network models cannot be changed. Exercise
caution when selecting the network models.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Table 9-2 Network model comparison

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Applicatio
n
scenarios

● Low
requirements on
performance: As
the container
tunnel network
requires
additional
VXLAN tunnel
encapsulation, it
has about 5%
to 15% of
performance
loss when
compared with
the other two
container
network
models.
Therefore, the
container
tunnel network
applies to the
scenarios that
do not have
high
performance
requirements,
such as web
applications,
and middle-end
and back-end
services with a
small number
of access
requests.

● Large-scale
networking:
Different from
the VPC
network that is
limited by the
VPC route
quota, the
container
tunnel network
does not have
any restriction

● High performance
requirements: As
no tunnel
encapsulation is
required, the VPC
network model
delivers the
performance close
to that of a VPC
network when
compared with
the container
tunnel network
model. Therefore,
the VPC network
model applies to
scenarios that
have high
requirements on
performance, such
as AI computing
and big data
computing.

● Small- and
medium-scale
networks: Due to
the limitation on
VPC route tables,
it is recommended
that the number
of nodes in a
cluster be less
than or equal to
1000.

● High performance
requirements:
Cloud Native
Network 2.0 uses
VPC networks to
construct
container
networks,
eliminating the
need for tunnel
encapsulation or
NAT when
containers
communicate. This
makes Cloud
Native Network
2.0 ideal for
scenarios that
demand high
bandwidth and
low latency, such
as live streaming
and e-commerce
flash sales.

● Large-scale
networking: Cloud
Native Network
2.0 supports up to
2,000 ECS nodes
and 100,000 pods.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

on the
infrastructure.
In addition, the
container
tunnel network
controls the
broadcast
domain to the
node level. The
container
tunnel network
supports a
maximum of
2000 nodes.

Core
technolog
y

OVS IPvlan and VPC route VPC ENI/sub-ENI

Applicable
clusters

CCE standard
cluster

CCE standard cluster CCE Turbo cluster

Container
network
isolation

Kubernetes native
NetworkPolicy for
pods

No Pods support security
group isolation.

Interconne
cting pods
to a load
balancer

Interconnected
through a
NodePort

Interconnected
through a NodePort

Directly
interconnected using
a dedicated load
balancer
Interconnected using
a shared load
balancer through a
NodePort

Managing
container
IP
addresses

● Separate
container CIDR
blocks needed

● Container CIDR
blocks divided
by node and
dynamically
added after
being allocated

● Separate container
CIDR blocks
needed

● Container CIDR
blocks divided by
node and
statically allocated
(the allocated
CIDR blocks
cannot be
changed after a
node is created)

Container CIDR
blocks divided from a
VPC subnet (You do
not need to configure
separate container
CIDR blocks.)

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Network
performan
ce

Performance loss
due to VXLAN
encapsulation

No tunnel
encapsulation, and
cross-node traffic
forwarded through
VPC routers (The
performance is so
good that is
comparable to that
of the host network,
but there is a loss
caused by NAT.)

Container network
integrated with VPC
network, eliminating
performance loss

Networkin
g scale

A maximum of
2000 nodes are
supported.

Suitable for small-
and medium-scale
networks due to the
limitation on VPC
route tables. It is
recommended that
the number of nodes
be less than or equal
to 1000.
Each time a node is
added to the cluster,
a route is added to
the VPC route tables
(including the default
and custom ones).
Evaluate the cluster
scale that is limited
by the VPC route
tables before creating
the cluster. For
details about route
tables, see
Constraints.

A maximum of 2000
nodes are supported.
In a cloud-native
network 2.0 cluster,
containers' IP
addresses are
assigned from VPC
CIDR blocks, and the
number of containers
supported is
restricted by these
blocks. Evaluate the
cluster's scale
limitations before
creating it.

For more information, see Container Network Models Overview.

Cluster CIDR Blocks
There are node CIDR blocks, container CIDR blocks, and Service CIDR blocks in CCE
clusters. When planning network addresses, note that:

● These three types of CIDR blocks cannot overlap with each other. Otherwise, a
conflict will occur. All subnets (including those created from the secondary
CIDR block) in the VPC where the cluster resides cannot conflict with the
container and Service CIDR blocks.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

https://support.huaweicloud.com/intl/en-us/productdesc-vpc/overview_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0281.html

● There are sufficient IP addresses in each CIDR block.
– The IP addresses in a node CIDR block must match the cluster scale.

Otherwise, nodes cannot be created due to insufficient IP addresses.
– The IP addresses in a container CIDR block must match the service scale.

Otherwise, pods cannot be created due to insufficient IP addresses.

In complex scenarios, for example, multiple clusters use the same VPC or clusters
are interconnected across VPCs, determine the number of VPCs, the number of
subnets, the container CIDR blocks, and the communication modes of the Service
CIDR blocks. For details, see Planning CIDR Blocks for a Cluster.

Service Forwarding Modes
kube-proxy is a key component of a Kubernetes cluster. It is responsible for load
balancing and forwarding between a Service and its backend pod.

CCE supports the iptables and IPVS forwarding modes.

● IPVS allows higher throughput and faster forwarding. It applies to scenarios
where the cluster scale is large or the number of Services is large.

● iptables is the traditional kube-proxy mode. This mode applies to the scenario
where the number of Services is small or there are a large number of short
concurrent connections on the client.

If high stability is required and the number of Services is less than 2000, the
iptables forwarding mode is recommended. In other scenarios, the IPVS forwarding
mode is recommended.

For details, see Comparing iptables and IPVS.

Node Specifications
The minimum specifications of a node are 2 vCPUs and 4 GiB memory. Evaluate
based on service requirements before configuring the nodes. However, using many
low-specification ECSs is not the optimal choice. The reasons are as follows:
● The upper limit of network resources is low, which may result in a single-point

bottleneck.
● Resources may be wasted. If each container running on a low-specification

node needs a lot of resources, the node cannot run multiple containers and
there may be idle resources in it.

Advantages of using large-specification nodes are as follows:
● The upper limit of the network bandwidth is high. This ensures higher

resource utilization for high-bandwidth applications.
● Multiple containers can run on the same node, and the network latency

between containers is low.
● The efficiency of pulling images is higher. This is because an image can be

used by multiple containers on a node after being pulled once. Low-
specifications ECSs cannot respond promptly because the images are pulled
many times and it takes more time to scale these nodes.

Additionally, select a proper vCPU/memory ratio based on your requirements. For
example, if a service container with large memory but fewer CPUs is used,

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0349.html

configure the specifications with the vCPU/memory ratio of 1:4 for the node where
the container resides to reduce resource waste.

Container Engines
CCE supports the containerd and Docker container engines. containerd is
recommended for its shorter traces, fewer components, higher stability, and
less consumption of node resources. Since Kubernetes 1.24, Dockershim is
removed and Docker is no longer supported by default. For details, see
Kubernetes is Moving on From Dockershim: Commitments and Next Steps.
CCE clusters 1.27 do not support the Docker container engine.

Use containerd in typical scenarios. The Docker container engine is supported only
in the following scenarios:

● Docker in Docker (usually in CI scenarios)
● Running the Docker commands on the nodes
● Calling Docker APIs

Node OS
Service container runtimes share the kernel and underlying calls of nodes. To
ensure compatibility, select a Linux distribution version that is the same as or close
to that of the final service container image for the node OS.

9.2 Creating an IPv4/IPv6 Dual-Stack Cluster in CCE
This section describes how to set up a VPC with IPv6 CIDR block and create a
cluster and nodes with an IPv6 address in the VPC, so that the nodes can access
the Internet.

Overview
IPv6 addresses are used to deal with the problem of IPv4 address exhaustion. If a
worker node (such as an ECS) in the current cluster uses IPv4, the node can run in
dual-stack mode after IPv6 is enabled. Specifically, the node has both IPv4 and
IPv6 addresses, which can be used to access the intranet or public network.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/

Figure 9-1 Diagram of an IPv4/IPv6 dual-stack enabled cluster

Application Scenarios
● If your application needs to provide Services for users who use IPv6 clients,

you can use IPv6 EIPs or the IPv4 and IPv6 dual-stack function.
● If your application needs to both provide Services for users who use IPv6

clients and analyze the access request data, you can use only the IPv4 and
IPv6 dual-stack function.

● If internal communication is required between your application systems or
between your application system and another system (such as the database
system), you can use only the IPv4 and IPv6 dual-stack function.

For details about the dual-stack, see IPv4 and IPv6 Dual-Stack Network and
IPv6 EIP.

Constraints
● Clusters that support IPv4/IPv6 dual-stack:

Cluster
Type

Cluster
Network
Model

Version Remarks

CCE
standard
cluster

Container
tunnel
network

v1.15 or
later

IPv4/IPv6 dual-stack will be
generally available for clusters of
v1.23.
ELB dual-stack is not supported.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-eip/eip_0006_01.html

Cluster
Type

Cluster
Network
Model

Version Remarks

CCE
Turbo
cluster

Cloud
Native 2.0
Network

v1.23.8-r0
or later
v1.25.3-r0
or later

Currently, Kata containers do not
support IPv4/IPv6 dual-stack.
Only ECS-VM or ECS-physical server
(c6.22xlarge.4.physical or
c7.32xlarge.4.physical) supports
IPv4/IPv6 dual-stack.

● Worker nodes and master nodes in Kubernetes clusters use IPv4 addresses to

communicate with each other.
● When there is a DNAT Service in a cluster, only IPv4 addresses are supported.
● Only one IPv6 address can be bound to each NIC.
● When IPv4/IPv6 dual-stack is enabled for the cluster, DHCP unlimited lease

cannot be enabled for the selected node subnet.
● If a dual-stack cluster is used, do not change the load balancer protocol

version on the ELB console.
● ELB dual-stack can be used in only CCE Turbo clusters with the following

restrictions.

Application
Scenario

Dedicated Load Balancer Shared Load
Balancer

ELB ingress Dual stack is supported.
Layer-7 dedicated load balancers can only
communicate with their backend servers
using IPv4. For details, see Does ELB
Support IPv6 Networks? If an ingress
uses IPv6/IPv4 dual-stack, related alarms
will be generated. (Backends with IPv6
addresses cannot be added to the
associated load balancer.) You can view
related alarms by referring to the events
of the corresponding ingress.

Only IPv4 is
supported.

Nginx ingress Dual-stack is supported when the
following conditions are met:
● For clusters from v1.19 to v1.23, nginx-

ingress of v2.1.7 or later supports dual-
stack.

● For clusters of v1.25 or later, nginx-
ingress of v2.2.5 or later supports dual-
stack.

Only IPv4 is
supported.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

https://support.huaweicloud.com/intl/en-us/elb_faq/elb_faq_21020223.html
https://support.huaweicloud.com/intl/en-us/elb_faq/elb_faq_21020223.html

Application
Scenario

Dedicated Load Balancer Shared Load
Balancer

LoadBalancer
Service

● Layer 7 (HTTP/HTTPS): Dual-stack is
supported.
Layer-7 dedicated load balancers can
only communicate with their backend
servers using IPv4. For details, see
Does ELB Support IPv6 Networks? If
a Service uses IPv6/IPv4 dual-stack,
related alarms will be generated.
(Backends with IPv6 addresses cannot
be added to the associated load
balancer.) You can view related alarms
by referring to the events of the
corresponding Service. To avoid
alarms, you can select the IPv4
protocol when creating a Service and
select a dedicated Layer-7 load
balancer with dual-stack enabled.

● Layer 4 (TCP/UDP): Dual-stack is
supported.

Only IPv4 is
supported.

Step 1: Create a VPC

Before creating your VPCs, determine how many VPCs, the number of subnets,
and what IP address ranges you will need. For details, see Network Planning.

NO TE

● The basic operations for IPv4 and IPv6 dual-stack networks are the same as those for
IPv4 networks. Only some parameters are different.

● For details about the IPv6 billing policy, supported ECS types, and supported regions, see
IPv4 and IPv6 Dual-Stack Network.

Perform the following operations to create a VPC named vpc-ipv6 and its default
subnet named subnet-ipv6.

1. Log in to the management console.

2. Click in the upper left corner of the management console and select a
region and a project.

3. Under Networking, select Virtual Private Cloud.
4. Click Create VPC.
5. Configure the VPC and subnet following instructions. For details about the

mandatory parameters, see Table 9-3 and Table 9-4. For details about other
parameters, see Creating a VPC and Subnet.
When configuring a subnet, select Enable for IPv6 CIDR Block to
automatically allocate an IPv6 CIDR block to the subnet. IPv6 cannot be
disabled after the subnet is created. Currently, you are not allowed to specify
a custom IPv6 CIDR block.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

https://support.huaweicloud.com/intl/en-us/elb_faq/elb_faq_21020223.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html

Table 9-3 VPC configuration parameters

Parameter Description Example
Value

Region Specifies the desired region. Regions are
geographic areas that are physically isolated
from each other. The networks inside different
regions are not connected to each other, so
resources cannot be shared across different
regions. For lower network latency and faster
access to your resources, select the region
nearest you.

AP-
Singapore

Name VPC name. vpc-ipv6

IPv4 CIDR
Block

Specifies the Classless Inter-Domain Routing
(CIDR) block of the VPC. The CIDR block of a
subnet can be the same as the CIDR block for
the VPC (for a single subnet in the VPC) or a
subset (for multiple subnets in the VPC).
The following CIDR blocks are supported:
10.0.0.0/8–24
172.16.0.0/12–24
192.168.0.0/16–24

192.168.0.0
/16

Enterprise
Project

When creating a VPC, you can add the VPC to
an enabled enterprise project.
An enterprise project facilitates project-level
management and grouping of cloud resources
and users. The name of the default project is
default.
For details about how to create and manage
enterprise projects, see Enterprise
Management User Guide.

default

Table 9-4 Subnet parameters

Parameter Description Example
Value

Subnet
Name

Specifies the subnet name. subnet-ipv6

AZ An AZ is a geographic location with
independent power supply and network
facilities in a region. AZs are physically isolated,
and AZs in the same VPC are interconnected
through an internal network.

AZ 2

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0131965280.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0131965280.html

Parameter Description Example
Value

IPv4 CIDR
Block

Specifies the IPv4 CIDR block for the subnet.
This value must be within the VPC CIDR range.

192.168.0.0
/24

IPv6 CIDR
Block

Select Enable for IPv6 CIDR Block. An IPv6
CIDR block will be automatically assigned to
the subnet. IPv6 cannot be disabled after the
subnet is created. Currently, you are not
allowed to specify a custom IPv6 CIDR block.

N/A

Associated
Route Table

Specifies the default route table to which the
subnet will be associated. You can change the
route table to a custom route table.

Default

Advanced Settings

Gateway Specifies the gateway address of the subnet.
This IP address is used to communicate with
other subnets.

192.168.0.1

DNS Server
Address

By default, two DNS server addresses are
configured. You can change them if necessary.
When multiple IP addresses are available,
separate them with a comma (,).

100.125.x.x

IPv4 DHCP
Lease Time

Specifies the period during which a client can
use an IP address automatically assigned by the
DHCP server. After the lease time expires, a
new IP address will be assigned to the client. If
a DHCP lease time is changed, the new lease
automatically takes effect when half of the
current lease time has passed. To make the
change take effect immediately, restart the ECS
or log in to the ECS to cause the DHCP lease to
automatically renew.
CAUTION

When IPv4/IPv6 dual-stack is enabled for the cluster,
DHCP unlimited lease cannot be enabled for the
selected node subnet.

365 days or
300 hours

6. Click Create Now.

Step 2: Create a CCE Cluster

Creating a CCE cluster

1. Log in to the CCE console and create a cluster.
Complete the network settings as follows. For other configurations, see
Buying a CCE Cluster.
– Network Model: Select Tunnel network.
– VPC: Select the created VPC vpc-ipv6.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html

– Subnet: Select a subnet with IPv6 enabled.
– IPv6: Enable this function. After this function is enabled, cluster resources,

including nodes and workloads, can be accessed through IPv6 CIDR
blocks.

– Container CIDR Block: A proper mask must be set for the container CIDR
block. The mask determines the number of available nodes in the cluster.
If the mask of the container CIDR block in the cluster is set improperly,
there will be only a small number of available nodes in the cluster.

Figure 9-2 Configuring network settings

2. Create a node.
The CCE console displays the nodes that support IPv6. You can directly select
a node. For details, see Creating a Node.
After the creation is complete, access the cluster details page. Then, click the
node name to go to the ECS details page and view the automatically
allocated IPv6 address.

Step 3: Buy a Shared Bandwidth and Adding an IPv6 Address to It

By default, the IPv6 address can only be used for private network communication.
If you want to use this IPv6 address to access the Internet or be accessed by IPv6
clients on the Internet, buy a shared bandwidth and add the IPv6 address to it.

If you already have a shared bandwidth, you can add the IPv6 address to the
shared bandwidth without purchasing one.

Buying a Shared Bandwidth

1. Log in to the management console.

2. Click in the upper left corner of the management console and select a
region and a project.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html

3. Choose Service List > Networking > Virtual Private Cloud.
4. In the navigation pane, choose Elastic IP and Bandwidth > Shared

Bandwidths.
5. In the upper right corner, click Buy Shared Bandwidth. On the displayed

page, configure parameters following instructions.

Table 9-5 Parameters

Paramete
r

Description Example
Value

Billing
Mode

Specifies the billing mode of a shared bandwidth.
The billing mode can be:
● Yearly/Monthly: You pay for the bandwidth by

year or month before using it. No charges will
be incurred for the bandwidth during its
validity period.

● Pay-per-use: You pay for the bandwidth based
on the amount of time you use the bandwidth.

Yearly/
Monthly

Region Specifies the desired region. Regions are
geographic areas that are physically isolated from
each other. The networks inside different regions
are not connected to each other, so resources
cannot be shared across different regions. For
lower network latency and faster access to your
resources, select the region nearest you.

AP-
Singapore
-

Billed By Specifies the shared bandwidth billing factor. Select
Bandwidt
h.

Bandwidt
h

Specifies the shared bandwidth size in Mbit/s. The
minimum bandwidth that can be purchased is 5
Mbit/s.

10

Name Specifies the name of the shared bandwidth. Bandwidth
-001

Enterprise
Project

When assigning the shared bandwidth, you can
add the shared bandwidth to an enabled
enterprise project.
An enterprise project facilitates project-level
management and grouping of cloud resources
and users. The name of the default project is
default.
For details about how to create and manage
enterprise projects, see Enterprise Management
User Guide.

default

Required
Duration

Specifies the required duration of the shared
bandwidth to be purchased. Configure this
parameter only in yearly/monthly billing mode.

2 months

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0131965280.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0131965280.html

6. Click Next.

Adding an IPv6 Address to a Shared Bandwidth

1. On the shared bandwidth list page, locate the row containing the target
shared bandwidth and click Add Public IP Address in the Operation column.

Figure 9-3 Adding an IPv6 address to a shared bandwidth

2. Add the IPv6 address to the shared bandwidth.

Figure 9-4 Adding a dual-stack NIC IPv6 address

3. Click OK.

Verifying the Result

Log in to an ECS and ping an IPv6 address on the Internet to verify the
connectivity. ping6 ipv6.baidu.com is used as an example here. The execution
result is displayed in Figure 9-5.

Figure 9-5 Result verification

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

9.3 Creating a Custom CCE Node Image
Custom CCE node images are created using the open source tool HashiCorp
Packer of v1.7.2 or later and the open source plug-in. The cce-image-builder
template is provided to help you quickly build images.

Packer is used to create custom container images. It offers builders, provisioners,
and post-processors that can be flexibly combined to automatically create image
files concurrently through JSON or HCL template files.

Packer has the following advantages:

1. Automatic build process: You can use Packer configuration files to specify and
automate the build process.

2. High compatibility with cloud platforms: Packer can interconnect with most
cloud platforms and various third-party plug-ins.

3. Easy-to-use configuration files: Packer configuration files are simple and
intuitive to write and read. Parameter definitions are easy to understand.

4. Diverse image build functions: Common functional modules are supported.
For example, the provisioner supports the shell module in remote script
execution, the file module in remote file transfer, and the breakpoint module
for process pauses.

Constraints
● Suggestions on using CCE node images:

– You are advised to use the default node images maintained by CCE.
These images have passed strict tests and updated in a timely manner,
providing better compatibility, stability, and security.

– Use the base images provided by CCE to create custom images. Huawei
Cloud EulerOS 2.0 and Ubuntu 22.04 custom images are not supported.

– The component package on which nodes depend for running is preset in
the base image. The package version varies with the cluster version. For
custom images, CCE does not push component package updates.

● When customizing an image, exercise caution when modifying kernel
parameters. Any improper kernel parameter modification will deteriorate the
system running efficiency. For details about the reference values, see
Modifying Node Kernel Parameters.

Modifying the following kernel parameters will affect the system
performance: tcp_keepalive_time, tcp_max_tw_buckets, somaxconn,
max_user_instances, max_user_watches, netdev_max_backlog,
net.core.wmem_max, and net.core.rmem_max.

To modify node kernel parameters, fully verify the modification in a test
environment before applying the modification to the production environment.

Precautions
● Before you create an image, prepare:

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

https://www.packer.io/
https://www.packer.io/
https://github.com/huaweicloud/packer-plugin-huaweicloud
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0412.html

– An ECS executor: An ECS x86 server is used as the Linux executor. You are
advised to select CentOS7 and bind an EIP to it so that it can access the
public network and install Packer.

– Authentication credentials: Obtain the AK/SK of the tenant or user with
required permissions. For details, see How Do I Obtain an Access Key
(AK/SK).

– Security group: Packer creates a temporary ECS and uses a key pair to log
in to the ECS using SSH. Ensure that TCP:22 is enabled in the security
group. For details, see Security Group Configuration Examples.

● When you create a custom node image, make sure:
– You follow the instructions in this section to prevent unexpected

problems.
– You have the sudo root or root permissions required to log in to VMs

created from base images.
● When the creation is complete:

– The image creation process uses certain charging resources, including
ECSs, EVS disks, EIPs, bandwidth, and IMS images. These resources are
automatically released when the image is successfully created or fails to
be created. Release the resources in time to ensure no charges are
incurred unexpectedly.

Obtaining an Image ID
Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

In the navigation pane, choose Nodes.

Step 2 Click Create Node in the upper right corner and select OS to Private image.

Step 3 Click View CCE base image information. In the displayed dialog box, copy the
image ID.

NO TICE

The image ID varies depending on the region. If the region is changed, obtain the
image ID again.

Figure 9-6 Obtaining an Image ID

----End

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0140323152.html

Creating a Node Image

Step 1 Download cce-image-builder.

Log in to the ECS executor, download and decompress cce-image-builder.
wget https://cce-north-4.obs.cn-north-4.myhuaweicloud.com/cce-image-builder/cce-image-builder.tgz

tar zvxf cce-image-builder.tgz
cd cce-image-builder/

NO TE

The cce-image-builder contains:
● turbo-node.pkr.hcl # Packer configuration template used for creating the image. For

details about how to modify the template, see Step 3.
● scripts/* # CCE image creation preset in the template. Do not modify it. Otherwise, the

image might become unavailable.
● user-scripts/* # Custom package script directory preset in the template. Take

example.sh as an example. When you create a custom image, the image is
automatically uploaded to the temporary server and executed.

● user-packages/* # Custom package directory preset in the template. Take
example.package as an example. When you create a custom image, the image is
automatically uploaded to /tmp/example.package in the temporary server.

Step 2 Install Packer.

Download and install the HashiCorp Packer. For details, see Install Packer.

NO TE

The Packer version needs to be 1.10.0.

Take the CentOS 7 executor as an example. Run the following command to
automatically install Packer (This example is for reference only. For detailed
operations, see the official guide):
Configure the yum repository and install Packer.
sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
sudo yum -y install packer-1.10.0

Configure an alias to avoid duplicate Packer binary in the OS and check the Packer version.
rpm -q packer
alias packer=$(rpm -ql packer)
packer -v

Step 3 Define Packer template parameters.

The cce-image-builder/turbo-node.pkr.hcl file defines the process of building an
image using Packer. For details, see Packer Documentation.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

https://www.packer.io/
https://learn.hashicorp.com/tutorials/packer/get-started-install-cli
https://www.packer.io/docs

NO TE

● Parameters of variables or variable
turbo-node.pkr.hcl defines the parameters required in the process of building an image.
You can configure the parameters based on the live environment. For details, see Table
1.

● Parameter of packer
required_plugins defines the add-on dependency of Packer, including the add-on source
and version range. When you run packer init, the add-on is automatically downloaded
and initialized.
packer {
 required_plugins {
 huaweicloud = {
 version = ">= 1.0.4"
 source = "github.com/huaweicloud/huaweicloud"
 }
 }
}

● Parameter of source
The preceding defined variables are referred to automatically configure the parameters
required for creating an ECS.

● Parameter of build
The scripts are executed from top to bottom. Common modules such as the file upload
module and script execution shell module are supported. The corresponding scripts and
files are stored in the user-scripts and user-packages directories, respectively, in cce-
image-builder.
Example:
build {
 sources = ["source.huaweicloud-ecs.builder"]

Example:
 provisioner "file" {
 source = "<source file path>"
 destination = "<destination file path>"
 }

 provisioner "shell" {
 scripts = [
 "<source script file: step1.sh>",
 "<source script file: step2.sh>"
]
 }

 provisioner "shell" {
 inline = ["echo foo"]
 }
}

Step 4 Configure environment variables.

Configure the following environment variables on the executor:
export REGION_NAME=xxx
export IAM_ACCESS_KEY=xxx
export IAM_SECRET_KEY=xxx
export ECS_VPC_ID=xxx
export ECS_NETWORK_ID=xxx
export ECS_SECGRP_ID=xxx
export CCE_SOURCE_IMAGE_ID=xxx
export PKR_VAR_ecs_flavor=xxx

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Table 9-6 Variables configuration

Parameter Description Remarks

REGION_NAME Region to which the
project belongs

To obtain the region information,
go to My Credentials.

IAM_ACCESS_K
EY

Access key for user
authentication

Apply for a temporary AK and
delete it when the image is built
successfully.

IAM_SECRET_K
EY

Secret key for user
authentication

Apply for a temporary SK and
delete it when the image is built
successfully.

ECS_VPC_ID VPC ID Used by the temporary ECS
server, which must be the same
as that of the executor

ECS_NETWORK
_ID

Network ID of the subnet Used by the temporary ECS
server. It is recommended that
the value be the same as that of
the executor. It is not the subnet
ID.

ECS_SECGRP_I
D

Security group ID Used by the temporary ECS. The
public IP address of the executor
must be allowed to pass through
port 22 in the inbound direction
of the security group to ensure
that the executor can log in to
the temporary ECS using SSH.

CCE_SOURCE_I
MAGE_ID

Latest CCE node image ID For details, see Obtaining an
Image ID.

PKR_VAR_ecs_fl
avor

Specifications of a
temporary ECS

Enter a node flavor supported by
CCE. The recommended flavor is
2 vCPUs and 4 GiB memory or
higher. For details about the
flavor name, see A Summary List
of x86 ECS Specifications.

Note: Retain the default values of other parameters. To change the values, refer to
the description in the variable definition in turbo-node.pkr.hcl and configure the
value using environment variables.

Use the ECS flavor variable ecs_az as an example. If no AZ is specified, select a
random AZ. If you want to specify an AZ, configure an environment variable. The
same applies to other parameters.

export PKR_VAR_<variable name>=<variable value>
export PKR_VAR_ecs_az=xxx

Step 5 Customize scripts and files.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

https://console-intl.huaweicloud.com/iam/?locale=en-us#/myCredential
https://support.huaweicloud.com/intl/en-us/productdesc-ecs/ecs_01_0014.html
https://support.huaweicloud.com/intl/en-us/productdesc-ecs/ecs_01_0014.html

Compile scripts and files by referring to the file and shell modules defined by the
build field in the pkr.hcl file, and store the scripts and files in the user-scripts and
user-packages directories in cce-image-builder.

NO TICE

When customizing an image, exercise caution when modifying kernel parameters.
Any improper kernel parameter modification will deteriorate the system running
efficiency. For details about the reference values, see Modifying Node Kernel
Parameters.
Modifying the following kernel parameters will affect the system performance:
tcp_keepalive_time, tcp_max_tw_buckets, somaxconn, max_user_instances,
max_user_watches, netdev_max_backlog, net.core.wmem_max, and
net.core.rmem_max.
To modify node kernel parameters, fully verify the modification in a test
environment before applying the modification to the production environment.

Step 6 Create a custom image.

After custom parameter settings, create an image. The creation will take 3 to 5
minutes.
make image

NO TE

In the encapsulation script packer.sh:
● Automatic access of hashicorp.com by Packer is disabled by default for privacy

protection and security purposes.
export CHECKPOINT_DISABLE=false

● The debugging detailed logs option is enabled by default for better visibility and
traceability. The local Packer build logs packer_{timestamp}.log is specified so that the
logs can be packed to the /var/log/ directory during build. If sensitive information is
involved, remove the related logic.
export PACKER_LOG=1
export PACKER_BUILD_TIMESTAMP=$(date +%Y%m%d%H%M%S)
export PACKER_LOG_PATH="packer_$PACKER_BUILD_TIMESTAMP.log"

For details about Packer configuration, see Configuring Packer.

After the image is created, information similar to the following will display.

Step 7 Clean up build files.

Clear the build files on the executor, mainly the authentication credentials in
turbo-node.pkr.hcl.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0412.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0412.html
https://www.packer.io/docs/configure

● If the authentication credentials are temporary, directly release the executor.
● If they are built automatically, add post-processor in the configuration file to

execute related operations.

----End

Common Issues
● When the packer is used to create an image, the latest Huawei Cloud ECS

open-source plugin is automatically obtained from GitHub. However, this
process may fail due to the network environment.

To solve the problem, apply either of the following methods:
– Create an executor in a region such as CN-Hong Kong with a better

network performance and connect the executor to the original region, for
example, CN North-Beijing 4, to build a custom image.
export REGION_NAME=cn-north-4

– Download the corresponding plugin and initialize it to the local add-on
path.
To obtain the plugin releases, see GitHub.
If the executor is CentOS 7.6 x86, and the downloaded plugin is packer-
plugin-huaweicloud_v1.0.4_x5.0_linux_amd64.zip, run the following
command:
PLUGIN_PATH="$HOME/.packer.d/plugins/github.com/huaweicloud/huaweicloud"
mkdir -p $PLUGIN_PATH
unzip packer-plugin-huaweicloud_v1.0.4_x5.0_linux_amd64.zip -d /tmp/
cp /tmp/packer-plugin-huaweicloud_v1.0.4_x5.0_linux_amd64 $PLUGIN_PATH/
sha256sum /tmp/packer-plugin-huaweicloud_v1.0.4_x5.0_linux_amd64 | awk '{print $1}' >
$PLUGIN_PATH/packer-plugin-huaweicloud_v1.0.4_x5.0_linux_amd64_SHA256SUM
ll $PLUGIN_PATH/*

Then, run the make image command to create an image.
● If the error message "PublicIp type is invalid" is displayed, you need to check

the EIP type in different environments, run export PKR_VAR_eip_type='xxx',
and create an image. For details about EIP types, see Assigning an EIP.
An example is as follows:
export PKR_VAR_eip_type='5_bgp'

● If the error code Ecs.0019 and the error message "Flavor xxxx is abandoned"
are displayed, the flavor may be unavailable in the current AZ. Try again or
change the flavor in the turbo-node.pkr.hcl file.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

https://github.com/huaweicloud/packer-plugin-huaweicloud/releases
https://support.huaweicloud.com/intl/en-us/api-eip/eip_api_0001.html#eip_api_0001__en-us_topic_0201534274_table4491214

● If the error message "no such host" is displayed, the current IAM domain
name may fail to be resolved.

Configure the following environment variables on the host. {IAM endpoint}
specifies the IAM domain name of the current region.
export PKR_VAR_auth_url='{IAM endpoint}'

9.4 Executing the Pre- or Post-installation Commands
During Node Creation

Background

When creating a node, use the pre- or -installation commands to install tools or
perform security hardening on the node. This section provides guidance for you to
correctly use the pre- or post-installation scripts. To use advanced installation
scripts, store the scripts in OBS buckets to prevent problems such as excessive
characters in the scripts. For details, see Using OBS Buckets to Implement
Custom Script Injection During Node Creation.

Precautions
● Do not use pre- or post-installation scripts that take a long time to execute.

The pre-installation script has a 15-minute time limit, while the post-
installation script has a 30-minute time limit. If the node is not available
within the designated time, the node reclaim process will be initiated.
Therefore, do not use pre- or post-installation scripts that take a long time to
execute.

● Do not directly use reboot in the script.

CCE executes the post-installation command after installing mandatory
components on a node. The node will be available only after the post-
installation command is executed. If you run reboot directly, the node may be
restarted before its status is reported. As a result, it cannot reach the running
state within 30 minutes, and a rollback due to timeout will be triggered.
Therefore, do not use reboot.

If you need to restart a node, perform the following operations:

– Run shutdown -r <time > in the script to delay the restart. For example,
you can run shutdown -r 1 to delay the restart for 1 minute.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

https://support.huaweicloud.com/intl/en-us/bestpractice-cce/cce_bestpractice_0304.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cce/cce_bestpractice_0304.html

– After the node is available, manually restart it.

Procedure

Step 1 Log in to the CCE console. In the navigation pane, choose Clusters. Click the
target cluster name to access the cluster console.

Step 2 Choose Nodes in the navigation pane, click the Nodes tab, click Create Node in
the right corner, and configure the parameters.

Step 3 In the Advanced Settings area, enter pre- or post-installation commands.

For example, you can create iptables rules by running a post-installation
command to allow a maximum of 25 TCP data packets to be addressed to port 80
per minute and allow a maximum of 100 data packets to be addressed to the port
when the limit is exceeded to prevent DDoS attacks.

iptables -A INPUT -p tcp --dport 80 -m limit --limit 25/minute --limit-burst 100 -j ACCEPT

NO TE

The command example here is for reference only.

Step 4 After the configuration, enter the number of nodes to be purchased and click
Next: Confirm.

Step 5 Click Submit.

----End

9.5 Using OBS Buckets to Implement Custom Script
Injection During Node Creation

Background

If you need to install some tools or perform custom security hardening on a node
in advance, you need to inject some scripts when creating the node. CCE allows
you to inject pre-installation and post-installation scripts when creating a node.
However, this function has the following restrictions:

● The script characters are limited.

● The injected script content needs be frequently modified to meet various
requirements and scenarios. However, CCE node pools have fixed scripts and
do not support frequent modifications.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Solution

This section provides a simplified, scalable, easy-to-maintain best practice that
combines CCE and OBS. It enables custom operations on CCE nodes.

The pre-installation and post-installation scripts are stored in an OBS bucket.
When creating a node pool, the scripts directly retrieve the address of the
corresponding OBS script and execute it. This approach eliminates the need to
modify the configuration of the CCE node pool. If there are any new requirements,
you can simply update the scripts in the OBS bucket.

Suggestions on Maintaining OBS Buckets
● If there is no OBS bucket dedicated for O&M, create an OBS bucket dedicated

for O&M.

● Create a multi-level directory tools/cce in the bucket to represent CCE-specific
tools for easy maintenance. You can also store other tool scripts in this
directory later.

Precautions
● If the custom operation implemented by the script fails, the normal service

running is affected. You are advised to add a check program at the end of the
script. If the check fails, stop the kubelet process in the post-installation script
to prevent services from being scheduled to the node.
systemctl stop kubelet-monit
systemctl stop kubelet

● Do not include sensitive information in the scripts to prevent information
leakage.

Procedure

Step 1 Create an OBS bucket.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

Step 2 Upload the pre-installation and post-installation scripts. The pre_install.sh and
post_install.sh scripts are used as examples.

Figure 9-7 Uploading scripts

Step 3 Configure a read-only security policy for the scripts to ensure that the scripts can
be downloaded without entering a password on the CCE nodes but cannot be
downloaded from the Internet.

1. Configure a policy for the tools/cce directory and select a read-only policy
template.

Figure 9-8 Configuring an object policy

2. Modify the configuration information about the anonymous user, specified
objects, and conditions.

Figure 9-9 Anonymous user

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

Figure 9-10 Specified objects

Figure 9-11 Conditions

Two conditions are set: UserAgent and SourceIp.
– UserAgent functions in the similar way as a key. The specified User-

Agent request header and the corresponding key value must be carried
during access.

– SourceIp is used to prevent access from external networks. Set this
parameter to
100.0.0.0/8,10.0.0.0/8,172.16.0.0/12,192.168.0.0/16,214.0.0.0/8, among
which 100.0.0.0/8 and 214.0.0.0/8 are private IP ranges, among whom
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are commonly used.

For details about how to configure an OBS policy, see Configuring an Object
Policy and Bucket Policy Parameters.

Step 4 Configure the pre-installation script and post-installation script when creating a
node pool on CCE.

Enter the following scripts in the Advanced ECS Settings on the Create Node
Pool page:

In the scripts below, the curl command is run to download pre_install.sh and
post_install.sh from OBS to the /tmp directory, and then pre_install.sh and
post_install.sh are executed.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0075.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0075.html
https://support.huaweicloud.com/intl/en-us/perms-cfg-obs/obs_40_0041.html#section4

Pre-installation script:

curl -H "User-Agent: ccePrePostInstall" https://ops-cce.obs.ap-southeast-1.myhuaweicloud.com/tools/cce/
pre_install.sh -o /tmp/pre_install.sh && bash -x /tmp/pre_install.sh > /tmp/pre_install.log 2>&1

Post-installation script:

curl -H "User-Agent: ccePrePostInstall" https://ops-cce.obs.ap-southeast-1.myhuaweicloud.com/tools/cce/
post_install.sh -o /tmp/post_install.sh && bash -x /tmp/post_install.sh > /tmp/post_install.log 2>&1

NO TE

● The actual value of User-Agent must be configured based on the OBS bucket policy.
● The bucket address in the link must be configured based on site requirements.

----End

9.6 Connecting to Multiple Clusters Using kubectl

Background
The kubectl command line tool relies on the kubeconfig configuration file to
locate the necessary authentication information to select a cluster and
communicate with its API server. By default, kubectl uses the $HOME/.kube/
config file as the credential for accessing the cluster.

When working with CCE clusters on a daily basis, it is common to manage
multiple clusters simultaneously. However, this can make using the kubectl
command line tool to connect to clusters cumbersome, as it requires frequent
switching of the kubeconfig file during routine O&M. This section introduces how
to connect to multiple clusters using the same kubectl client.

NO TE

The file used to configure cluster access is called the kubeconfig file, but it does not mean
that the file name is kubeconfig.

Solution
When performing O&M on Kubernetes clusters, it is often necessary to switch
between multiple clusters. The following shows some typical solutions for cluster
switchover:

● Solution 1: Specify --kubeconfig of kubectl to select the kubeconfig file used
by each cluster and use aliases to simplify commands.

● Solution 2: Combine clusters, users, and credentials in multiple kubeconfig
files into one configuration file and run kubectl config use-context to switch
clusters.
Compared with solution 1, this solution requires manual configuration of the
kubeconfig file, which is relatively complex.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

Figure 9-12 Using kubectl to connect to multiple clusters

Prerequisites
● You have a Linux VM with the kubectl command line tool installed. The

kubectl version must match the cluster version. For details, see Install Tools.
● The VM where kubectl is installed must be able to access the network of each

cluster.

kubeconfig File Structure
kubeconfig is the configuration file of kubectl. You can download it on the cluster
details page.

The content of the kubeconfig file is as follows:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "internalCluster",
 "cluster": {
 "server": "https://192.168.0.85:5443",

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

https://kubernetes.io/docs/tasks/tools/

 "certificate-authority-data": "LS0tLS1CRUULIE..."
 }
 }, {
 "name": "externalCluster",
 "cluster": {
 "server": "https://xxx.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTiBDRVJ...",
 "client-key-data": "LS0tLS1CRUdJTiBS..."
 }
 }],
 "contexts": [{
 "name": "internal",
 "context": {
 "cluster": "internalCluster",
 "user": "user"
 }
 }, {
 "name": "external",
 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

It mainly consists of three sections.

● clusters: describes the cluster information, mainly the access address of the
cluster.

● users: describes information about the users who access the cluster. It
includes the client-certificate-data and client-key-data certificate files.

● contexts: describes the configuration contexts. You switch between contexts
to access different clusters. A context is associated with user and cluster, that
is, it defines which user accesses which cluster.

The preceding kubeconfig defines the private network address and public network
address of the cluster as two clusters with two different contexts. You can switch
the context to use different addresses to access the cluster.

Solution 1: Specify Different kubeconfig Files in Commands

Step 1 Log in to the VM where kubectl is installed.

Step 2 Download the kubeconfig files of the two clusters to the /home directory on the
kubectl client. The following names are taken as examples.

Cluster Name kubeconfig File Name

Cluster A kubeconfig-a.json

Cluster B kubeconfig-b.json

Step 3 Make kubectl access cluster A by default and move the kubeconfig-a.json file to
$HOME/.kube/config.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

cd /home
mkdir -p $HOME/.kube
mv -f kubeconfig-a.json $HOME/.kube/config

Step 4 Move the kubeconfig-b.json file of cluster B to $HOME/.kube/config-test.
mv -f kubeconfig-b.json $HOME/.kube/config-test

The name of the config-test file can be customized.

Step 5 Add --kubeconfig to specify the credential used by the kubectl commands when
accessing cluster B. (There is no need to add --kubeconfig when running kubectl
commands to access cluster A, because kubectl can access cluster A by default.)
For example, run the following command to check the nodes in cluster B:
kubectl --kubeconfig=$HOME/.kube/config-test get node

If you frequently use a long command, the preceding method can be inconvenient.
To simplify the command, you can use aliases. For example:
alias ka='kubectl --kubeconfig=$HOME/.kube/config'
alias kb='kubectl --kubeconfig=$HOME/.kube/config-test'

In the preceding information, ka and kb can be custom aliases. When running the
kubectl command, you can directly enter ka or kb to replace kubectl. The --
kubeconfig parameter is automatically added. For example, the command for
checking nodes in cluster B can be simplified as follows:

kb get node

----End

Solution 2: Combine the kubeconfig Files of the Two Clusters Together
The following steps walk you through the procedure of modifying the kubeconfig
files and accessing multiple clusters.

This example configures only the public network access to the clusters. If you want
to access multiple clusters over private networks, retain the clusters field and
ensure that the clusters can be accessed over private networks. Its configuration is
similar to that described in this example.

Step 1 Download the kubeconfig files of the two clusters and delete the lines related to
private network access, as shown in the following figure.
● Cluster A:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "externalCluster",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "external",

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

● Cluster B:
{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "externalCluster",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "external",
 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

The preceding files have the same structure except that the client-certificate-
data and client-key-data fields of user and the clusters.cluster.server field
are different.

Step 2 Modify the name field as follows:

● Cluster A:
{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-A",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-A-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "Cluster-A-Context",
 "context": {
 "cluster": "Cluster-A",
 "user": "Cluster-A-user"
 }
 }],

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

 "current-context": "Cluster-A-Context"
}

● Cluster B:
{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-B",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-B-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "Cluster-B-Context",
 "context": {
 "cluster": "Cluster-B",
 "user": "Cluster-B-user"
 }
 }],
 "current-context": "Cluster-B-Context"
}

Step 3 Combine these two files.

The file structure remains unchanged. Combine the contents of clusters, users,
and contexts as follows:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-A",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 },
 {
 "name": "Cluster-B",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-A-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 },
 {
 "name": "Cluster-B-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

 "name": "Cluster-A-Context",
 "context": {
 "cluster": "Cluster-A",
 "user": "Cluster-A-user"
 }
 },
 {
 "name": "Cluster-B-Context",
 "context": {
 "cluster": "Cluster-B",
 "user": "Cluster-B-user"
 }
 }],
 "current-context": "Cluster-A-Context"
}

Step 4 Run the following command to copy the combined file to the kubectl
configuration path:

mkdir -p $HOME/.kube

mv -f kubeconfig.json $HOME/.kube/config

Step 5 Run the kubectl command to check whether the two clusters can be accessed.
kubectl config use-context Cluster-A-Context
Switched to context "Cluster-A-Context".
kubectl cluster-info
Kubernetes control plane is running at https://119.xxx.xxx.xxx:5443
CoreDNS is running at https://119.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

kubectl config use-context Cluster-B-Context
Switched to context "Cluster-B-Context".
kubectl cluster-info
Kubernetes control plane is running at https://124.xxx.xxx.xxx:5443
CoreDNS is running at https://124.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

If you frequently use a long command, the preceding method can be inconvenient.
To simplify the command, you can use aliases. For example:
alias ka='kubectl config use-context Cluster-A-Context;kubectl'
alias kb='kubectl config use-context Cluster-B-Context;kubectl'

In the preceding information, ka and kb can be custom aliases. When running the
kubectl command, you can directly enter ka or kb to replace kubectl. You need to
switch the context and then run the kubectl command. For example:
ka cluster-info
Switched to context "Cluster-A-Context".
Kubernetes control plane is running at https://119.xxx.xxx.xxx:5443
CoreDNS is running at https://119.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

----End

9.7 Selecting a Data Disk for the Node
When a node is created, a data disk is attached by default for a container runtime
and kubelet. For details, see Data Disk Space Allocation. The data disk used by

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0341.html

the container runtime and kubelet cannot be detached, and the default capacity is
100 GiB. To cut costs, you can adjust the disk capacity to the minimum of 20 GiB
or reduce the disk capacity attached to a node to the minimum of 10 GiB.

NO TICE

Adjusting the size of the data disk used by the container runtime and kubelet may
incur risks. You are advised to evaluate the capacity adjustment and then perform
the operations described in this section.
● If the disk capacity is too small, the image pull may fail. If different images

need to be frequently pulled on the node, you are not advised to reduce the
data disk capacity.

● Before a cluster upgrade, the system checks whether the data disk usage
exceeds 95%. If the usage is high, the cluster upgrade may be affected.

● If Device Mapper is used, the disk capacity may be insufficient. You are advised
to use the OverlayFS or select a large-capacity data disk.

● For dumping logs, application logs must be stored in a separate disk to prevent
insufficient storage capacity of the dockersys volume from affecting service
running.

● After reducing the data disk capacity, you are advised to install the npd add-on
in the cluster to detect disk usage. If the disk usage of a node is high, resolve
this problem by referring to What If the Data Disk Capacity Is Insufficient?

Constraints
● Only clusters of v1.19 or later allow reducing the capacity of the data disk

used by container runtimes and kubelet.
● Only the EVS disk capacity can be adjusted. (Local disks are available only

when the node specification is disk-intensive or Ultra-high I/O.)

Selecting a Data Disk
When selecting a data disk, consider the following factors:

● During image pull, the system downloads the image package (the .tar
package) from the image repository, and decompresses the package. Then it
deletes the package but retain the image file. During the decompression of
the .tar package, the package and the decompressed image file coexist.
Reserve the capacity for the decompressed files.

● Mandatory add-ons (such as everest and coredns) may be deployed on nodes
during cluster creation. When calculating the data disk size, reserve about 2
GiB storage capacity for them.

● Logs are generated during application running. To ensure stable application
running, reserve about 1 GiB storage capacity for each pod.

For details about the calculation formulas, see OverlayFS and Device Mapper.

OverlayFS
By default, the container engine and container image storage capacity of a node
using the OverlayFS storage driver occupies 90% of the data disk capacity (you

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

are advised to retain this value). All the 90% storage capacity is used for dockersys
partitioning. The calculation methods are as follows:

● Capacity for storing container engines and container images requires 90% of
the data disk capacity by default.
– Capacity for dockersys volume (in the /var/lib/docker directory) requires

90% of the data disk capacity. The entire container engine and container
image capacity (need 90% of the data disk capacity by default) are in
the /var/lib/docker directory.

● Capacity for storing temporary kubelet and emptyDir requires 10% of the
data disk capacity.

On a node using the OverlayFS, when an image is pulled, the .tar package is
decompressed after being downloaded. During this process, the .tar package and
the decompressed image file are stored in the dockersys volume, occupying about
twice the actual image storage capacity. After the decompression is complete,
the .tar package is deleted. Therefore, during image pull, after deducting the
storage capacity occupied by the system add-on images, ensure that the
remaining capacity of the dockersys volume is greater than twice the actual image
storage capacity. To ensure that the containers can run stably, reserve certain
capacity in the dockersys volume for container logs and other related files.

When selecting a data disk, consider the following formula:

Capacity of dockersys volume > Actual total image storage capacity x 2 +
Total system add-on image storage capacity (about 2 GiB) + Number of
containers x Available storage capacity for a single container (about 1 GiB log
storage capacity for each container)

NO TE

If container logs are output in the json.log format, they will occupy some capacity in the
dockersys volume. If container logs are stored on persistent storage, they will not occupy
capacity in the dockersys volume. Estimate the capacity of every container as required.

Example:

Assume that the node uses the OverlayFS and the data disk attached to this node
is 20 GiB. According to the preceding methods, the capacity for storing container
engines and images occupies 90% of the data disk capacity, and the capacity for
the dockersys volume is 18 GiB (20 GiB x 90%). Additionally, mandatory add-ons
may occupy about 2 GiB storage capacity during cluster creation. If you deploy
a .tar package of 10 GiB, the package decompression takes 20 GiB of the
dockersys volume's storage capacity. This, coupled with the storage capacity
occupied by mandatory add-ons, exceeds the remaining capacity of the dockersys
volume. As a result, the image pull may fail.

Device Mapper
By default, the capacity for storing container engines and container images of a
node using the Device Mapper storage driver occupies 90% of the data disk
capacity (you are advised to retain this value). The occupied capacity includes the
dockersys volume and thinpool volume. The calculation methods are as follows:

● Capacity for storing container engines and container images requires 90% of
the data disk capacity by default.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

– Capacity for the dockersys volume (in the /var/lib/docker directory)
requires 20% of the capacity for storing container engines and container
images.

– Capacity for the thinpool volume requires 80% of the container engine
and container image storage capacity.

● Capacity for storing temporary kubelet and emptyDir requires 10% of the
data disk capacity.

On a node using the Device Mapper storage driver, when an image is pulled,
the .tar package is temporarily stored in the dockersys volume. After the .tar
package is decompressed, the image file is stored in the thinpool volume, and the
package in the dockersys volume will be deleted. Therefore, during image pull,
ensure that the dockersys partition space and thinpool space are sufficient, and
note that the former is smaller than the latter. To ensure that the containers can
run stably, reserve certain capacity in the dockersys volume for container logs and
other related files.

When selecting a data disk, consider the following formulas:
● Capacity for dockersys volume > Temporary storage capacity of the .tar

package (approximately equal to the actual total image storage capacity)
+ Number of containers x Storage capacity of a single container (about 1
GiB log storage capacity must be reserved for each container)

● Capacity for thinpool volume > Actual total image storage capacity +
Total add-on image storage capacity (about 2 GiB)

NO TE

If container logs are output in the json.log format, they will occupy some capacity in the
dockersys volume. If container logs are stored on persistent storage, they will not occupy
capacity in the dockersys volume. Estimate the capacity of every container as required.

Example:

Assume that the node uses the Device Mapper and the data disk attached to this
node is 20 GiB. According to the preceding methods, the container engine and
image storage capacity occupies 90% of the data disk capacity, and the disk usage
of the dockersys volume is 3.6 GiB. Additionally, the storage capacity of the
mandatory add-ons may occupy about 2 GiB of the dockersys volume during
cluster creation. The remaining storage capacity is about 1.6 GiB. If you deploy
a .tar image package larger than 1.6 GiB, the storage capacity of the dockersys
volume is insufficient for the package to be decompressed. As a result, the image
pull may fail.

What If the Data Disk Capacity Is Insufficient?

Solution 1: Clearing images

Perform the following operations to clear unused images:
● Nodes that use containerd

a. Obtain local images on the node.
crictl images -v

b. Delete the images that are not required by image ID.
crictl rmi Image ID

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

● Nodes that use Docker

a. Obtain local images on the node.
docker images

b. Delete the images that are not required by image ID.
docker rmi Image ID

NO TE

Do not delete system images such as the cce-pause image. Otherwise, pods may fail to be
created.

Solution 2: Expanding the disk capacity

Step 1 Expand the capacity of a data disk on the EVS console. For details, see Expanding
EVS Disk Capacity.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run the lsblk command to check the block device information of the node.

A data disk is divided depending on the container storage Rootfs:

Overlayfs: No independent thin pool is allocated. Image data is stored in
dockersys.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk # The data disk has been expanded to 150 GiB, but 50 GiB
space is not allocated.
├─vgpaas-dockersys 253:0 0 90G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Add the new disk capacity to the dockersys logical volume used by the
container engine.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where dockersys is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <90.00 GiB (23039 extents) to 140.00
GiB (35840 extents).
Logical volume vgpaas/dockersys successfully resized.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/containerd; on-line resizing required
old_desc_blocks = 12, new_desc_blocks = 18
The filesystem on /dev/vgpaas/dockersys is now 36700160 blocks long.

3. Check whether the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Devicemapper: A thin pool is allocated to store image data.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm # Space used by thinpool
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Option 1: Add the new disk capacity to the thin pool disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where thinpool is located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/thinpool
specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/thinpool

Information similar to the following is displayed:
Size of logical volume vgpaas/thinpool changed from <67.00 GiB (23039 extents) to <167.00
GiB (48639 extents).
Logical volume vgpaas/thinpool successfully resized.

c. Do not need to adjust the size of the file system, because the thin pool is
not mounted to any devices.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the thin pool, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

│ └─vgpaas-thinpool 253:3 0 167G 0 lvm # Thin pool space after
capacity expansion
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Option 2: Add the new disk capacity to the dockersys disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where dockersys is
located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <18.00 GiB (4607 extents) to <118.00
GiB (30208 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/docker; on-line resizing required
old_desc_blocks = 3, new_desc_blocks = 15
The filesystem on /dev/vgpaas/dockersys is now 30932992 blocks long.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the dockersys, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 118G 0 lvm /var/lib/docker # dockersys after
capacity expansion
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

----End

9.8 Implementing Cost Visualization for a CCE Cluster

Background

The billing information of CCE is displayed based on the entire service by default.
The costs of different clusters are not shown.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

Solution

Add the CCE-Cluster-ID tag to the resources used in the clusters, obtain the costs
by searching for this tag in cost center, and then analyze the costs by cluster to
improve efficiency and cut costs.

Constraints

Generally, tags appear on the Cost Tags page 24 hours after resource expenditures
are generated.

You can filter or group cost data by tag only after the tags are activated. If you
activate the tags, they will be used to organize your resource costs generated
thereafter.

Procedure

Step 1 Activate the CCE-Cluster-ID tag.

In Cost Center, choose Cost Allocation > Cost Tags in the navigation pane. Select
Tag from the drop-down list for the filter criteria, search for CCE-Cluster-ID, and
click Activate in the Operation column.

Figure 9-13 Activating the cost tag

The following information will be displayed.

Figure 9-14 Activation succeeded

Step 2 Add the tag to resources used in a cluster.

Resources used in a cluster include master nodes, worker nodes, storage resources
(such as EVS disks, SFS file systems, and OBS buckets), and network resources
(such as load balancers and EIPs). By default, the CCE-Cluster-ID tag is added to
the worker nodes.

● Add the tag to a cluster.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

https://account-intl.huaweicloud.com/en-us/costmanagement/?source=COST_CENTER#/cost/costAssignTag

On the CCE console, click the name of the target cluster to access the cluster
console. On the Cluster Information page, add the resource tag in the Other
area.

● Add the tag to an EVS disk.
On the EVS console, click the name of the target disk to go to the details
page. On the Tags tab, add a tag.

● Add the tag to an OBS bucket.
On the OBS console, click the name of the target bucket to go to the details
page. Choose Basic Configurations > Tagging and add a tag.

● Add the tag to an SFS Turbo file system.
On the SFS console, click the name of the target SFS Turbo file system to go
to the details page. On the page displayed, click the Tags tab and add a tag.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

● Add the tag to a load balancer.
On the ELB console, click the name of the target load balancer to go to the
details page. On the page displayed, click the Tags tab and add a tag.

● Add the tag to an EIP.
On the EIP console, click the name of the target EIP to go to the details page.
Click the Tags tab and add a tag.

Step 3 Analyze the cluster's costs.

On the Cost Analysis page, choose CCE-Cluster-ID and the ID of the desired
cluster from the drop-down list.

Figure 9-15 Analyzing costs

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

Click OK.

Figure 9-16 Viewing the cluster's costs

----End

9.9 Creating a CCE Turbo Cluster Using a Shared VPC

Shared VPC Overview

A shared VPC allows you to share your VPC resources with other accounts through
the Resource Access Manager (RAM) service. For example, tenant A can share its
VPC and subnets with tenant B. After tenant B accepted the sharing, tenant B can
view the shared subnets and the shared VPC to which the shared subnets belong.
Tenant B can use the shared subnets and VPC to create resources, such as CCE
Turbo clusters. For details, see VPC Sharing Overview.

Application Scenarios

An enterprise organizes accounts in an orderly and centralized manner based on
its organization structure or service form. Resources are managed in a unified
manner and shared with other members to avoid repeated configurations. Unified
security and O&M management makes it easy to configure and audit security
policies.

For example, an enterprise IT account, the resource owner, creates a VPC and
subnets and shares multiple subnets with other accounts.

● Account A is an enterprise service account and uses the shared subnet 1 to
create resources.

● Account B is an enterprise service account and uses the shared subnet 2 to
create resources.

Constraints
● Only CCE Turbo clusters support shared VPCs.
● Clusters created using a shared VPC do not support shared load balancers and

NAT gateways.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_share_0001.html

● Clusters created using a shared VPC do not support SFS, OBS, and SFS Turbo
storage volumes.

● If a CCE Turbo cluster has been created using a shared VPC, the owner of the
shared VPC should not turn off the VPC sharing. Otherwise, the CCE Turbo
cluster will malfunction.

Procedure
After account A shares a VPC with account B, account B can select the shared VPC
and shared subnets when creating a CCE Turbo cluster.

Step 1 (For account A) Use RAM to create a shared VPC and specify account B as the
resource user. For details, see Creating a Resource Share.

After the resource sharing is created, RAM sends an invitation to account B.
Account B can access and use the shared resources only after accepting the
invitation.

Step 2 (For account B) Log in to the CCE console and create a CCE Turbo cluster.

Select the VPC shared by account A when configuring network for the cluster. For
details about other configurations, see Buying a CCE Cluster.

Figure 9-17 Selecting a shared VPC

----End

9.10 Protecting a CCE Cluster Against Overload
As services grow, the Kubernetes cluster scales up, putting more pressure on the
control plane. If the control plane cannot handle the load, clusters may fail to
provide services. This document explains the symptoms, impact, and causes of
cluster overload, as well as how CCE clusters can protect against overload. It also
provides recommended measures for protecting against overload.

What Is Cluster Overload?
An overloaded cluster can cause delays in Kubernetes API responses and increase
the resource usage on master nodes. In severe cases, the APIs may fail to respond,
master nodes may become unusable, and the entire cluster may malfunction.

When a cluster is overloaded, both the control plane and the services that rely on
it are impacted. The following lists some scenarios that may be affected:

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

https://support.huaweicloud.com/intl/en-us/usermanual-ram/ram_03_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html

● Kubernetes resource management: Creating, deleting, updating, or obtaining
Kubernetes resources may fail.

● Kubernetes distributed leader selection: In distributed applications based on
Kubernetes Leases, leaders may restart due to lease renewal request timeout.

NO TE

For example, if the lease renewal of the controller component of the NPD add-on fails,
an active/standby switchover is triggered. This means that the active instance will
restart, and the standby instance will take over services, ensuring that there is no
impact on services.

● Cluster management: When a cluster is severely overloaded, it may become
unavailable. In this case, cluster management operations, such as creating or
deleting nodes, cannot be performed.

Common causes of cluster overload are as follows:

● The cluster resource data volume is too large.
etcd and kube-apiserver are two core components of the cluster control plane.
etcd serves as the background database that stores all cluster data, while
kube-apiserver acts as the entry point for processing requests. kube-apiserver
caches cluster data to lessen the burden on etcd, and other core components
in the cluster also cache various resources and monitor changes to these
resources.
However, if the cluster resource data volume is too large, the control plane
resource usage remains high, leading to overload when the resource data
volume exceeds the bearing capability.

● A large amount of data is obtained from a client. For example, a large
number of LIST requests are initiated or a single LIST request is sent to obtain
a large amount of data.
Assume that a client uses field selectors to obtain pod data in a cluster and
needs to obtain data from etcd (although the client can also get data from
the kube-apiserver cache). Data in etcd cannot be obtained by field, so kube-
apiserver must get all pod data from etcd, replicate, and serialize structured
pod data, and then respond to the client request.
When the client sends a LIST request, it may need to be processed by multiple
control plane components, resulting in a larger amount of data to be
processed and a more complex data type. As a result, when the client gets a
large amount of data, resource usages on etcd and API server remain high. If
the bearing capability is exceeded, the cluster becomes overloaded.

CCE Overload Control
● Overload control: CCE clusters have supported overload control since v1.23,

which reduces the number of LIST requests outside the system when the
control plane experiences high resource usage pressure. To use this function,
enable overload control for your clusters. For details, see Enabling Overload
Control for a Cluster.

● Optimized processes on LIST requests: Starting from CCE clusters of v1.23.8-
r0 and v1.25.3-r0, processes on LIST requests have been optimized. Even if a
client does not specify the resourceVersion parameter, kube-apiserver
responds to requests based on its cache to avoid additional etcd queries and
ensure that the response data is up to date. Additionally, namespace indexes

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0602.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0602.html

are now added to the kube-apiserver cache. This means that when a client
requests a specified resource in a specified namespace, it no longer needs to
obtain resources belonging to the namespace based on full data. This
effectively reduces the response delay and control plane memory overhead.

● Refined traffic limiting policy on the server: The API Priority and Fairness
(APF) feature is used to implement fine-grained control on concurrent
requests. For details, see API Priority and Fairness.

Suggestions
This section describes measures and suggestions you can take to prevent clusters
from being overloaded.

Upgrading the Cluster Version
As the CCE cluster version evolves, new overload protection features and
optimizations are regularly introduced. It is recommended that you promptly
upgrade your clusters to the latest version. For details, see Upgrading a Cluster.

Enabling Overload Control
After overload control is enabled, concurrent LIST requests outside the system will
be dynamically controlled based on the resource demands received by master
nodes to ensure the stable running of the master nodes and the cluster.

For details, see Cluster Overload Control.

Enabling Observability
Observability is crucial for maintaining the reliability and stability of clusters. By
using monitoring, alarms, and logs, administrators can gain a better
understanding of the clusters' performance, promptly identify any issues, and take
corrective action in a timely manner.

Monitoring configurations

● You can check the monitoring information about master nodes on the
Overview page of the CCE cluster console.

Figure 9-18 Viewing master node monitoring information

● You can also use Prometheus to monitor the metrics of master node
components, especially the memory usage, resource quantity, QPS, and
request latency of kube-apiserver. For details, see Monitoring Metrics of
Master Node Components Using Prometheus.

Alarm configurations

Alarms are an additional feature of monitoring. Alarms are generated to
administrators in a timely manner when a cluster experiences malfunctions,

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0197.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0602.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0559.html

allowing for prompt resolution of any issues. You can configure alarms for metrics
such as memory usage, resource quantity, QPS, and request latency of kube-
apisever as needed. For details, see Configuring Custom Alarms on CCE.

NO TE

Monitoring metrics such as resource quantity, QPS, and request latency do not have a fixed
boundary between normal and abnormal metrics due to variations in service scenarios. As a
result, these metrics are considered normal as long as they do not impact service stability.
Typical alarm thresholds cannot be defined. To address this, you can observe metric data
when services are running stably and configure appropriate alarm thresholds based on the
normal fluctuation range of resource usage. Alternatively, you can use the changes of
metric data in a unit of time as the alarm detection object.

Logging configurations

Kubernetes logs allow you to locate and rectify faults. The kube-apiserver
component logs contain details about client requests, such as the request source,
processing time, and reasons for any exceptions. These logs are useful for tracing
the source of issues and analyzing problems related to overload. For details, see
Collecting Control Plane Component Logs.

Controlling Data Volume of Resources
When the resource data volume in a cluster is too large, it can negatively impact
etcd performance, including data read and write latency. Additionally, if the data
volume of a single type of resource is too large, the control plane consumes a
significant number of resources when a client requests all the resources. To avoid
these issues, it is recommended that you keep both the etcd data volume and the
data volume of a single type of resources under control.

Table 9-7 Recommended maximum etcd data volume for different cluster scales

Cluster Scale 50 Nodes 200 Nodes 1,000 Nodes 2,000 Nodes

Total etcd
data capacity

500Mi 1Gi 4Gi 8Gi

etcd data
volume of a
single type of
resources

50Mi 100Mi 400Mi 800Mi

Clearing Unused Resources
To prevent a large number of pending pods from consuming extra resources on
the control plane, it is recommended that you promptly clear up Kubernetes
resources that are no longer in use, such as ConfigMaps, Secrets, and PVCs.

Optimizing the Client Access Mode
● To avoid frequent LIST queries, it is best to use the client cache mechanism

when retrieving cluster resource data multiple times. It is recommended that
you communicate with clusters using informers and listers. For details, see
client-go documentation.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0835.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0554.html
https://pkg.go.dev/k8s.io/client-go/tools/cache

If a LIST query must be used, you can:
– Obtain needed data from the kube-apiserver cache first and avoid

making additional queries on etcd data. For clusters earlier than v1.23.8-
r0 and v1.25.3-r0, you can set resourceVersion to 0. In clusters of
v1.23.8-r0, v1.25.3-r0, and later versions, CCE has improved the way data
is retrieved and ensured that the cached data is up to date. By default,
you can access the required data from the cache.

– Accurately define the query scope to avoid retrieving irrelevant data and
using unnecessary resources. For example:
client-go Code example for obtaining pods in a specified namespace
k8sClient.CoreV1().Pods("<your-namespace>").List(metav1.ListOptions{})
kubectl Command example for obtaining pods in a specified namespace
kubectl get pods -n <your-namespace>

● Use the more efficient Protobuf format instead of the JSON format. By
default, Kubernetes returns objects serialized to JSON with content type
application/json. This is the default serialization format for the API. However,
clients may request the more efficient Protobuf representation of these
objects for better performance. For details, see Alternate representations of
resources.

Changing the Cluster Scale
If the resource usage on the master nodes in a cluster remains high for a long
time, for example, the memory usage is greater than 85%, it is recommended that
you promptly increase the cluster management scale. This will prevent the cluster
from becoming overloaded during sudden traffic surges. For details, see Changing
Cluster Scale.

NO TE

● The performance of the master nodes improves and their specifications become higher
as the management scale of a cluster increases.

● The CCE cluster management scale is the maximum number of nodes that a cluster can
manage. It is used as a reference during service deployment planning, and the actual
quantity of nodes in use may not reach the maximum number of nodes selected. The
actual scale depends on various factors, including the type, quantity, and size of
resource objects in the cluster, as well as the number of external accesses to the cluster
control plane.

Splitting the Cluster
The Kubernetes architecture has a performance bottleneck, meaning that the scale
of a single cluster cannot be expanded indefinitely. If your cluster has 2,000
worker nodes, it is necessary to split the services and deploy them across multiple
clusters. If you encounter any issues with splitting a cluster, submit a service ticket
for technical support.

Summary
When running services on Kubernetes clusters, their performance and availability
are influenced by various factors, including the cluster scale, number and size of
resources, and resource access. CCE has optimized cluster performance and
availability based on cloud native practices and has developed measures to protect
against cluster overload. You can use these measures to ensure that your services
run stably and reliably over the long term.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

https://kubernetes.io/docs/reference/using-api/api-concepts/#alternate-representations-of-resources
https://kubernetes.io/docs/reference/using-api/api-concepts/#alternate-representations-of-resources
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0403.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0403.html

9.11 Managing Costs for a Cluster
The key to optimizing cluster costs is to maximize the utilization of cluster
resources and minimize unnecessary expenses. It is important to note that cost
optimization goes beyond just reducing resources; it also involves finding a
balance between cost optimization and cluster reliability. This section provides a
summary of the best practices for cluster cost optimization, which will help you
efficiently manage cluster expenses and enhance overall efficiency.

Using Appropriate Cluster Configurations

Before setting up a cluster, it is important to assess the resource needs of your
applications. This will help you choose the appropriate cluster type, node instance
type, and cluster billing mode, all of which can contribute to building a cost-
effective cluster.

Selecting a Cluster Type

CCE provides many cluster types. You can select a proper one based on your
service characteristics. The following table lists the differences between these
clusters.

Categor
y

CCE Standard CCE Turbo CCE Autopilot

Descripti
on

An enterprise-level
container service on
Kubernetes

Hardware-software
synergy for extra
performance

A Kubernetes-
compatible
serverless container
service

Manage
d object

Clusters, nodes, and
workloads

Clusters, nodes, and
workloads

Fully hosted nodes

Cluster
scale

On-demand
adjustment

On-demand
adjustment

Automatic
adjustment

Node Multiple flavors
available, custom
node creation or
deletion

Multiple flavors
available, custom
node creation or
deletion

Automatic, flexible
node allocation for
containers

Comput
e

Heterogeneous
compute including
x86, Arm, and NPUs

Heterogeneous
compute including
x86, Arm, and NPUs

Heterogeneous
compute including
x86, Arm, and NPUs

Scheduli
ng

Proprietary Volcano
for various
scheduling policies
and improved task
execution efficiency

Hybrid scheduling for
improved cluster
resource utilization

Intelligent
scheduling for
starting containers
in seconds and
automatic load
balancing

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

Categor
y

CCE Standard CCE Turbo CCE Autopilot

Network VPC network overlaid
with container
network

VPC network and
container network
flattened into one
layer, so there is zero
performance loss

VPC network and
container network
flattened into one
layer, so there is zero
performance loss

Security Container network
access control based
on network policies

Kata Containers that
allow containers to
run inside lightweight
VMs

Dedicated cloud
native OS that
allows automatic
vulnerability fixing

For details, see Comparison Between Cluster Types.

Selecting a Node Flavor
ECSs come in various flavors, each offering different computing and storage
capabilities. Typically, higher specifications (such as CPU and memory) and
specialized features (like GPUs and NPUs) result in higher costs per node. It is
important to configure stable, cost-effective ECSs that align with the specific needs
of your services.

Selecting a Billing Mode for a Node
Different services have varying resource usage periods and stability requirements.
To achieve cost-effectiveness, you can choose the appropriate billing mode based
on the service characteristics.

Billing Mode Description

Yearly/Monthly Yearly/Monthly is a prepaid mode in which you pay for a
service before using it. Your bill is generated based on the
required duration you specify in the order. The longer the
subscription period, the higher the discount.
Yearly/Monthly billing is a good option for long-term,
stable services.

Pay-per-use Pay-per-use is a postpaid billing mode. You pay as you go
and just pay for what you use. The prices are calculated
by the second but billed every hour. Pay-per-use billing
allows you to flexibly adjust resource usage. You neither
need to prepare for resources in advance, nor end up with
excessive or insufficient preset resources.
It is a good option for scenarios where there are sudden
traffic bursts, such as e-commerce promotions.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0342.html

Billing Mode Description

Spot pricing Spot pricing is a postpaid billing mode. The prices are
adjusted gradually based on long-term trends in supply
and demand for spot instance capacity. The prices
calculated by the second but billed every hour.
You need to set a maximum price you are willing to pay
for a spot instance. If inventory resources are insufficient
or the market price rises above your maximum price, the
spot instance will be reclaimed.
NOTICE

Spot instances are ideal for stateless, cost-sensitive applications
that can tolerate interruptions. A spot instance is not
recommended for workloads that need to run for a long time or
that require high stability.

For details, see Billing Items.

Clearing Idle Resources in a Timely Manner
It is a good option to identify and clear idle cloud services or resources in clusters
in a timely manner, such as unused ECSs, EVS disks, OBS buckets, ELB load
balancers, and EIPs.

Optimizing Resource Configuration for a Workload
Setting resource requests and limits too high leads to resource wastage, while
setting them too low affects workload stability. By properly configuring resource
requests and limits, cluster resource utilization can be improved, resulting in
reduced costs.

Configuring Proper Resource Requests and Limits
To ensure that your workloads have enough resources and to avoid wasting
resources due to excessive requests, it is important to configure appropriate
requests and limits.

Managing Quotas for a Namespace
Quota management sets limits on the total number of resources that teams and
users can use when they share cluster resources. These resources include the
number of objects of a specific type created in a namespace, as well as the total
number of compute resources like CPUs and memory used by these objects.

This approach help minimize unnecessary resource overhead.

For details, see Configuring Resource Quotas.

Configuring Auto Scaling for a Cluster
CCE provides auto scaling in seconds. It automatically adjusts compute resources
based on preset policies and your service needs to ensure that the number of

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

https://support.huaweicloud.com/intl/en-us/price-ecs/ecs_billing_3000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0287.html

cloud servers or containers increases or decreases with service load. This ensures
stable, healthy services, improves cluster resource utilization, and reduces costs.

For details, see Workload Scaling Rules.

Enabling Auto Scaling for an Application

CCE provides auto scaling for applications. This feature enables applications that
experience traffic surges or periodic peak and off-peak hours to automatically
adjust compute resources.

Application scaling on demand (HPA)

Application auto scaling helps dynamically adjust compute resources based on
service requirements and policies. It enables quick scale-out during peak hours
and scale-in during off-peak hours, optimizing resource utilization and reducing
costs.

The following table lists the auto scaling approaches supported by CCE.

Policy Name Description

HPA Scales Deployments based on metrics like CPU usage
and memory usage. HPA adds cooldown time windows
and scaling thresholds for applications based on
Kubernetes HPA.
HPA applies to scenarios where services experienced
fluctuating traffic, many services are deployed, and
frequent scaling is required.

CronHPA Scales Deployment periodically (daily, weekly, monthly,
or yearly at a specific time).
CronHPA applies to scenarios where the application
resource usage changes periodically.

Burst scaling (interconnected with CCI)

In short-term high-load scenarios, besides HPA, pods in a CCE cluster can be
scaled to CCI. There is no need to create new nodes, reducing resource
consumption caused by scale-out. The CCE Cloud Bursting Engine for CCI add-on
must be installed in the cluster. For details, see Elastic Scaling of CCE Pods to
CCI.

Scaling a Node

Application auto scaling helps dynamically adjust the number of pods based on
workload metrics. If there are not enough cluster resources and new pods cannot
run properly, you can add more nodes to the cluster.

For details, see Node Scaling Rules.

The following table lists auto scaling policies that you can select.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0290.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0296.html

Policy Name Description

Manual scaling You can manually scale in or out nodes in a node pool.
If the resources of the selected flavor are insufficient or
the quota is insufficient, the scale-out will fail.

Auto scaling CCE Cluster Autoscaler automatically scales in or out
nodes in a cluster based on the pod scheduling status
and resource usage. It supports multiple scaling modes,
such as multi-AZ, multi-pod-specifications, metric
triggering, and periodic triggering, to meet the
requirements of different node scaling scenarios.
● Scale-out: Autoscaler checks all unscheduled pods

every 10 seconds and selects a node pool that meets
the requirements for scale-out based on the policy
you set.

● Scale-in: Autoscaler scans all nodes every 10 seconds.
If the number of pod requests on a node is less than
the custom scale-in threshold (in percentage),
Autoscaler will check whether pods on the current
node can be migrated to other nodes.

Optimizing Application Scheduling
During cloud native progress, it is important to strike a balance between
performance and service quality. This can be achieved by carefully considering the
service deployment solutions and architectures. Depending on your specific service
scenarios, you can choose an appropriate scheduling solution to optimize resource
utilization and manage costs efficiently.

Using Cloud Native Hybrid Deployment
If your service meets the following requirements, it is recommended that you use
this capability:

● Nodes are deployed in different clusters. They cannot share compute
resources with each other, resulting in an increase in resource fragments.

● The node flavors are not ideal for applications that undergo frequent changes.
At first, the node flavors match the application requirements, resulting in a
high resource allocation rate. However, as the applications evolve, their
resource demands change, causing a significant difference in the ratio of
requested resources to node flavors. This leads to a decrease in the allocation
rate of node resources and an increase in compute resource fragments.

● There are a large number of reserved resources. Online services experience
daily peaks and troughs. To ensure service performance and stability, users
apply for resources based on peak usage, which may result in many idle
resources in the cluster during certain times.

● Online and offline services are deployed in separate Kubernetes clusters, and
resources cannot be shared between them at different time. This means that
during off-peak hours for online services, the resources cannot be used by
offline services.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

The following table lists cloud native hybrid deployment features that can help
you improve resource utilization, reduce costs, improve efficiency in the scenarios
mentioned earlier.

Feature Description

Dynamic resource
oversubscription

Based on the types of online and offline jobs,
Volcano is used to optimize cluster resource
utilization by using the requested but unused
resources (the difference between the requested
and used resources) for resource oversubscription
and hybrid deployment.
For details, see Dynamic Resource
Oversubscription.

CPU burst CPU burst is an elastic traffic limiting mechanism
that allows temporarily exceeding the CPU limit to
reduce the long-tail response time of services and
improve the quality of latency-sensitive services.
For details, see CPU Burst.

Guaranteed egress
network bandwidth

The egress network bandwidth used by online and
offline services is balanced to ensure enough
network bandwidth for online services.
For details, see Guaranteed Egress Network
Bandwidth.

Enabling Resource Usage-based Scheduling
The Volcano Scheduler is used to improve cluster resource usage. It provides bin
packing, descheduling, node pool affinity, and load-aware scheduling policies.

Scheduling Policy Description

Bin packing Bin packing is an optimization algorithm that aims
to reduce cluster resource fragments. After bin
packing is enabled for cluster workloads, the
scheduler preferentially schedules pods to nodes
with high resource allocation. This reduces resource
fragments on each node and improves cluster
resource utilization.
For details, see Bin Packing.

Descheduling The Volcano Scheduler can remove pods that do
not meet the configured policies and reschedule
them according to those policies. This helps balance
the cluster loads and minimize resource
fragmentation.
For details, see Descheduling.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0384.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0384.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0700.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0701.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0701.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0773.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0766.html

Scheduling Policy Description

Node pool affinity When it comes to scenarios like node pool
replacement and rolling node upgrade, it becomes
necessary to replace an old node pool with a new
one. To prevent the node pool replacement from
affecting services, it is recommended that you
enable soft affinity, which allows for scheduling
service pods to the new node pool.
For details, see Node Pool Affinity.

Load-aware scheduling Volcano Scheduler offers CPU and memory load-
aware scheduling for pods and preferentially
schedules pods to the node with the lightest load to
balance node loads. This prevents an application or
node failure due to heavy loads on a single node.
For details, see Load-aware Scheduling.

Enabling Priority-based Scheduling and Preemption
A pod priority indicates the importance of a pod relative to other pods. Volcano
supports pod PriorityClasses in Kubernetes. After PriorityClasses are configured,
the scheduler preferentially schedules high-priority pods. When cluster resources
are insufficient, the scheduler will proactively evict low-priority pods to make it
possible to schedule pending high-priority pods. For details, see Priority-based
Scheduling and Preemption.

The following table lists the types of priority-based scheduling and preemption
supported by CCE.

Scheduling Type Description

Priority-based
scheduling

The scheduler preferentially guarantees the running of
high-priority pods, but will not evict low-priority pods
that are running. Priority-based scheduling is enabled by
default and cannot be disabled.

Priority-based
preemption

When cluster resources are insufficient, the scheduler will
proactively evict low-priority pods to make it possible to
schedule pending high-priority pods.

Sharing GPUs
GPU virtualization allows for the separation of compute and GPU memory,
optimizing the utilization of GPUs. CCE GPU virtualization leverages the
proprietary xGPU virtualization technology to dynamically separate GPU memory
and compute. This virtualization solution offers greater flexibility compared to
static allocation. While ensuring maximum service stability, you have the freedom
to define the number of GPUs to be used, thereby enhancing GPU utilization.

For details, see GPU Virtualization.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0767.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0789.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0775.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0775.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0644.html

Enabling AI Performance-based Scheduling
In AI and big data collaborative scheduling scenarios, Volcano Dominant Resource
Fairness (DRF) and group can be used to improve training performance and
resource utilization.

DRF

DRF is a scheduling algorithm based on the dominant resource of a container
group. DRF can be used to enhance the service throughput of a cluster, shorten
the overall service execution time, and improve training performance. It is suitable
for batch AI training and big data jobs. For details, see DRF.

In actual services, limited cluster resources are often allocated to multiple users.
Each user has the same rights to obtain resources, but the number of resources
they need may be different. It is crucial to fairly allocate resources to each user. A
common scheduling algorithm is the max-min fairness share, which allocates
resources to meet users' minimum requirements as far as possible and then fairly
allocates the remaining resources. The rules are as follows:

● Resources are allocated in order of increasing demand.
● No source gets a resource share larger than its demand.
● Sources with unsatisfied demands get an equal share of the resource.

Gang

Gang scheduling meets the scheduling requirements of "All or nothing" in the
scheduling process and avoids the waste of cluster resources caused by arbitrary
scheduling of pods. It is mainly used in scenarios that require multi-process
collaboration, such as AI and big data scenarios. Gang scheduling effectively
resolves pain points such as resource waiting or deadlocks in distributed training
jobs, thereby significantly improving the utilization of cluster resources. For details,
see Gang.

The Gang scheduler algorithm checks whether the number of scheduled pods in a
job meets the minimum requirements for running the job. If yes, all pods in the
job will be scheduled. If no, the pods will not be scheduled.

It is applicable to the scenarios where multi-process collaboration is required.

● AI scenarios typically involve complex processes. Data ingestion, data analysts,
data splitting, trainers, serving, and logging which require a group of
containers to work together are suitable for container-based Gang scheduling.

● Multi-thread parallel computing communication scenarios under MPI
computing framework are also suitable for Gang scheduling because master
and slave processes need to work together.

● Containers in a pod group are highly correlated, and there may be resource
contention. The overall scheduling allocation can effectively resolve deadlocks.
If cluster resources are insufficient, Gang scheduling can significantly improve
the utilization of cluster resources.

Enabling NUMA Affinity Scheduling
When working with high-performance computing (HPC), real-time applications, or
memory-intensive workloads that require frequent communication between CPUs,

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0777.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0778.html

accessing nodes across non-uniform memory access (NUMA) in a cloud native
environment can lead to decreased system performance due to increased latency
and overhead. Volcano's NUMA affinity scheduling policy resolves the issue by
scheduling pods to the worker node that requires the least number of cross-
NUMA nodes. This reduces data transmission overheads, optimizes resource
utilization, and enhances overall system performance.

Volcano targets to lift the limitation to make scheduler NUMA topology aware so
that:

● Pods are not scheduled to the nodes that NUMA topology does not match.
● Pods are scheduled to the most suitable node for NUMA topology.

For details, see NUMA Affinity Scheduling.

Configuring Application Scaling Priority Policies
With application scaling priority policies, you have precise control over the scaling
priorities of pods on different types of nodes, allowing for optimized resource
management. The application scaling priority policies include the following
aspects:

● Scale-out: Volcano schedules new pods in a cluster based on preset node
priority for scale-out.

● Scale-in: When a workload is specified, Volcano scores the workload based on
preset node priority to determine pod deletion sequence during scale-in.

If the default scaling priority policy is applied, pods will be scheduled first to
yearly/monthly nodes during scale-out, followed by pay-per-use nodes and virtual-
kubelet nodes (scaling pods to CCI). During scale-in, pods are deleted sequentially
from virtual-kubelet nodes (scaling pods to CCI), pay-per-use nodes, and yearly/
monthly nodes. You can adjust the scaling priority policies based on your service
scenarios. For details, see Application Scaling Priority Policies.

Establishing Resource and Cost Monitoring
Cost Insights uses in-house cost profile algorithms to split costs by department,
cluster, namespace, or application, based on your bills and cluster resource usage.
It allows you to analyze cluster costs and resource usage and identify resource
waste for cost optimization. For details, see Cost Insights.

Cloud Container Engine
Best Practices 9 Cluster

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0425.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0746.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0875.html

10 Networking

10.1 Planning CIDR Blocks for a Cluster
Before creating a cluster on CCE, determine the number of VPCs, number of
subnets, container CIDR blocks, and Services for access based on service
requirements.

This topic describes the addresses in a CCE cluster in a VPC and how to plan CIDR
blocks.

Constraints
To access a CCE cluster through a VPN, ensure that the VPN does not conflict with
the VPC CIDR block where the cluster resides and the container CIDR block.

Basic Concepts
● VPC CIDR Block

Virtual Private Cloud (VPC) enables you to provision logically isolated,
configurable, and manageable virtual networks for cloud servers, cloud
containers, and cloud databases. You have complete control over your virtual
network, including selecting your own CIDR block, creating subnets, and
configuring security groups. You can also assign EIPs and allocate bandwidth
in your VPC for secure and easy access to your business system.

● Subnet CIDR Block
A subnet is a network that manages ECS network planes. It supports IP
address management and DNS. The IP addresses of all ECSs in a subnet
belong to the subnet.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

Figure 10-1 VPC CIDR block architecture

By default, ECSs in all subnets of the same VPC can communicate with one
another, while ECSs in different VPCs cannot communicate with each other.
You can create a peering connection on VPC to enable ECSs in different VPCs
to communicate with each other.

● Container (Pod) CIDR Block
Pod is a Kubernetes concept. Each pod has an IP address.
When creating a cluster on CCE, you can specify the pod (container) CIDR
block, which cannot overlap with the subnet CIDR block. For example, if the
subnet CIDR block is 192.168.0.0/16, the container CIDR block of the cluster
cannot be 192.168.0.0/18 or 192.168.64.0/18 because these addresses are
covered by 192.168.0.0/16.

● Container Subnet (Only for CCE Turbo Clusters)
In a CCE Turbo cluster, a container is assigned an IP address from the CIDR
block of a VPC. The container subnet can overlap with the subnet CIDR block.
Note that the subnet you select determines the maximum number of pods in
the cluster.

● Service CIDR Block
Service is also a Kubernetes concept. Each Service has an address. When
creating a cluster on CCE, you can specify the Service CIDR block. Similarly,
the Service CIDR block cannot overlap with the subnet CIDR block or the
container CIDR block. The Service CIDR block can be used only within a
cluster.

Single-VPC Single-Cluster Scenarios
CCE Clusters: include clusters in VPC network model and container tunnel
network model. Figure 10-2 shows the CIDR block planning of a cluster.
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: specifies the subnet CIDR block where the node in the
cluster resides. The subnet CIDR block is included in the VPC CIDR block.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

Different nodes in the same cluster can be allocated to different subnet CIDR
blocks.

● Container CIDR Block: cannot overlap with the subnet CIDR block.
● Service CIDR Block: cannot overlap with the subnet CIDR block or the

container CIDR block.

Figure 10-2 Network CIDR block planning in single-VPC single-cluster scenarios
(CCE cluster)

Figure 10-3 shows the CIDR block planning for a CCE Turbo cluster (Cloud Native
Network 2.0).
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: specifies the subnet CIDR block where the node in the
cluster resides. The subnet CIDR block is included in the VPC CIDR block.
Different nodes in the same cluster can be allocated to different subnet CIDR
blocks.

● Container Subnet CIDR Block: The container subnet is included in the VPC
CIDR block and can overlap with the subnet CIDR block or even be the same
as the subnet CIDR block. Note that the container subnet size determines the
maximum number of containers in the cluster because IP addresses in the
VPC are directly allocated to containers. Set a larger IP address segment for
the container subnet to prevent insufficient container IP addresses.

● Service CIDR Block: cannot overlap with the subnet CIDR block or the
container CIDR block.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

Figure 10-3 Network CIDR block planning in single-VPC single-cluster scenarios
(CCE Turbo cluster)

Single-VPC Multi-Cluster Scenarios
VPC network model

Pod packets are forwarded through VPC routes. CCE automatically configures a
routing table on the VPC routes to each container CIDR block. The network scale
is limited by the VPC route table. Figure 10-4 shows the CIDR block planning of
the cluster.
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with
the container CIDR block.

● Container CIDR Block: If multiple VPC network model clusters exist in a single
VPC, the container CIDR blocks of all clusters cannot overlap because the
clusters use the same routing table. In this case, if the node security group
allows container CIDR block from the peer cluster, pods in one cluster can
directly access pods in another cluster through the pod IP addresses.

● Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR
blocks of different clusters can overlap, but cannot overlap with the subnet
CIDR block and container CIDR block of the cluster.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

Figure 10-4 VPC network - multi-cluster scenario

Tunnel network model

Though at some cost of performance, the tunnel encapsulation enables higher
interoperability and compatibility with advanced features (such as network policy-
based isolation), meeting the requirements of most applications. Figure 10-5
shows the CIDR block planning of the cluster.
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with
the container CIDR block.

● Container CIDR Block: The container CIDR blocks of all clusters can overlap. In
this case, pods in different clusters cannot be directly accessed through pod IP
addresses. Services are needed for accessing pods in different clusters. The
LoadBlancer Services are recommended.

● Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR
blocks of different clusters can overlap, but cannot overlap with the subnet
CIDR block and container CIDR block of the cluster.

Figure 10-5 Tunnel network - multi-cluster scenario

Cloud Native 2.0 network model (CCE Turbo Clusters)

In this mode, container IP addresses are allocated from the VPC CIDR block. ELB
passthrough networking is supported to direct access requests to containers.
Security groups and multiple types of VPC networks can be bound to deliver high
performance.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. In a
CCE Turbo cluster, the CIDR block size affects the total number of nodes and
containers that can be created in the cluster.

● Subnet CIDR Block: There is no special restriction on the subnet CIDR blocks in
CCE Turbo clusters.

● Container Subnet: The CIDR block of the container subnet is included in the
VPC CIDR block. Container subnets in different clusters can overlap with each
other or overlap with the subnet CIDR block. However, you are advised to
stagger the container CIDR blocks of different clusters and ensure that the
container subnet CIDR blocks have sufficient IP addresses. In this case, if the
ENI security group of the cluster allows the container CIDR block of the peer
cluster, pods in different clusters can directly access each other through IP
addresses.

● Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR
blocks of different clusters can overlap, but cannot overlap with the subnet
CIDR block and container subnet CIDR block of the cluster.

Figure 10-6 Cloud Native 2.0 network - multi-cluster scenario

Clusters using different networks

When a VPC contains clusters created with different network models, comply with
the following rules when creating a cluster:

● VPC CIDR Block: In this scenario, all clusters are located in the same VPC CIDR
block. Ensure that there are sufficient available IP addresses in the VPC.

● Subnet CIDR Block: Ensure that the subnet CIDR block does not overlap with
the container CIDR block. Even in some scenarios (for example, coexistence
with CCE Turbo clusters), the subnet CIDR block can overlap with the
container (subnet) CIDR block. However, this is not recommended.

● Container CIDR Block: Ensure that the container CIDR blocks of clusters in
VPC network model do not overlap.

● Service CIDR Block: The Service CIDR blocks of all clusters can overlap, but
cannot overlap with the subnet CIDR block and container CIDR block of the
cluster.

Cross-VPC Cluster Interconnection
If VPCs cannot communicate with each other, a VPC peering connection is used to
ensure communication between VPCs. When two VPC networks are

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

interconnected, you can configure the packets to be sent to the peer VPC in the
route table. For details, see VPC Peering Connection Overview.

Clusters using VPC networks

To allow clusters that use VPC networks to access each other across VPCs, add
routes to the two ends of the VPC peering after a VPC peering connection is
created.

Figure 10-7 VPC network - VPC interconnection scenario

When creating a VPC peering connection between containers across VPCs, pay
attention to the following points:

● The VPC to which the clusters belong must not overlap. In each cluster, the
subnet CIDR block cannot overlap with the container CIDR block.

● The container CIDR blocks of clusters at both ends cannot overlap, but the
Service CIDR blocks can.

● If the request end cluster uses the VPC network, check whether the node
security group in the destination cluster allows the container CIDR block of
the request end cluster. If yes, pods in one cluster can directly access pods in
another cluster through the pod IP address. Similarly, if nodes running in the
clusters at the two ends of the VPC peering connection need to access each
other, the node security group must allow the VPC CIDR block of the peer
cluster.

● You need to add routes for accessing the peer network CIDR block to the VPC
routing tables at both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2.
– Add the VPC CIDR block of the peer cluster: After the route of the VPC

CIDR block is added, a pod in a cluster can access another cluster node.
For example, the pod can access the port of a NodePort Service.

– Add peer container CIDR block: After the route of the container CIDR
block is added, a pod can directly access pods in another cluster through
the container IP addresses.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0046655036.html

Figure 10-8 Adding the peer container CIDR block to the local route on the
VPC console

Clusters using tunnel networks

To allow clusters that use tunnel networks to access each other across VPCs, add
routes to the two ends of the VPC peering after a VPC peering connection is
created.

Figure 10-9 Tunnel network - VPC interconnection scenario

Pay attention to the following:

● The VPCs of the peer clusters must not overlap.
● The container CIDR blocks of all clusters can overlap, so do the Service CIDR

blocks.
● If the request end cluster uses the tunnel network, check whether the node

security group in the destination cluster allows the VPC CIDR block (including
the node subnets) of the request end cluster. If yes, nodes in one cluster can
access nodes in another cluster. However, pods in different clusters cannot be
directly accessed using pod IP addresses. Access between pods in different
clusters requires Services. The LoadBlancer Services are recommended.

● The VPC CIDR block route of the peer cluster must be added to the VPC
routing tables of both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2. After the route of the
VPC CIDR block is added, the pod can access another cluster node, for
example, accessing the port of a NodePort Service.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

Figure 10-10 Adding the subnet CIDR block of the peer cluster node to the
local route on the VPC console

Clusters using Cloud Native 2.0 networks (CCE Turbo clusters)

After creating a VPC peering connection, add routes of the VPC peering
connection to both ends so that the two VPCs can communicate with each other.
Pay attention to the following:
● The VPCs of the clusters at the two ends must not overlap.
● If the request end cluster uses the Cloud Native 2.0 network, check whether

the ENI security group (named in the format of {Cluster name}-cce-eni-
{Random ID}) of the destination cluster allows the VPC CIDR block (including
the node subnets and container CIDR block) of the request end cluster. If yes,
pods in one cluster can directly access pods in another cluster through the
pod IP addresses. Similarly, if nodes in the clusters at the two ends of the VPC
peering need to access each other, allow the VPC CIDR block of the peer
cluster in the node security group (named in the format of {Cluster name}-
cce-node-{Random ID}).

● The VPC CIDR block route of the peer cluster must be added to the VPC
routing tables of both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2. After the route of the
VPC CIDR block is added, the pod can access pod IP addresses or nodes in
another cluster.

Clusters using different networks

If clusters using different networks need to communicate with each other across
VPCs, every one of them may serve as the request end or destination end. Pay
attention to the following:

● The VPC CIDR block to which the cluster belongs cannot overlap with the VPC
CIDR block of the peer cluster.

● Cluster subnet CIDR blocks cannot overlap with the container CIDR blocks.
● Container CIDR blocks in different clusters cannot overlap with each other.
● If pods or nodes in different clusters need to access each other, the security

groups of the clusters on both ends must allow the corresponding CIDR blocks
based on the following rules:
– If the request end cluster uses the VPC network, the node security group

of the destination cluster must allow the VPC CIDR block (including the
node subnets and container CIDR block) of the request end cluster.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

– If the request end cluster uses the tunnel network, the node security
group of the destination cluster must allow the VPC CIDR block
(including the node subnets) of the request end cluster.

– If the request end cluster uses the Cloud Native 2.0 network, the ENI
security group and node security group of the destination cluster must
allow the VPC CIDR block (including node subnets and container CIDR
block) of the request end cluster.

● The VPC CIDR block route of the peer cluster must be added to the VPC
routing tables of both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2. After the route of the
VPC CIDR block is added, the pod can access another cluster node, for
example, accessing the port of a NodePort Service.
If a cluster uses the VPC network, the VPC routing tables at both ends must
contain its container CIDR block. After the container CIDR block route is
added, the pod can directly access pods in another cluster through the
container IP addresses.

VPC-IDC Scenarios
Similar to the VPC interconnection scenario, some CIDR blocks in the VPC are
routed to the IDC. The pod IP addresses of CCE clusters cannot overlap with the
addresses within these CIDR blocks. To access the pod IP addresses in the cluster in
the IDC, configure the route table to the private line VBR on the IDC.

10.2 Selecting a Network Model
CCE uses proprietary, high-performance container networking add-ons to support
the tunnel network, Cloud Native 2.0 network, and VPC network models.

CA UTION

After a cluster is created, the network model cannot be changed. Exercise caution
when selecting a network model.

● Tunnel network: The container network is an overlay tunnel network on top
of a VPC network and uses the VXLAN technology. This network model is
applicable when there is no high requirements on performance. VXLAN
encapsulates Ethernet packets as UDP packets for tunnel transmission.
Though at some cost of performance, the tunnel encapsulation enables
higher interoperability and compatibility with advanced features (such as
network policy-based isolation), meeting the requirements of most
applications.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

Figure 10-11 Container tunnel network

● VPC network: The container network uses VPC routing to integrate with the
underlying network. This network model is applicable to performance-
intensive scenarios. The maximum number of nodes allowed in a cluster
depends on the route quota in a VPC network. Each node is assigned a CIDR
block of a fixed size. VPC networks are free from tunnel encapsulation
overhead and outperform container tunnel networks. In addition, as VPC
routing includes routes to node IP addresses and container network segment,
container pods in the cluster can be directly accessed from outside the cluster.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

Figure 10-12 VPC network

● Cloud Native Network 2.0: The container network deeply integrates the
elastic network interface (ENI) capability of VPC, uses the VPC CIDR block to
allocate container addresses, and supports passthrough networking to
containers through a load balancer.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

Figure 10-13 Cloud Native 2.0 network

The following table lists the differences between the network models.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

Table 10-1 Network model comparison

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Applicatio
n
scenarios

● Low
requirements on
performance: As
the container
tunnel network
requires
additional
VXLAN tunnel
encapsulation, it
has about 5%
to 15% of
performance
loss when
compared with
the other two
container
network
models.
Therefore, the
container
tunnel network
applies to the
scenarios that
do not have
high
performance
requirements,
such as web
applications,
and middle-end
and back-end
services with a
small number
of access
requests.

● Large-scale
networking:
Different from
the VPC
network that is
limited by the
VPC route
quota, the
container
tunnel network
does not have
any restriction

● High performance
requirements: As
no tunnel
encapsulation is
required, the VPC
network model
delivers the
performance close
to that of a VPC
network when
compared with
the container
tunnel network
model. Therefore,
the VPC network
model applies to
scenarios that
have high
requirements on
performance, such
as AI computing
and big data
computing.

● Small- and
medium-scale
networks: Due to
the limitation on
VPC route tables,
it is recommended
that the number
of nodes in a
cluster be less
than or equal to
1000.

● High performance
requirements:
Cloud Native
Network 2.0 uses
VPC networks to
construct
container
networks,
eliminating the
need for tunnel
encapsulation or
NAT when
containers
communicate. This
makes Cloud
Native Network
2.0 ideal for
scenarios that
demand high
bandwidth and
low latency, such
as live streaming
and e-commerce
flash sales.

● Large-scale
networking: Cloud
Native Network
2.0 supports up to
2,000 ECS nodes
and 100,000 pods.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

on the
infrastructure.
In addition, the
container
tunnel network
controls the
broadcast
domain to the
node level. The
container
tunnel network
supports a
maximum of
2000 nodes.

Core
technolog
y

OVS IPvlan and VPC route VPC ENI/sub-ENI

Applicable
clusters

CCE standard
cluster

CCE standard cluster CCE Turbo cluster

Container
network
isolation

Kubernetes native
NetworkPolicy for
pods

No Pods support security
group isolation.

Interconne
cting pods
to a load
balancer

Interconnected
through a
NodePort

Interconnected
through a NodePort

Directly
interconnected using
a dedicated load
balancer
Interconnected using
a shared load
balancer through a
NodePort

Managing
container
IP
addresses

● Separate
container CIDR
blocks needed

● Container CIDR
blocks divided
by node and
dynamically
added after
being allocated

● Separate container
CIDR blocks
needed

● Container CIDR
blocks divided by
node and
statically allocated
(the allocated
CIDR blocks
cannot be
changed after a
node is created)

Container CIDR
blocks divided from a
VPC subnet (You do
not need to configure
separate container
CIDR blocks.)

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Network
performan
ce

Performance loss
due to VXLAN
encapsulation

No tunnel
encapsulation, and
cross-node traffic
forwarded through
VPC routers (The
performance is so
good that is
comparable to that
of the host network,
but there is a loss
caused by NAT.)

Container network
integrated with VPC
network, eliminating
performance loss

Networkin
g scale

A maximum of
2000 nodes are
supported.

Suitable for small-
and medium-scale
networks due to the
limitation on VPC
route tables. It is
recommended that
the number of nodes
be less than or equal
to 1000.
Each time a node is
added to the cluster,
a route is added to
the VPC route tables
(including the default
and custom ones).
Evaluate the cluster
scale that is limited
by the VPC route
tables before creating
the cluster. For
details about route
tables, see
Constraints.

A maximum of 2000
nodes are supported.
In a cloud-native
network 2.0 cluster,
containers' IP
addresses are
assigned from VPC
CIDR blocks, and the
number of containers
supported is
restricted by these
blocks. Evaluate the
cluster's scale
limitations before
creating it.

NO TICE

1. The scale of a cluster that uses the VPC network model is limited by the
custom routes of the VPC. Therefore, you need to estimate the number of
required nodes before creating a cluster.

2. By default, VPC routing network supports direct communication between
containers and hosts in the same VPC. If a peering connection policy is
configured between the VPC and another VPC, the containers can directly
communicate with hosts on the peer VPC. In addition, in hybrid networking
scenarios such as Direct Connect and VPN, communication between containers
and hosts on the peer end can also be achieved with proper planning.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

https://support.huaweicloud.com/intl/en-us/productdesc-vpc/overview_0003.html

10.3 Enabling Cross-VPC Network Communications
Between CCE Clusters

Application Scenarios
Because services in different VPCs cannot communicate with each other, CCE
clusters are unable to communicate across VPCs. To resolve this, a VPC peering
connection can be established between two VPCs with different CIDR blocks. This
allows clusters in one VPC to access clusters or other services in the other VPC.

Figure 10-14 Example network topology

To enable cross-VPC access, clusters with different network models must
communicate with each other across different CIDR blocks. For example, if the
local VPC CIDR block of a cluster is 172.16.0.0/16 and the peer VPC CIDR block is
172.17.0.0/16, the routing tables at both ends should be configured as follows.

Cluster Network
Model

VPC Route Table Configuration at Both Ends

Local VPC Route Table of
a Cluster

Peer VPC Route Table

Container tunnel
network

The peer VPC CIDR block
172.17.0.0/16 must be
added to the destination
IP address.

The cluster VPC CIDR
block 172.16.0.0/16 must
be added to the
destination IP address.

VPC network The peer VPC CIDR block
172.17.0.0/16 must be
added to the destination
IP address.
The container CIDR block
of the cluster, for example,
10.0.0.0/16, must be
added to the destination
IP address.

The cluster VPC CIDR
block 172.16.0.0/16 must
be added to the
destination IP address.
The container CIDR block
of the cluster, for example,
10.0.0.0/16, must be
added to the destination
IP address.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

Cluster Network
Model

VPC Route Table Configuration at Both Ends

Local VPC Route Table of
a Cluster

Peer VPC Route Table

Cloud Native 2.0
network (for CCE
Turbo clusters)

The peer VPC CIDR block
172.17.0.0/16 must be
added to the destination
IP address.

The cluster VPC CIDR
block 172.16.0.0/16 must
be added to the
destination IP address.

Step 1: Create a VPC Peering Connection

Step 1 Log in to the VPC peering connection console.

Step 2 In the upper right corner of the page, click Create VPC Peering Connection.

The Create VPC Peering Connection page is displayed.

Step 3 Configure the parameters following instructions.

For details about the parameters, see Table 10-2.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

Figure 10-15 Creating a VPC peering connection

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

Table 10-2 Parameters for creating a VPC peering connection

Parameter Description Example Value

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a
maximum of 64 characters,
including letters, digits, hyphens
(-), and underscores (_).

peering-AB

Local VPC Mandatory.
VPC at one end of the VPC
peering connection. You can select
one from the drop-down list.

vpc-A

Local VPC CIDR
Block

CIDR block of the selected local
VPC

vpc-A CIDR block:
172.16.0.0/16

Account Mandatory.
● My account: The local and

peer VPCs are from the same
account.

● Another account: The local
and peer VPCs are from
different accounts.

Current account

Peer Project The system fills in the
corresponding project by default
because Account is set to My
account.
For example, if vpc-A and vpc-B
are in account A and region A, the
system fills in the correspond
project of account A in region A
by default.

None

Peer VPC This parameter is mandatory if
Account is set to My account.
VPC at the other end of the VPC
peering connection. You can select
one from the drop-down list.

vpc-B

Peer VPC CIDR
Block

CIDR block of the selected peer
VPC
If the local and peer VPCs have
overlapping CIDR blocks, the VPC
peering connection may not take
effect.

vpc-B CIDR block:
172.17.0.0/16

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

Parameter Description Example Value

Description This parameter is optional.
Enter the description of the VPC
peering connection in the text box
as required.

Use peering-AB to
connect vpc-A and vpc-B.

Step 4 Click Create Now.

A dialog box for adding routes is displayed.

Step 5 In the displayed dialog box, click Add Now. On the displayed page about the VPC
peering connection details, go to Step 2: Add Routes for the VPC Peering
Connection to add a route.

----End

Step 2: Add Routes for the VPC Peering Connection

Step 1 In the lower part of the VPC peering connection details page, click Add Route.

The Add Route dialog box is displayed.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

Figure 10-16 Adding routes for the VPC peering connection

Step 2 Add routes to the VPC route tables following instructions.

Table 10-3 describes the parameters.

Table 10-3 Parameters

Parameter Description Example Value

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-A

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

Parameter Description Example Value

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
to control the outbound traffic from the
subnets in the VPC. In addition to the
default route table, you can also create a
custom route table and associate it with
the subnets in the VPC. Then, the custom
route table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-A (Default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be VPC CIDR block, subnet CIDR block, or
ECS IP address.

vpc-B CIDR block:
172.17.0.0/16

Next Hop The default value is the current VPC
peering connection. You do not need to
specify this parameter.

peering-AB

Description Supplementary information about the
route. This parameter is optional.
The route description can contain a
maximum of 255 characters and cannot
contain angle brackets (< or >).

Route from vpc-A
to vpc-B

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To enable communications between VPCs
connected by a VPC peering connection,
you need to add forward and return routes
to the route tables of the VPCs.

Select this option.

VPC By default, the system selects the other
VPC connected by the VPC peering
connection. You do not need to specify this
parameter.

vpc-B

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

Parameter Description Example Value

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
to control the outbound traffic from the
subnets in the VPC. In addition to the
default route table, you can also create a
custom route table and associate it with
the subnets in the VPC. Then, the custom
route table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-B (Default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be VPC CIDR block, subnet CIDR block, or
ECS IP address.

vpc-A CIDR block:
172.16.0.0/16

Next Hop The default value is the current VPC
peering connection. You do not need to
specify this parameter.

peering-AB

Description Supplementary information about the
route. This parameter is optional.
The route description can contain a
maximum of 255 characters and cannot
contain angle brackets (< or >).

Route from vpc-B
to vpc-A.

NO TICE

If the cluster network model in the local VPC is a VPC network, follow the
preceding steps to add the CIDR block of the cluster container to the route tables
at both ends as the destination IP address. In this example, the destination IP
address is 10.0.0.0/16.

Step 3 Click OK.

You can check the routes in the route list.

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

Follow-Up Operations
If a cluster needs to access services in other VPCs, it is important to verify if
those cloud services permit access outside the VPC. This may involve adding a
trustlist or security group to enable access to certain services. In the case of a
cluster using the VPC network model, you must allow the container CIDR block to
pass the destination ends.

For example, if a cluster using the VPC network model needs to access an ECS in a
different VPC, you must allow the VPC CIDR block where the cluster is located and
its container CIDR block to pass through the ECS security group. This ensures that
nodes and containers in the cluster can access the ECS.

10.4 Implementing Network Communications Between
Containers and IDCs Using VPC and Direct Connect

Application Scenarios
With VPC and Direct Connect, the container CIDR block (172.56.0.0/16) and IDC
CIDR block (10.1.123.0/24) can communicate with each other in the cluster using
the VPC network model.

Figure 10-17 Example network topology

Table 10-4 Address information

Networking CIDR Block

User's IDC network 10.1.123.0/24

Remote and local gateways (addresses
for interconnection)

Huawei Cloud: 10.0.0.1/30
User: 10.0.0.2/30

VPC 192.168.0.0/16

Container CIDR block 172.56.0.0/16

Prerequisites
An IDC is available, and the Direct Connect service has been applied for.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

Procedure

Step 1 Create a connection.

1. Log in to the management console, click in the upper left corner, and

select the desired region and project. Click at the upper left corner and
choose Networking > Direct Connect in the expanded list.

2. In the navigation pane on the left of the console, choose Direct Connect >
Connections. On the displayed page, click Create Connection.

3. Enter the equipment room details and select the Direct Connect location and
port based on Table 10-5.

Table 10-5 Parameters required for creating a cloud connection

Parameter Description

Billing Mode Specifies how you are charged. Currently, only Yearly/
Monthly is supported.

Region Specifies the region where the connection is
deployed. You can change the region in the upper left
corner of the console.

Connection Name Specifies the name of your connection.

Location Specifies the Direct Connect location where your
leased line can be connected to.

Carrier Specifies the carrier that provides the leased line.

Port Type Specifies the type of the port used by the connection.
There are four types of ports: 1GE, 10GE, 40GE, and
100GE.

Leased Line
Bandwidth

Specifies the bandwidth of the connection in the unit
of Mbit/s. This is the bandwidth of the leased line
you have purchased from the carrier.

Equipment Room
Address

Specifies the address of your equipment room. The
address must be specific to the floor your equipment
room is on, for example, XX Equipment Room, XX
Building, No. XX, Huajing Road, Pudong District,
Shanghai.

Tag Identifies the connection. A tag consists of a key and
a value. You can add 10 tags to a connection.
NOTE

If a predefined tag has been created on TMS, you can
directly select the corresponding tag key and value.
For details about predefined tags, see Predefined Tag
Overview.

Description Provides supplementary information about the
connection.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

https://support.huaweicloud.com/intl/en-us/usermanual-tms/en-us_topic_0056266269.html
https://support.huaweicloud.com/intl/en-us/usermanual-tms/en-us_topic_0056266269.html

Parameter Description

Required Duration Specifies how long the connection will be used.

Auto-renew Specifies whether to automatically renew the
connection to ensure service continuity.
It is recommended that you set the auto-renewal
period to be the same as the required duration. If the
required duration is three months, the system
automatically renews the subscription for every three
months.

Enterprise Project Centrally manages cloud resources and members by
project.

4. Click Confirm Configuration.

5. Confirm the order and click Pay Now.

6. Click Confirm.

Step 2 Create a virtual gateway.

1. Choose Direct Connect > Virtual Gateways, and click Create Virtual
Gateway on the right. Add the VPC CIDR block and the container CIDR block
in the VPC network model.

Figure 10-18 Creating a virtual gateway

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

Table 10-6 Virtual gateway parameters

Parameter Description

Name Specifies the virtual gateway name.
You can enter 1 to 64 characters.

Enterprise Project Centrally manages cloud resources and
members by project.

Attach To Select VPC.

VPC Specifies the VPC you want to access using the
connection.

Local Subnet Specifies the CIDR blocks of subnets in the VPC
to connect to the on-premises network.
In this example, the cluster uses the VPC
network model. Enter the VPC CIDR block
(192.168.0.0/16) and container CIDR block
(172.56.0.0/16). For clusters using the container
tunnel network and Cloud Native 2.0 Network
models, you only need to enter the VPC CIDR
block.

Description Provides supplementary information about the
virtual gateway.
The description can contain a maximum of 128
characters.

2. Click OK.

When the virtual gateway status changes Normal, the virtual gateway has
been created.

Step 3 Create a virtual interface.

1. Choose Direct Connect > Virtual Interfaces, and click Create Virtual
Interface on the right.

2. Configure the parameters based on Table 10-7.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

Figure 10-19 Creating a virtual interface

Table 10-7 Parameters required for creating a virtual interface

Parameter Description

Region Specifies the region where the connection is
deployed. You can change the region in the upper left
corner of the console.

Name Specifies the virtual interface name.
You can enter 1 to 64 characters.

Connection Specifies the connection you use to connect your data
center to the cloud.

Virtual Gateway Specifies the virtual gateway that the virtual interface
connects to.

VLAN Specifies the VLAN of the virtual interface.
Configure the VLAN if you create a connection on
your own.
The VLAN for a hosted connection will be allocated
by the carrier or partner. You do not need to
configure the VLAN.

Bandwidth Specifies the bandwidth that can be used by the
virtual interface in the unit of Mbit/s. The bandwidth
cannot exceed that of the connection.

Enterprise Project Centrally manages cloud resources and members by
project.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

Parameter Description

Local Gateway Specifies the IP address for connecting to the cloud.
In this example, the IP address is 10.0.0.1/30.

Remote Gateway Specifies the IP address for connecting to your on-
premises network.
The remote gateway must be in the same IP address
range as the local gateway. Generally, a subnet with a
30-bit mask is recommended.
In this example, the IP address is 10.0.0.2/30.

Remote Subnet Specifies the subnets of your on-premises network. If
multiple remote subnets are available, use commas
(,) to separate them.
In this example, the IP address is 10.1.123.0/24.

Routing Mode Specifies the routing mode. Two options are
available, Static and BGP.
If there are two or more connections, select BGP
routing.

BGP ASN Specifies the ASN of the BGP peer.
This parameter is mandatory when you select BGP
routing.

BGP MD5
Authentication Key

Specifies the password used to authenticate the BGP
peer using MD5.
This parameter is mandatory when BGP routing is
selected, and the parameter values on both gateways
must be the same.
The key contains 8 to 255 characters and must
contain at least two types of the following characters:
– Uppercase letters
– Lowercase letters
– Digits
– Special characters ~!, .:;-_"(){}[]/@#$ %^&*+\|=

Description Provides supplementary information about the virtual
interface.

3. Click Create Now. When the status of the virtual interface changes to

Normal, the virtual interface has been created.
4. Ping the IP address of a server in the VPC from your data center to test

network connectivity.
Now your environment can connect to the cloud and access the desired VPC.

NO TE

After creating a virtual interface, configure your devices and security group rules to
allow access on and off the cloud.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

Step 4 Test the connectivity.

1. Run the traceroute command to check whether the IDC host can
communicate with the container.

a. If the route is normal, Direct Connect has a return route.
b. If the IDC route to the cloud gateway of Direct Connect is abnormal,

check whether the route settings at both ends of Direct Connect are
correct.

2. If the IP address cannot be tracerouted, try the ping or telnet operation.
Before pinging the address, ensure that the ICMP policy has been enabled for
the security group if the target is an ECS.

----End

10.5 Enabling a CCE Cluster to Resolve Domain Names
on Both On-Premises IDCs and HUAWEI CLOUD

10.5.1 Solution Overview

Background

Microservices are increasingly used to deploy applications. When microservices
access each other, they need to resolve domain names.

When you have on-premises IDCs with internal domain names configured, and
you have deployed containerized applications on both these IDCs and cloud, you
need to enable the containers and nodes in CCE clusters to resolve domain names
of both the IDC and cloud.

Suppose you have reconstructed one of your applications using microservices. You
run the application management backend in a CCE cluster, deploy the content
moderation service in the on-premises IDC, and use the image recognition service
on Huawei Cloud. The VPC where CCE resides is connected to the IDC through a
private line. Figure 10-20 shows the deployment architecture.

When a user accesses this application, the following interaction is involved
between different microservices:

● The CCE cluster uses the Huawei Cloud DNS server, by default, to access the
image recognition service.

● The CCE cluster uses the internal DNS server of the IDC to access the content
moderation service deployed in the IDC.

In this case, the CCE cluster must be able to use both the Huawei Cloud DNS
server and the internal DNS server of the IDC. If the DNS server on the CCE node
points to that of the IDC, the domain name of Huawei Cloud cannot be resolved.
If the IP address of the IDC internal domain name is added to the hosts file, the
configuration of the CCE node needs to be updated in real time when the IDC
internal service IP changes. This is difficult to implement and may cause the CCE
node to be unavailable.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

NO TE

The content moderation and image recognition services are used only as examples.

Figure 10-20 Application deployment architecture

This section provides a solution for CCE clusters to resolve domain names of both
on-premises IDCs and Huawei Cloud.

Solution 1: Using the DNS Endpoint for Cascading Resolution

You can use the VPC endpoint service to create a DNS endpoint cascaded with the
IDC DNS server, so that nodes and containers in the CCE cluster can use the IDC
DNS server for domain name resolution.

● If the Huawei Cloud domain name needs to be resolved, the request is
forwarded to the DNS endpoint, and the Huawei Cloud DNS server is used to
resolve the address and return the result.

● If the IDC domain name needs to be resolved, the IDC DNS server directly
resolves the address and returns the result.

Figure 10-21 Accessing both the Huawei Cloud domain name and external
domain name (for nodes)

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

For domain name resolution in a container, you can set the DNS policy to
ClusterFirst when creating a pod. In this way, the domain name resolution
requests of the container are directly sent to CoreDNS.

● If a cluster-internal domain name needs to be resolved, CoreDNS directly
returns the resolution result.

● If an external domain name needs to be resolved, CoreDNS forwards the
request to the IDC DNS server for resolution.

Figure 10-22 Accessing both the Huawei Cloud domain name and external
domain name (for containers)

Solution 2: Changing the CoreDNS Configurations

Set the DNS policy to ClusterFirst when creating a pod so that the domain name
resolution requests of containers are directly sent to CoreDNS.

● If a cluster-internal domain name needs to be resolved, CoreDNS directly
returns the resolution result.

● If an external domain name needs to be resolved, CoreDNS forwards the
request to the IDC DNS server for resolution.

● If a container accesses a Huawei Cloud internal domain name, the domain
name is resolved by the internal DNS server of Huawei Cloud.

Figure 10-23 Domain name resolution in solution 2

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

Solution Comparison
Solution Advantage Disadvantage

Using the DNS endpoint
for cascading resolution

External domain names
can be resolved for
containers and nodes in
a CCE cluster.

An external DNS server
is required to forward
the requests for resolving
internal domain names
of Huawei Cloud,
resulting in performance
loss.

Changing the CoreDNS
configuration

No external DNS server
is required to forward
the requests for resolving
internal domain names
of Huawei Cloud.
Therefore, there is no
performance loss.

● External domain
names cannot be
resolved on CCE
cluster nodes.

● The configuration will
be lost if CoreDNS is
upgraded or rolled
back, and you need to
reconfigure CoreDNS.

10.5.2 Solution 1: Using a DNS Endpoint for Cascading
Resolution

Prerequisites
The VPC where the CCE cluster is deployed has been connected to the on-premises
IDC through a private line (Direct Connect) or other channels. The IDC can access
the IP addresses in the VPC CIDR block and CCE cluster container CIDR block. For
details about how to create a Direct Connect connection, see Getting Started
with Direct Connect.

Procedure

Step 1 Create a DNS endpoint in the VPC where the CCE cluster is deployed.

1. Access the VPC Endpoint page on the network console.
2. Click Buy VPC Endpoint in the upper right corner.
3. Select the DNS service and VPC where the CCE cluster is deployed.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

https://support.huaweicloud.com/intl/en-us/qs-dc/en-us_topic_0145790541.html
https://support.huaweicloud.com/intl/en-us/qs-dc/en-us_topic_0145790541.html
https://console-intl.huaweicloud.com/vpc/?locale=en-us#/vpcep/vpceps

Figure 10-24 Creating a DNS endpoint

4. Click Next and then Submit.
After the creation is complete, you can view the IP address of the DNS
endpoint on its details page.

Figure 10-25 IP address of the DNS endpoint

Step 2 Configure cascading on the IDC DNS server.

NO TE

The configuration varies depending on the DNS server. The following configurations are
used only as example.

BIND (a commonly used DNS server software) is used for the following demonstration.

In this step, you configure the DNS server to forward the requests of resolving
Huawei Cloud internal domain names to the DNS endpoint created in the previous
step.

For example, in BIND, you can add the lines marked in red to the /etc/
named.conf file. 192.168.0.203 is the IP address of the DNS endpoint created in
Step 1.
options {
 listen-on port 53 { any; };
 listen-on-v6 port 53 { ::1; };

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

https://en.wikipedia.org/wiki/BIND

 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 recursing-file "/var/named/data/named.recursing";
 secroots-file "/var/named/data/named.secroots";
 allow-query { any; };

 forward first;
 forwarders { 192.168.0.203; };

};

Step 3 Change the DNS configuration of the node in the CCE cluster.

You can use either of the following methods to change the settings.

Method 1:

Change the settings after the node is created.

1. Log in to the worker node of the CCE cluster.
2. In the /etc/resolv.conf file, change the value of nameserver to the IP address

of the IDC DNS server.
vi /etc/resolv.conf
nameserver 10.0.0.190

3. Run the following command to lock the resolv.conf file to prevent it from
being automatically updated by Huawei Cloud.
chattr +i /etc/resolv.conf
For details about how to configure DNS, see Configuring DNS.

Method 2:

Change the DNS settings of the VPC subnet where the CCE cluster resides. In this
way, the IP address of the specified DNS server is used in the /etc/resolv.conf file
for newly created worker nodes.

Before using this method, ensure that the node can use the IDC DNS server to
resolve the Huawei Cloud internal domain name. Otherwise, the node cannot be
created. You are advised to commission the DNS server before you change the
DNS settings of the VPC subnet.

Figure 10-26 Subnet DNS settings

Step 4 Configure the workload DNS policy.

When creating a workload, you can set dnsPolicy to ClusterFirst in the YAML file
for domain name resolution in containers. This is also the default configuration in
Kubernetes. For details about how to configure DNS for workloads, see DNS
Configuration.
apiVersion: v1
kind: Pod
metadata:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

https://support.huaweicloud.com/intl/en-us/ecs_faq/ecs_faq_1310.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0365.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0365.html

 namespace: default
 name: dns-example
spec:
 containers:
 - name: test
 image: nginx
 dnsPolicy: ClusterFirst

----End

Verification

After the configuration is complete, run the dig command on the cluster node.
The command output shows that the IP address of the server is 10.0.0.190, which
indicates that the domain name is resolved by the IDC DNS server.

dig cce.ap-southeast-1.myhuaweicloud.com

; <<>> DiG 9.9.4-61.1.h14.eulerosv2r7 <<>> cce.ap-southeast-1.myhuaweicloud.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24272
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;cce.ap-southeast-1.myhuaweicloud.com. IN A

;; ANSWER SECTION:
cce.ap-southeast-1.myhuaweicloud.com. 274 IN A 100.125.4.16

;; Query time: 4 msec
;; SERVER: 10.0.0.190#53(10.0.0.190)
;; WHEN: Tue Feb 23 19:16:08 CST 2021
;; MSG SIZE rcvd: 76

Access a domain name of Huawei Cloud from the cluster node. The following
output shows that the domain name is resolved to the corresponding IP address.

ping cce.ap-southeast-1.myhuaweicloud.com
PING cce.ap-southeast-1.myhuaweicloud.com (100.125.4.16) 56(84) bytes of data.

Create a pod to access the Huawei Cloud domain name. The following output
shows that the domain name can be resolved.

kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you do not see a command prompt, try pressing Enter.
ping cce.ap-southeast-1.myhuaweicloud.com
PING cce.ap-southeast-1.myhuaweicloud.com (100.125.4.16) 56(84) bytes of data.

10.5.3 Solution 2: Changing the CoreDNS Configurations

Prerequisites

The VPC where the CCE cluster is deployed has been connected to the on-premises
IDC through a private line (Direct Connect) or other channels. The IDC can access
the IP addresses in the VPC CIDR block and CCE cluster container CIDR block. For
details about how to create a Direct Connect connection, see Getting Started
with Direct Connect.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

https://support.huaweicloud.com/intl/en-us/qs-dc/en-us_topic_0145790541.html
https://support.huaweicloud.com/intl/en-us/qs-dc/en-us_topic_0145790541.html

Procedure
CoreDNS configurations are stored in the ConfigMap named coredns. You can find
this ConfigMap in the kube-system namespace. Run the following command to
view the default configurations.

kubectl get configmap coredns -n kube-system -oyaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: coredns
 namespace: kube-system
 selfLink: /api/v1/namespaces/kube-system/configmaps/coredns
 uid: d54ed5df-f4a0-48ec-9bc0-3efc1ac76af0
 resourceVersion: '21789515'
 creationTimestamp: '2021-03-02T09:21:55Z'
 labels:
 app: coredns
 k8s-app: coredns
 kubernetes.io/cluster-service: 'true'
 kubernetes.io/name: CoreDNS
 release: cceaddon-coredns
data:
 Corefile: |-
 .:5353 {
 bind {$POD_IP}
 cache 30
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream /etc/resolv.conf
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153
 forward . /etc/resolv.conf
 reload
 }

The preceding example shows that all CoreDNS configurations are defined in
Corefile. By default, resolution requests of any domain name that does not belong
to the Kubernetes cluster are directed to the DNS server specified by forward. In
forward . /etc/resolv.conf, the first period (.) indicates all domain names,
and /etc/resolv.conf. indicates the DNS server of the node.

If a specific external domain name needs to be resolved, you can add an extra
configuration item. For example, if you want to forward the requests of resolving
the domain name content.internal to the DNS server whose IP address is
10.0.0.190, perform the following operations to add configurations in Corefile.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Step 3 Add a stub domain in the Parameters area. A stub domain is a key-value pair. The
key is a DNS suffix domain name, and the value is a DNS IP address or a group of
DNS IP addresses. In this example, set the key-value pair to content.internal
--10.0.0.190.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

Step 4 Click OK.

Step 5 Choose ConfigMaps and Secrets in the navigation pane. In the kube-system
namespace, view the coredns configuration data to check whether the update is
successful.

Corresponding Corefile content:

.:5353 {
 bind {$POD_IP}
 cache 30
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153
 forward . /etc/resolv.conf {
 policy random
 }
 reload
 ready {$POD_IP}:8081
}
content.internal:5353 {
 bind {$POD_IP}
 errors
 cache 30
 forward . 10.0.0.190
}

For details about other CoreDNS configurations, see Customizing DNS Service.

----End

Verification
Create a pod to access the IDC domain name. The following output shows that the
domain name can be resolved.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/

web-terminal-568c6566df-c9jhl:~# kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --
rm /bin/sh
If you don't see a command prompt, try pressing enter.
ping www.content.internal
PING www.content.internal (10.0.1.80) 56(84) bytes of data.
64 bytes from 10.0.1.80: icmp_seq=1 ttl=64 time=1.08 ms
64 bytes from 10.0.1.80: icmp_seq=2 ttl=64 time=0.337 ms

Access a Huawei Cloud domain name. The following output shows that the
domain name can be resolved.

ping cce.ap-southeast-1.myhuaweicloud.com
PING cce.ap-southeast-1.myhuaweicloud.com (100.125.4.16) 56(84) bytes of data.

Access the IDC domain name on the cluster node. The domain name cannot be
pinged, indicating that the CoreDNS configurations do not affect the domain
name resolution of the node.

10.6 Implementing Sticky Session Through Load
Balancing

Concepts
Sticky sessions ensure continuity and consistency when you access applications. If
a load balancer is deployed between a client and backend servers, connections
may be forwarded to different servers for processing. Sticky sessions can resolve
this issue. After sticky session is enabled, requests from the same client will be
continuously distributed to the same backend server through load balancing.

For example, in most online systems that require user identity authentication, a
user needs to interact with the server for multiple times to complete a session.
These interactions require continuity. If sticky session is not configured, the load
balancer may allocate certain requests to different backend servers. Since user
identity has not been authenticated on other backend servers, interaction
exceptions such as a user login failure may occur.

Therefore, select a proper sticky session type based on the application
environment.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

Table 10-8 Sticky session types

OSI Layer Listener
Protocol and
Networking

Sticky Session Type Scenarios Where
Sticky Sessions
Become Invalid

Layer 4 TCP- or UDP-
compliant
Services

Source IP address: The
source IP address of each
request is calculated using
the consistent hashing
algorithm to obtain a
unique hashing key, and all
backend servers are
numbered. The system
allocates the client to a
particular server based on
the generated key. This
allows requests from the
same IP address are
forwarded to the same
backend server.

● Source IP
addresses of
the clients
have changed.

● Requests from
the clients
exceed the
session
stickiness
duration.

Layer 7 HTTP- or
HTTPS-
compliant
ingresses

● Load balancer cookie:
The load balancer
generates a cookie after
receiving a request from
the client. All subsequent
requests with the cookie
will be routed to the
same backend server.

● Application cookie: The
application deployed on
the backend server
generates a cookie after
receiving the first request
from the client. All
subsequent requests with
the same cookie will be
routed to the same
backend server.

● If requests sent
by the clients
do not contain
a cookie, sticky
sessions will
not take effect.

● Requests from
the clients
exceed the
session
stickiness
duration.

NO TE

When creating a load balancer, configure sticky sessions by setting kubernetes.io/elb.lb-
algorithm to ROUND_ROBIN or kubernetes.io/elb.lb-algorithm to
LEAST_CONNECTIONS. If you set kubernetes.io/elb.lb-algorithm is to SOURCE_IP, source
IP address-based sticky sessions are supported. In this case, you do not need to configure
sticky sessions again.

Layer 4 Sticky Sessions for Services
In Layer 4 mode, source IP address-based sticky sessions can be enabled, where
hash routing is performed based on the client IP address.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

Enabling Layer 4 Sticky Session in a CCE Standard Cluster
In a CCE standard cluster, to enable source IP address-based sticky session for a
Service, ensure the following conditions are met:

1. Service Affinity of the Service must be set to Node-level, where the
externalTrafficPolicy value of the Service must be Local.

2. Anti-affinity has been enabled on the backend applications of the Service to
prevent all pods from being deployed on the same node.

Procedure

Step 1 Create an Nginx workload.

Set the number of pods to 3 and configure podAntiAffinity.
kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
 namespace: default
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: 'nginx:perl'
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Pod anti-affinity
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 topologyKey: kubernetes.io/hostname

Step 2 Create a LoadBalancer Service, for example, using an existing load balancer. The
following shows an example YAML file for configuring source IP address-based
sticky sessions:
apiVersion: v1
kind: Service
metadata:
 name: svc-example
 namespace: default
 annotations:
 kubernetes.io/elb.class: union
 kubernetes.io/elb.id: *****
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable source IP address-based sticky session.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

spec:
 selector:
 app: nginx
 externalTrafficPolicy: Local # Node level Service affinity
 ports:
 - name: cce-service-0
 targetPort: 80
 nodePort: 32633
 port: 80
 protocol: TCP
 type: LoadBalancer

Step 3 Check whether the Layer 4 sticky session function is enabled.

1. Log in to the ELB console, locate the row containing the target load balancer,
and click the listener name.

2. Check whether the sticky session function is enabled in the backend server
group.

Figure 10-27 Enabling Layer 4 sticky session

----End

Enabling Layer 4 Sticky Session in a CCE Turbo Cluster
In a CCE Turbo cluster, enabling source IP address-based sticky session for a
Service relies on the load balancer type.

● When a dedicated load balancer is used, passthrough networking is allowed
between the load balancer and pods, and pods function as the backend server
group of the load balancer. Therefore, you do not need to configure Service
affinity or application anti-affinity when enabling source IP address-based
sticky session for the Service.

● If a shared load balancer is used, sticky session cannot be enabled.

Procedure

● For dedicated load balancers
The following shows an example YAML file for configuring source IP address-
based sticky sessions for a Service that uses an existing load balancer:
apiVersion: v1
kind: Service
metadata:
 name: svc-example
 namespace: default
 annotations:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

 kubernetes.io/elb.class: performance
 kubernetes.io/elb.id: *****
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable source IP address-based sticky
session.
spec:
 selector:
 app: nginx
 externalTrafficPolicy: Cluster # In CCE Turbo clusters, Service affinity does not need to be
configured if a dedicated load balancer is used.
 ports:
 - name: cce-service-0
 targetPort: 80
 nodePort: 32633
 port: 80
 protocol: TCP
 type: LoadBalancer

Verify that the Layer 4 sticky session function is enabled.

a. Log in to the ELB console, locate the row containing the target load
balancer, and click the listener name.

b. Check whether the sticky session function is enabled in the backend
server group.

Figure 10-28 Enabling Layer 4 sticky session

Layer 7 Sticky Sessions for Ingresses
In Layer 7 mode, sticky sessions can be enabled using HTTP cookies or application
cookies.

Enabling Layer 7 Sticky Session in a CCE Standard Cluster
To enable cookie-based sticky session on an ingress, ensure the following
conditions are met:

1. Service Affinity of the ingress must be set to Node-level, where the
externalTrafficPolicy value of the Service must be Local.

2. Anti-affinity must be enabled for the ingress workload to prevent all pods
from being deployed on the same node.

Procedure

Step 1 Create an Nginx workload.

Set the number of pods to 3 and configure podAntiAffinity.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
 namespace: default
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: 'nginx:perl'
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Pod anti-affinity
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 topologyKey: kubernetes.io/hostname

Step 2 Create a Service for the workload. This section uses a NodePort Service as an
example.

Configure sticky sessions during the creation of a Service. An ingress can access
multiple Services, and each Service can have different sticky sessions.
apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: HTTP_COOKIE # HTTP cookie
 kubernetes.io/elb.session-affinity-option: '{"persistence_timeout":"1440"}' # Session stickiness duration,
in minutes. The value ranges from 1 to 1440.
spec:
 selector:
 app: nginx
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 32633 # Custom node port
 type: NodePort
 externalTrafficPolicy: Local # Node level Service affinity

You can also select APP_COOKIE.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

NO TICE

Only shared load balancers support application cookie-based sticky sessions. For
details, see What Are the Relationships Between Load Balancing Algorithms
and Sticky Session Types?

apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: APP_COOKIE # Select APP_COOKIE.
 kubernetes.io/elb.session-affinity-option: '{"app_cookie_name":"test"}' # Application cookie name
spec:
 selector:
 app: nginx
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 32633 # Custom node port
 type: NodePort
 externalTrafficPolicy: Local # Node level Service affinity

Step 3 Create an ingress and associate it with the Service. The following uses an existing
load balancer as an example. For details about how to automatically create a load
balancer, see Using kubectl to Create an ELB Ingress.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-test
 namespace: default
 annotations:
 kubernetes.io/elb.class: union
 kubernetes.io/elb.port: '80'
 kubernetes.io/elb.id: *****
spec:
 rules:
 - host: 'www.example.com'
 http:
 paths:
 - path: '/'
 backend:
 service:
 name: nginx # Service name
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: cce

Step 4 Verify that the Layer 7 sticky session function is enabled.

1. Log in to the ELB console, locate the row containing the target load balancer,
and click the listener name.

2. Click the Forwarding Policies tab, click the backend server group name, and
check whether sticky session is enabled for it.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

https://support.huaweicloud.com/intl/en-us/elb_faq/elb_faq_05_0008.html
https://support.huaweicloud.com/intl/en-us/elb_faq/elb_faq_05_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0252.html

Figure 10-29 Enabling Layer 7 sticky session

----End

Enabling Layer 7 Sticky Session in a CCE Turbo Cluster
Enable cookie-based sticky session on the ingress.

● When a dedicated load balancer is used, passthrough networking is allowed
between the load balancer and pods, and pods function as the backend server
group of the load balancer. Therefore, you do not need to configure Service
affinity or application anti-affinity when enabling cookie-based sticky session
for the ingress.

● If a shared load balancer is used, sticky session cannot be enabled.

Procedure

● For dedicated load balancers

a. Create a Service for the workload. In a CCE Turbo cluster, the ingresses
that use a dedicated load balancer must interconnect with ClusterIP
Services.
Configure sticky sessions during the creation of a Service. An ingress can
access multiple Services, and each Service can have different sticky
sessions.
apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: HTTP_COOKIE # HTTP cookie
 kubernetes.io/elb.session-affinity-option: '{"persistence_timeout":"1440"}' # Session
stickiness duration, in minutes. The value ranges from 1 to 1440.
spec:
 selector:
 app: nginx
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 0
 type: ClusterIP

b. Create an ingress and associate it with the Service. The following uses an
existing load balancer as an example. For details about how to
automatically create a load balancer, see Using kubectl to Create an
ELB Ingress.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0252.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0252.html

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-test
 namespace: default
 annotations:
 kubernetes.io/elb.class: performance
 kubernetes.io/elb.port: '80'
 kubernetes.io/elb.id: *****
spec:
 rules:
 - host: 'www.example.com'
 http:
 paths:
 - path: '/'
 backend:
 service:
 name: nginx # Service name
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: cce

c. Verify that the Layer 7 sticky session function is enabled.

i. Log in to the ELB console, locate the row containing the target load
balancer, and click the listener name.

ii. Click the Forwarding Policies tab, click the backend server group
name, and check whether sticky session is enabled for it.

Figure 10-30 Enabling Layer 7 sticky session

10.7 Obtaining the Client Source IP Address for a
Container

When using containers, clients may communicate with them through multiple
proxy servers. However, this can cause issues with transferring the clients' source
IP addresses to the containers' services. This section describes how to effectively
obtain the source IP address of a client in a container based on different network
solutions provided by CCE clusters.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

Description

Figure 10-31 Obtaining the source IP addresses from the containers

The method for obtaining source client IP addresses may vary with the network
settings. The following shows some typical network configurations and their
corresponding solutions:

● Ingress Layer-7 forwarding: When accessing an application at Layer-7, the
client's source IP address is automatically saved in the X-Forwarded-For field
of the HTTP header. No additional configurations are needed to obtain the
client's source IP address.

● Service Layer-4 forwarding: The method and principle for obtaining the
source IP addresses will depend on the type of Services being used.
– LoadBalancer Service: A load balancer is used as the traffic entry. Both

shared and dedicated load balancers are supported.

▪ For a shared load balancer, you need to enable the function of
obtaining client IP addresses on the listeners.

▪ By default, the function of obtaining client IP addresses is enabled
for a dedicated load balancer listener.

– NodePort Service: Container ports are mapped to node ports, which are
used as the entry for external services. The capability of obtaining client
source IP addresses depends on the service affinity.

▪ In a cluster-level service affinity for a NodePort Service, traffic is
forwarded within the cluster, which means the backend containers of
the Service cannot access the client's source IP address.

▪ In a node-level service affinity for a NodePort Service, the traffic can
directly reach the container without any forwarding. This allows the
backend containers of the Service to obtain the source IP address of
the client.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

NO TE

If Istio is used, you can obtain the source IP address by referring to How Do I Obtain the
Actual Source IP Address of a Client After a Service Is Added into Istio?

Scenarios in Which Source IP Address Can Be Obtained
Due to network model differences, CCE does not allow obtaining source IP
addresses in some scenarios, as listed in Table 10-9. "-" in the table indicates that
this scenario does not exist.

Table 10-9 Scenarios in which source IP addresses can be obtained

Level-1
Category

Level-2
Category

Load
Balancer
Type

VPC and
Container
Tunnel
Network
Models

Cloud
Native 2.0
Network
Model
(CCE
Turbo
Clusters)

Reference

Layer-7
forwarding
(ingress)

ELB Shared Supported Supported ELB
Ingress

Dedicated Supported Supported

Nginx
(connectin
g to the
NGINX
Ingress
Controller
add-on)

Shared Supported Not
supported

Nginx
Ingress

Dedicated Supported Supported This
function is
enabled by
default. No
other
configurati
on is
required.

Layer-4
forwarding
(Service)

LoadBalanc
er

Shared Supported Not
supported
(supported
by
workloads
that use
hostNetwo
rk)

LoadBalan
cer

Dedicated Supported Supported

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00299.html
https://support.huaweicloud.com/intl/en-us/cce_faq/cce_faq_00299.html

Level-1
Category

Level-2
Category

Load
Balancer
Type

VPC and
Container
Tunnel
Network
Models

Cloud
Native 2.0
Network
Model
(CCE
Turbo
Clusters)

Reference

NodePort - Supported Not
supported
(supported
by
workloads
that use
hostNetwo
rk)

NodePort

ELB Ingress
For the ELB Ingresses (using HTTP- or HTTPS-compliant), the function of
obtaining the source IP addresses of the client is enabled by default. No other
operation is required.

A client source IP address is placed in the X-Forwarded-For field of the HTTP
header by the load balancer. The format is as follows:

X-Forwarded-For: <client-source-IP-address>, <proxy-server-1-IP-address>, <proxy-server-2-IP-address>, ...

The first IP address obtained from the X-Forwarded-For field is the client source
IP address.

Nginx Ingress
NO TE

In Cloud Native 2.0 networks (for CCE Turbo clusters), if a shared load balancer is used,
source IP addresses cannot be obtained when an ingress is associated with the NGINX
Ingress Controller add-on. For details, see Scenarios in Which Source IP Address Can Be
Obtained. To obtain the source IP address, uninstall the NGINX Ingress Controller add-on
and use a dedicated load balancer during reinstallation.

● For an Nginx Ingress that uses a dedicated load balancer, transparent
transmission of source IP addresses is enabled by default. This means that you
can easily obtain the source IP address of the client without any additional
configurations.

● For an Nginx Ingress that uses a shared load balancer, perform the following
steps to obtain the source IP address of the client:

Step 1 Take the Nginx workload as an example. Before configuring the source IP address,
obtain the access logs. nginx-c99fd67bb-ghv4q indicates the pod name.
kubectl logs nginx-c99fd67bb-ghv4q

Information similar to the following is displayed:

...
10.0.0.7 - - [17/Aug/2023:01:30:11 +0000] "GET / HTTP/1.1" 200 19 "http://114.114.114.114:9421/"

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0
Safari/537.36 Edg/115.0.1901.203" "100.125.**.**"

100.125.**.** specifies the CIDR block of the load balancer, indicating that the
traffic is forwarded through the load balancer.

Step 2 Enable Transfer Client IP Address. This operation is required only when shared
load balancers are used. For dedicated load balancers, source IP address-
based transparent transmission is enabled by default.

Procedure for clusters of v1.23.17-r0, v1.25.12-r0, v1.27.9-r0, v1.28.7-r0, v1.29.3-r0,
and later versions

1. Log in to the CCE console and click the cluster name to access the cluster
console.

2. In the navigation pane, choose Add-ons. In the right pane, locate NGINX
Ingress Controller and click Manage.

3. Click Edit under the installed instance and enable the function of obtaining
the client IP address in the load balancer configuration.

4. Click OK.

NO TE

If backend services have been configured when you enable or disable the function of
obtaining a client IP address, traffic will be interrupted. Exercise caution when
performing this operation.

Procedure for clusters earlier than v1.23.17-r0, v1.25.12-r0, v1.27.9-r0, v1.28.7-r0,
and v1.29.3-r0

1. Click in the upper left corner of the management console and select a
region and a project.

2. Choose Service List > Networking > Elastic Load Balance.
3. On the Elastic Load Balance page, click the name of the target load balancer.
4. Click the Listeners tab, locate the row containing the target listener, and click

Edit. If modification protection exists, disable the protection on the basic
information page of the listener and try again.

5. Enable Transfer Client IP Address.

Figure 10-32 Enabling the function

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

Step 3 Access the workload again and view the new access log.
...
10.0.0.7 - - [17/Aug/2023:02:43:11 +0000] "GET / HTTP/1.1" 304 0 "http://114.114.114.114:9421/"
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0
Safari/537.36 Edg/115.0.1901.203" "124.**.**.**"

The source IP address of the client is obtained.

----End

NO TE

You can enable WAF for the load balancers used by Nginx Ingress Controllers in clusters,
but different WAF modes will affect how Nginx Ingress Controllers obtain the real client IP
addresses.
● Load balancer access in WAF cloud CNAME access mode

When using the cloud CNAME access mode, requests go through WAF and are checked
for protection before being sent to the load balancer. This means that even if the load
balancer has transparent transmission of source IP addresses enabled, the client will
receive the back-to-source IP address of WAF. Consequently, the Nginx Ingress Controller
is unable to obtain the real client IP address by default. In this case, you can edit the
NGINX Ingress Controller add-on and add the following configuration to the add-on
parameters:
{
 "enable-real-ip": "true",
 "use-forwarded-headers": "true",
 "proxy-real-ip-cidr": <Back-to-source IP address you obtained from WAF>
}

● Load balancer access in the cloud WAF mode
This mode is transparent access (non-inline deployment) and supports only dedicated
load balancers. In this mode, Nginx Ingress Controllers can obtain the real client IP
address by default.

LoadBalancer
For a LoadBalancer Service, different types of clusters obtain source IP addresses
in different scenarios. In some scenarios, source IP addresses cannot be obtained
currently. For details, see Scenarios in Which Source IP Address Can Be
Obtained.
● CCE Clusters (using VPC or Tunnel network): Source IP addresses can be

obtained when either a shared or dedicated load balancer is used.
● CCE Turbo Clusters (using the Cloud Native Network 2.0): Source IP addresses

can be obtained for dedicated load balancers, and for shared load balancers
with hostNetwork enabled.

VPC and Container Tunnel Network Models

To enable the function of obtaining the source IP address on the console, perform
the following steps:

Step 1 When creating a LoadBalancer Service on the CCE console, set Service Affinity to
Node-level instead of Cluster-level.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

Step 2 Go to the ELB console and enable the function of obtaining the client IP address
of the listener corresponding to the load balancer. Transparent transmission of
source IP addresses is enabled for dedicated load balancers by default. You do
not need to manually enable this function.

1. Click in the upper left corner of the management console and select a
region and a project.

2. Choose Service List > Networking > Elastic Load Balance.
3. On the Elastic Load Balance page, click the name of the target load balancer.
4. Click the Listeners tab, locate the row containing the target listener, and click

Edit. If modification protection exists, disable the protection on the basic
information page of the listener and try again.

5. Enable Transfer Client IP Address.

Figure 10-33 Enabling the function

----End

Cloud Native 2.0 Network Model (CCE Turbo Clusters)

When a LoadBalancer Service associated with a shared load balancer is created:
● For workloads with hostNetwork enabled, you can set Service Affinity to

Node-level to obtain the source IP addresses.
● For other workloads, you cannot set Service Affinity to Node-level, so the

source IP addresses cannot be obtained.

Dedicated load balancers are recommended. External access can be directly sent
to containers. By default, transparent transmission of source IP addresses is
enabled for dedicated load balancers. You do not need to manually enable

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

Transfer Client IP Address on the ELB console. Instead, you only need to select a
dedicated load balancer when creating a LoadBalancer Service on the CCE console.

NodePort

Set the service affinity of a NodePort Service to Node-level instead of Cluster-
level. That is, set spec.externalTrafficPolicy of the Service to Local.

NO TE

In clusters using Cloud Native 2.0 networks, if NodePort Services are used, only workloads
with hostNetwork enabled support node-level service affinity. Therefore, only such
workloads can obtain source IP addresses.

Figure 10-34 Selecting the node-level affinity

10.8 Increasing the Listening Queue Length by
Configuring Container Kernel Parameters

Application Scenarios

By default, the listening queue (backlog) length of net.core.somaxconn is set to
128. If the number of connection requests surpasses this limit during busy services,
new requests will be declined. To avoid this issue, you can adjust the kernel
parameter net.core.somaxconn to increase the length of the listening queue.

Procedure

Step 1 Modify kubelet configurations.

Modifying the kubelet configurations of a node pool

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

1. Log in to the CCE console and click the cluster name to access the cluster
console.

2. Locate the row containing the target node pool and choose More > Manage.

Figure 10-35 Managing node pool configurations

3. Modify kubelet configuration parameters and add [net.core.somaxconn] to
Allowed unsafe sysctls.

Figure 10-36 Modifying kubelet parameters

Modifying the kubelet parameters of a node (not recommended)

1. Log in to the target node.
2. Edit the /opt/cloud/cce/kubernetes/kubelet/kubelet file. In versions earlier

than 1.15, the file is /var/paas/kubernetes/kubelet/kubelet.
Enable net.core.somaxconn.
--allowed-unsafe-sysctls=net.core.somaxconn

3. Restart kubelet.
systemctl restart kubelet
Check the kubelet status.
systemctl status kubelet

NO TE

After the kubelet parameters of a node are modified, the configurations will be restored if
the cluster is upgraded to a later version. Exercise caution when performing this operation.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

Step 2 (Required only for clusters earlier than v1.25) Create a pod security policy.

kube-apiserver enables pod security policies for CCE clusters of versions earlier
than v1.25. The configurations take effect only after net.core.somaxconn is added
to allowedUnsafeSysctls in the pod security policy. For details about CCE security
policies, see Configuring a Pod Security Policy.

The following is an example:
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
 name: sysctl-psp
spec:
 allowedUnsafeSysctls:
 - net.core.somaxconn
 allowPrivilegeEscalation: true
 allowedCapabilities:
 - '*'
 fsGroup:
 rule: RunAsAny
 hostIPC: true
 hostNetwork: true
 hostPID: true
 hostPorts:
 - max: 65535
 min: 0
 privileged: true
 runAsGroup:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 volumes:
 - '*'

After creating the pod security policy sysctl-psp, configure RBAC permission
control for it.

The following is an example:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: sysctl-psp
rules:
 - apiGroups:
 - "*"
 resources:
 - podsecuritypolicies
 resourceNames:
 - sysctl-psp
 verbs:
 - use

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: sysctl-psp
roleRef:
 kind: ClusterRole
 name: sysctl-psp
 apiGroup: rbac.authorization.k8s.io

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0275.html

subjects:
- kind: Group
 name: system:authenticated
 apiGroup: rbac.authorization.k8s.io

Step 3 Create a workload, configure the kernel parameters, and ensure that the workload
is affinity with the node with net.core.somaxconn enabled in Step 1.
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 description: ''
 labels:
 appgroup: ''
 name: test1
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test1
 template:
 metadata:
 annotations:
 metrics.alpha.kubernetes.io/custom-endpoints: '[{"api":"","path":"","port":"","names":""}]'
 labels:
 app: test1
 spec:
 containers:
 - image: 'nginx:1.14-alpine-perl'
 name: container-0
 resources:
 requests:
 cpu: 250m
 memory: 512Mi
 limits:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret
 securityContext:
 sysctls:
 - name: net.core.somaxconn
 value: '3000'
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - 192.168.x.x # Node name.

Step 4 Go to the container and check whether the parameter settings take effect.
kubectl exec -it <pod name> -- /bin/sh

Run the following command in the container to check whether the configuration
takes effect:

sysctl -a |grep somax

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

Figure 10-37 Viewing the parameter configuration

----End

10.9 Configuring Passthrough Networking for a
LoadBalancer Service

Application Scenarios
kube-proxy, which is responsible for forwarding intra-cluster traffic, adds the IP
addresses of load balancers associated with the LoadBalancer Services to nodes'
local forwarding rules by default. When a client from within a cluster accesses the
IP address of a load balancer, the traffic is directly forwarded to the destination
instead of being forwarded by the load balancer.

If node-level affinity is configured for a Service (with externalTrafficPolicy set to
Local), the Service will forward traffic only to pods on the node that run these
pods. When a node or pod accesses another pod in the same cluster, if the node
where the client runs does not have the corresponding backend pod, the access
may fail.

Solution
CCE supports passthrough networking. You can configure the kubernetes.io/
elb.pass-through annotation for the LoadBalancer Service so that the load
balancer forwards the intra-cluster access to the IP address of the load balancer
associated with the Service to backend pods.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

Figure 10-38 Passthrough networking illustration

● CCE clusters
When a LoadBalancer Service is accessed within the cluster, the access is
forwarded to the backend pods using iptables/IPVS by default.
When a LoadBalancer Service (configured with elb.pass-through) is accessed
within the cluster, the access is first forwarded to the load balancer, then the
nodes, and finally to the backend pods using iptables/IPVS.

● CCE Turbo clusters
When a client accesses a LoadBalancer Service from within the cluster,
passthrough is used by default. In this case, the client directly accesses the
load balancer private network IP address and then access a container through
the load balancer.

Constraints
● In a CCE standard cluster, after passthrough networking is configured for a

dedicated load balancer, the private IP address of the load balancer cannot be
accessed from the node where the workload pod resides or other containers
on the same node as the workload.

● Passthrough networking is not supported for clusters of v1.15 or earlier.
● In IPVS network mode, the passthrough settings of Services connected to the

same load balancer must be the same.
● If node-level (local) service affinity is used, kubernetes.io/elb.pass-through

is automatically set to onlyLocal to enable pass-through.

Procedure
This section describes how to create a Deployment using an Nginx image and
create a Service with passthrough networking enabled.

Step 1 Use the kubectl command line tool to connect to the cluster. For details, see
Connecting to a Cluster Using kubectl.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

Step 2 Use the Nginx image to create a Deployment.

Create an nginx-deployment.yaml file. The file content is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Run the following command to deploy the workload:
kubectl create -f nginx-deployment.yaml

Step 3 Create a LoadBalancer Service and set kubernetes.io/elb.pass-through to true.
For details about how to create LoadBalancer Service, see LoadBalancer.

The content of the nginx-elb-svc.yaml file is as follows. (In this example, a shared
load balancer named james is automatically created.)
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.pass-through: "true"
 kubernetes.io/elb.class: union
 kubernetes.io/elb.autocreate: '{"type":"public","bandwidth_name":"cce-
bandwidth","bandwidth_chargemode":"bandwidth","bandwidth_size":5,"bandwidth_sharetype":"PER","eip_ty
pe":"5_bgp","name":"james"}'
 labels:
 app: nginx
 name: nginx
spec:
 externalTrafficPolicy: Local
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 type: LoadBalancer

Step 4 Run the following command to create the Service:
kubectl create -f nginx-elb-svc.yaml

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 345

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0014.html#section6

Verification

Step 1 Log in to the ELB console and check the load balancer (named james in this
example) associated with the Service.

Step 2 Click the load balancer name and click the Monitoring tab.

There is 0 connections to the load balancer.

Step 3 Log in to an Nginx container in the cluster using kubectl and access the IP address
of the load balancer.

1. Obtain the Nginx containers in the cluster.
kubectl get pod

Information similar to the following is displayed:
NAME READY STATUS RESTARTS AGE
nginx-7c4c5cc6b5-vpncx 1/1 Running 0 9m47s
nginx-7c4c5cc6b5-xj5wl 1/1 Running 0 9m47s

2. Log in to an Nginx container container.
kubectl exec -it nginx-7c4c5cc6b5-vpncx -- /bin/sh

3. Access the load balancer IP address.
curl **.**.**.**

Step 4 Wait for a while and check the monitoring data on the ELB console.

If a new access connection is displayed, the access is forwarded by the load
balancer as expected.

----End

10.10 Accessing an External Network from a Pod

10.10.1 Accessing the Internet from a Pod

How to Implement

The method of accessing a public network address from a pod varies depending
on the network model of the cluster. For details, see Table 10-10.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 346

Table 10-10 Methods of accessing a public network address from a pod

Implementat
ion

Tunnel
Network

VPC Network Cloud Native 2.0 Network

Binding an
EIP to the
node where
the container
resides

Supported Supported Not supported

Binding an
EIP to the pod

Not
supported

Not
supported

Supported
NOTE

Bind an EIP to the pod. For
details, see Configuring a Static
EIP for a Pod.

Accessing the
Internet
through a
NAT gateway

Supported Supported Supported

The following uses a CCE Turbo cluster as an example to describe how to use a
NAT gateway to access the Internet. The NAT gateway allows containers in a VPC
to access the Internet through source network address translation (SNAT), which
translates containers' private IP addresses to public IP addresses using the
assigned EIP. This allows the containers to use the shared EIP to access the
Internet. For details, see Figure 10-39. SNAT allows containers in a VPC to access
the Internet directly, even without an EIP. However, they cannot receive traffic
from the Internet. The NAT gateway provides efficient support for high-
concurrency connections and enables public network access. It is well-suited for
scenarios with a large volume of requests and connections.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 347

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0651.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0651.html

Figure 10-39 How an SNAT rule works

Prerequisites
● A CCE cluster is available. For details, see Buying a CCE Standard/Turbo

Cluster.
● A pod is available in the cluster. For details, see Creating a Deployment.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 348

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0047.html

Procedure
To enable a pod to access the Internet, perform the following steps:

Step 1 Check the pod CIDR block.

1. Log in to the management console.

2. Click in the upper left corner and choose Containers > Cloud Container
Engine.

3. Click the cluster name to access the cluster console. In the navigation pane,
choose Overview. In the Networking Configuration area, check the pod
subnet.

Figure 10-40 Pod subnet

Step 2 Check the access from the pod to the Internet. Log in to the target pod and run
the following command on the CloudShell page:

curl -I console-intl.huaweicloud.com

If information similar to the following is displayed, the pod cannot access the
Internet:

curl: (7) Failed to connect to console-intl.huaweicloud.com port 80: Connection timed out

Step 3 Assign an EIP. For details, see Assigning an EIP.

1. Click in the upper left corner of the console and select a region.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 349

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-eip/eip_0008.html

NO TE

Set Region to the one where the target pod is located.

2. Click in the upper left corner and choose Networking > Elastic IP.
3. On the EIPs page, click Buy EIP.
4. Configure parameters as prompted. For details, see Figure 10-41.

Figure 10-41 Buying an EIP

Step 4 Buy a NAT gateway. For details, see Buy a Public NAT Gateway.

1. Click in the upper left corner and choose Networking > NAT Gateway.
2. On the displayed page, click Buy Public NAT Gateway.
3. Configure parameters as prompted. Set VPC to the one used by the cluster

and Subnet to the pod subnet. For details, see Figure 10-42. When using a
CCE Turbo cluster, set Subnet to the one where the pod is located. When
using a CCE standard cluster, set Subnet to the one where the node is
located.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 350

https://support.huaweicloud.com/intl/en-us/qs-natgateway/nat_qs_0001.html#nat_qs_0001__section82633199366

Figure 10-42 Buying a NAT gateway

Step 5 Configure an SNAT rule and bind the EIP to the subnet. For details, see Add an
SNAT Rule.

1. On the page displayed, click the name of the NAT gateway for which you
want to add the SNAT rule.

2. On the SNAT Rules tab page, click Add SNAT Rule.
3. Configure parameters as prompted. For details, see Figure 10-43.

NO TE

SNAT rules take effect by CIDR block. When configuring CIDR blocks for different
container network models, consider their communication modes. Follow these rules to
ensure proper configuration:
– For a CCE standard cluster using a tunnel or VPC network, select the CIDR block

where the node is located, which is the block selected during node creation.
– For a CCE Turbo cluster using Cloud Native Network 2.0, select the container CIDR

block used during cluster creation.
If there are multiple CIDR blocks, you can create multiple SNAT rules or customize a
CIDR block. Make sure that the selected CIDR block includes either the container
subnet (for Cloud Native Network 2.0) or the node subnet (for tunnel network and
VPC network).

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 351

https://support.huaweicloud.com/intl/en-us/qs-natgateway/nat_qs_0001.html#nat_qs_0001__section43847892
https://support.huaweicloud.com/intl/en-us/qs-natgateway/nat_qs_0001.html#nat_qs_0001__section43847892

Figure 10-43 Adding an SNAT rule

Step 6 Check whether the pod can access the Internet. Log in to the target pod and run
the following command on the CloudShell page:

curl -I console-intl.huaweicloud.com

If information similar to the following is displayed, the pod can access the
Internet:

HTTP/1.1 301 Moved Permanently
Server: CloudWAF
Date: Mon, 19 Aug 2024 12:43:20 GMT
Content-Type: text/html
Connection: keep-alive
Set-Cookie: HWWAFSESID=b4119798a9b29b3c77; path=/
Set-Cookie: HWWAFSESTIME=1724071396374; path=/
...

----End

10.10.2 Accessing Cloud Services from a Pod in the Same VPC
The method of accessing cloud services from a pod in the same VPC varies
depending on the cluster's network model. For details, see Table 1 Accessing
cloud services from a pod in the same VPC.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 352

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html

Table 10-11 Accessing cloud services from a pod in the same VPC

Network
Model

Description

Tunnel
network

Data packets are encapsulated through tunnels in the node
network. If the node access permission is limited, you will not
be able to access resources from a pod in the same VPC. If you
encounter an access failure, verify that the security group of the
service you are trying to access allows access from the node
where the pod is located.

VPC network Pod traffic is forwarded through VPC routing. If the container
CIDR block is different from the VPC CIDR block of the node,
the container cannot directly communicate with other IP
addresses in the VPC. To access a service outside the cluster
from a pod in the same VPC, you must configure the security
group of the accessed service.

Cloud Native
Network 2.0

Containers receive IP addresses from VPC CIDR blocks.
Container CIDR blocks are part of the VPC subnet where the
node is located. Therefore, the containers can directly
communicate with other IP addresses in the VPC. If the access
failed, check if the security group of the accessed service
permits access from the container CIDR block.

Cloud services that communicate with CCE include ECS, ELB, RDS, DCS, Kafka,
RabbitMQ, ModelArts, and DDS. To ensure successful communication, make sure
your network is configured correctly and verify that the cloud service you want to
access allows external access. For example, accessing DCS Redis requires being
trustlisted. If you cannot configure the trustlist on the service console, create a
service ticket in the target service. The following describes the operations and
precautions for accessing an ECS from a pod and an RDS MySQL DB instance from
a pod.

Prerequisites
● A CCE cluster is available. For details, see Buying a CCE Standard/Turbo

Cluster.

● A pod is available in the cluster. For details, see Creating a Deployment.

Accessing an ECS from a Pod

The following uses a VPC network cluster as an example to describe how to
configure security group rules for seamless access to an ECS in the same VPC. For
example, the node CIDR block is 192.168.0.0/24, and the container CIDR block is
172.16.0.0/16.

Step 1 Purchase an ECS. For details, see Purchasing and Using a Linux ECS. The ECS and
the cluster are in the same region and VPC, and the IP address of the ECS is
192.168.0.28.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 353

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0047.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Step 2 Log in to the pod. For details, see Logging In to a Container. Try to access the
ECS from the pod.

ping 192.168.0.28

● If the ping command is available, execute it. If the following information is
displayed, the access from the pod to the ECS failed:
PING 192.168.0.28 (192.168.0.28): 56 data bytes
--- 192.168.0.28 ping statistics ---
104 packets transmitted, 0 packets received, 100% packet loss

● If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe how
to add a ping command. If the ping command is already available, skip this
step.

a. Ensure that the pod can access the Internet. For details, see Accessing
the Internet from a Pod.

b. Update the local software package index.
apt-get update

c. Install the iputils-ping software package, which provides the ping
command.
apt-get install iputils-ping

d. Access the ECS again.
ping 192.168.0.28
If the following information is displayed, the ping command has been
added:
PING 192.168.0.28 (192.168.0.28): 56 data bytes
--- 192.168.0.28 ping statistics ---
104 packets transmitted, 0 packets received, 100% packet loss

Step 3 Add the container CIDR block of the cluster to the inbound rules of the ECS
security group so that all pods in the cluster can access the ECS. If you only want
to grant access to the ECS from a specific pod in the cluster, you can add the IP
address of that pod to the inbound rules of the ECS security group.

1. On the console homepage, click in the upper left corner. In the expanded
list, choose Compute > Elastic Cloud Server and click the target ECS name.

2. Click the Security Groups tab. In the left pane of the page, click Manage
Rule. On the Inbound Rules tab page, you can find that the source addresses
include the CIDR block 192.168.0.0/18. Within this block, the node CIDR block
192.168.0.0/24 is included, but the container CIDR block 172.16.0.0/16 is not.
If a cluster uses a VPC network model, you need to allow both the node and
container CIDR blocks in the security group rules of the ECS outside the
cluster to access the ECS from a pod. However, for other network models, you
only need to allow the node CIDR block in the security group rules of the ECS.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 354

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html

Figure 10-44 Original inbound rules

3. Click Add Rule and enter 172.16.0.0/16 in the Source text box. For details,
see Figure 10-45.

Figure 10-45 Adding a rule

Step 4 Check whether the pod can access the ECS outside of the cluster in the same VPC.
On the CloudShell page of the pod, run the following command again:

ping 192.168.0.28

If information similar to the following is displayed, the pod can access the ECS:

PING 192.168.0.28 (192.168.0.28): 56 data bytes
64 bytes from 192.168.0.28: seq=0 ttl=64 time=1.412 ms
64 bytes from 192.168.0.28: seq=1 ttl=64 time=1.400 ms
64 bytes from 192.168.0.28: seq=2 ttl=64 time=1.299 ms
64 bytes from 192.168.0.28: seq=3 ttl=64 time=1.283 ms
--- 192.168.0.28 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

----End

Accessing a Cloud Service (RDS for MySQL as an Example) from a Pod
The following uses a VPC network cluster as an example to describe how to
configure security group rules for seamless access to an RDS for MySQL instance
in the same VPC. For example, the node CIDR block is 192.168.0.0/24, and the
container CIDR block is 172.16.0.0/16.

Step 1 Buy an RDS for MySQL instance. For details, see Buying a DB Instance and
Connecting to It Using a MySQL Client. The DB instance and the cluster are in
the same region and VPC, and the IP address of the DB instance is 192.168.10.10.

Step 2 Log in to the pod. For details, see Logging In to a Container. Try to access the
RDS for MySQL instance from the pod.

ping 192.168.10.10

● If the ping command is available, execute it. If the following information is
displayed, the access from the pod to the RDS for MySQL instance failed:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 355

https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0047.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html

PING 192.168.10.10 (192.168.10.10): 56 data bytes
--- 192.168.10.10 ping statistics ---
104 packets transmitted, 0 packets received, 100% packet loss

● If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe how
to add a ping command. If the ping command is already available, skip this
step.

a. Ensure that the pod can access the Internet. For details, see Accessing
the Internet from a Pod.

b. Update the local software package index.
apt-get update

c. Install the iputils-ping software package, which provides the ping
command.
apt-get install iputils-ping

d. Access the RDS for MySQL instance again.
ping 192.168.10.10
If the following information is displayed, the ping command has been
added:
PING 192.168.10.10 (192.168.10.10): 56 data bytes
--- 192.168.10.10 ping statistics ---
104 packets transmitted, 0 packets received, 100% packet loss

Step 3 Add the container CIDR block of the cluster to the inbound rules of the DB
instance security group so that all pods in the cluster can access the RDS for
MySQL instance. If you only want to grant access to the RDS for MySQL instance
from a specific pod in the cluster, you can add the IP address of that pod to the
inbound rules of the DB instance security group.

1. On the console homepage, click in the upper left corner. In the expanded
list, choose Databases > Relational Database Service. On the Instances
page, click the DB instance name.

2. In the navigation pane, choose Connectivity & Security. In the Security
Group Rules area, click the target security group rule. On the Inbound Rules
tab page, you can find that the source addresses include the CIDR block
192.168.0.0/18. Within this block, the node CIDR block 192.168.0.0/24 is
included, but the container CIDR block 172.16.0.0/16 is not. If a cluster uses a
VPC network model, you need to allow both the node and container CIDR
blocks in the security group rules of the RDS for MySQL instance outside the
cluster to access the DB instance from a pod. However, for other network
models, you only need to allow the node CIDR block in the security group
rules of the DB instance.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 356

Figure 10-46 Original inbound rules

3. Click Add Rule and enter 172.16.0.0/16 in the Source text box. For details,
see Figure 10-47.

Figure 10-47 Adding a rule

Step 4 Check whether the pod can access the RDS for MySQL instance. On the CloudShell
page of the pod, run the following command again:

ping 192.168.10.10

If information similar to the following is displayed, the pod can access the DB
instance:

PING 192.168.10.10 (192.168.10.10): 56 data bytes
64 bytes from 192.168.10.10: seq=0 ttl=64 time=1.412 ms
64 bytes from 192.168.10.10: seq=1 ttl=64 time=1.400 ms
64 bytes from 192.168.10.10: seq=2 ttl=64 time=1.299 ms
64 bytes from 192.168.10.10: seq=3 ttl=64 time=1.283 ms
--- 192.168.10.10 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

----End

Troubleshooting a Pod Access Failure
If a pod cannot access the network, rectify the fault by referring to Table 10-12. If
the fault persists, submit a service ticket to contact Huawei Cloud customer
service.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 357

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-3&locale=en-us#/ticketindex/serviceTickets

Table 10-12 Troubleshooting methods

Check Item Possible Fault Solution

Security
group rules of
the accessed
service

One of the following issues may be
the cause of the failure:
● The security group's inbound rules

prevent access to the node CIDR
block or container CIDR block.

● The security group's inbound rules
permit access to the node CIDR
block and container CIDR block, but
the protocol is incorrectly
configured.
NOTICE

Run the ping command and use ICMP
to test network connectivity. Before
doing so, enable the ICMP port in the
security group rule.

● For possible cause
1, add a security
group rule. For
details, see Adding
a Security Group
Rule.

● For possible cause
2, change the
protocol port in the
security group
rules. For details,
see Modifying a
Security Group
Rule.

Trustlist The trustlist for the accessed service
does not have the node CIDR block
and container CIDR block configured.

Add the container and
node CIDR blocks to
the trustlist. Find
more information in
the help document for
the relevant service.

Domain name
resolution

When accessing an external domain
name, the pod uses its cluster's
domain name resolution to resolve the
destination address and accesses the
address based on the pod's network
policy. However, sometimes the
domain name cannot be resolved,
resulting in errors. The most common
errors are listed below:
● Name or service not known
● Temporary failure in name

resolution
● Unable to resolve hostname
● DNS resolution failed
● Could not resolve MYHOST

(nodename nor servname known),
where MYHOST indicates the
domain name that cannot be
resolved

Locate the cause of
the DNS exception.
For details, see DNS
Overview for
troubleshooting.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 358

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0360.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0360.html

Check Item Possible Fault Solution

Network
policy
(applicable
only to tunnel
networks)

If you have configured a network
policy for both your tunnel network
cluster and the namespace where the
pod is located, the network policy may
prevent the pod from accessing the
destination address.

If so, modify the
network policy. For
details, see
Configuring Network
Policies to Restrict
Pod Access.

10.10.3 Accessing Cloud Services from a Pod in a Different
VPC

Pods cannot communicate with each other across VPCs. To resolve this issue, you
can use VPC peering to connect two VPCs so that pods in one VPC can access
services in the other VPC. The method of setting up cross-VPC connectivity varies
depending on the clusters' network types. For details, see Table 10-13. In this
section, the VPC where the cluster is in is referred to as the cluster VPC, the VPC
where the cloud service to be accessed is in is referred to as the destination VPC,
and the subnet where the cloud service to be accessed is in is referred to as the
destination subnet.

Table 10-13 Cross-VPC access for clusters of different network types

Network
Model

Description Difference

Tunnel
network

Data packets are encapsulated
through tunnels in the node
network.
To access cloud services from a
pod in a different VPC, ensure
that the node subnet can
communicate with the
destination subnet.

After creating a VPC peering
connection between the
cluster VPC and the
destination VPC, you only
need to create a route for
the node subnet and the
destination subnet.

VPC network Pod traffic is forwarded through
VPC routing. The VPC CIDR block
of the cluster cannot overlap
with the container CIDR block.
When accessing services from a
pod in a different VPC, ensure
that the node subnet can
communicate with the
destination subnet and that the
container CIDR block can also
communicate with the
destination subnet.

After creating a VPC peering
connection between the
cluster VPC and the
destination VPC, you need
to create a route for the
destination subnet, cluster
node subnet, and container
CIDR block.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 359

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html

Network
Model

Description Difference

Cloud Native
Network 2.0

In the Cloud Native 2.0 network
model, container IP addresses
are directly assigned from the
VPC CIDR block.
To access cloud services from a
pod in a different VPC, ensure
that the container subnet can
communicate with the
destination subnet.

After creating a VPC peering
connection between the
cluster VPC and the
destination VPC, you only
need to create a route for
the container subnet and
the destination subnet.

Cloud services that communicate with CCE include ECS, ELB, RDS, DCS, Kafka,
RabbitMQ, ModelArts, and DDS. To ensure successful communication, make sure
your network is configured correctly and verify that the cloud service you want to
access allows external access. For example, accessing DCS Redis requires being
trustlisted. If you cannot configure the trustlist on the service console, create a
service ticket in the target service.

This section uses ECS and RDS for MySQL as examples to describe how to
implement cross-VPC communication between pods in clusters that use different
network models. Table 10-14 shows the details about the cluster, ECS, and RDS
for MySQL network information in the example.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 360

Table 10-14 Network information

Cloud
Service

Container Network
Model

Network Information

CCE Container tunnel
network (CCE standard
cluster)

● Cluster VPC
– Name: vpc-demo1
– CIDR block: 192.168.0.0/18

(primary) and 172.1.0.0/24
(secondary)
NOTE

After a VPC is created, if the primary
CIDR block is not enough, you can
add secondary CIDR blocks to the
VPC. For details, see Adding a
Secondary IPv4 CIDR Block to a
VPC. After a secondary CIDR block is
added to the VPC, you can create a
subnet based on the secondary CIDR
block. The subnet can be used in
CCE.

– Subnet: 192.168.0.0/24,
192.168.60.0/28, and
172.1.0.0/26

● Node subnet: 192.168.0.0/24
● Container CIDR block: 172.18.1.0/24

VPC network (CCE
standard cluster)

● Cluster VPC
– Name: vpc-demo1
– CIDR block: 192.168.0.0/18

(primary) and 172.1.0.0/24
(secondary)

– Subnet: 192.168.0.0/24,
192.168.60.0/28, and
172.1.0.0/26

● Node subnet: 192.168.0.0/24
● Container CIDR block: 172.18.1.0/24

Cloud Native 2.0
network (CCE Turbo
cluster)

● Cluster VPC
– Name: vpc-demo1
– CIDR block: 192.168.0.0/18

(primary) and 172.1.0.0/24
(secondary)

– Subnet: 192.168.0.0/24,
192.168.60.0/28, and
172.1.0.0/26

● Node subnet: 192.168.0.0/24
● Container subnet: 192.168.60.0/28

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 361

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_vpc_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_vpc_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_vpc_0007.html

Cloud
Service

Container Network
Model

Network Information

ECS N/A ● Destination VPC
– Name: vpc-demo2
– CIDR block: 10.1.0.0/16
– Subnet: 10.1.1.0/24

● Subnet where the ECS resides
(destination subnet): 10.1.1.0/24

● ECS IP address: 10.1.1.24

RDS for
MySQL

N/A ● Destination VPC
– Name: vpc-373896-1
– CIDR block: 172.16.0.0/16
– Subnet: 172.16.0.0/24

● Subnet where RDS for MySQL
resides (destination subnet):
172.16.0.0/24

● IP address of RDS for MySQL:
172.16.0.167

Prerequisites
● A CCE cluster is available. For details, see Buying a CCE Standard/Turbo

Cluster.

● A pod is available in the cluster. For details, see Creating a Deployment.

● You have an ECS or RDS for MySQL DB instance, which is in the same region
as the cluster but in a different VPC. For details about how to purchase an
ECS or a DB instance, see Purchasing and Using a Linux ECS (New Edition)
and Buying a DB Instance and Connecting to It Using a MySQL Client.

Accessing Cloud Services from a Pod in a Different VPC

This part describes how to access an ECS or an RDS for MySQL DB instance from a
pod in a different VPC.

Accessing an ECS from a Pod

The following describes how to access an ECS from pods that run in clusters that
use the tunnel network model, VPC network model, and Cloud Native 2.0 network
model, respectively. You can select a method based on your cluster types.

Accessing an ECS from a pod in a CCE standard cluster that uses the tunnel
network model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 362

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0047.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0047.html

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about the
parameters, see Table 10-15.

Figure 10-48 Creating a VPC peering connection

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 363

Table 10-15 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
demo

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-demo1

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 192.168.0.0/
18 and
172.1.0.0/24

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo2

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

10.1.0.0/16

d. After configuring the parameters, click Create Now.

2. In the displayed VPC Peering Connection Created dialog box, click Add Now
and add a route for the node subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-16.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 364

Figure 10-49 Adding a route for the node subnet and destination subnet

Table 10-16 Parameters for adding a route for the node subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 365

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

10.1.1.0/24

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo2

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 366

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo2
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.0.0/2
4

3. Log in to the pod and enter the following code on the CloudShell page of the

pod again, where 10.1.1.24 indicates the IP address of the ECS to be accessed:
(For details about how to log in to a container, see Logging In to a
Container.)
ping 10.1.1.24

NO TE

If the access fails, check whether the traffic from the cluster node subnet is allowed in
the inbound rules of the ECS security group. If it is not allowed, you need to add a
security group rule and allow the corresponding traffic. For details, see Adding a
Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.
i. Ensure that the pod can access the Internet. For details, see

Accessing the Internet from a Pod.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 367

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.
apt-get update
apt-get install iputils-ping

iii. Access the ECS again.
ping 10.1.1.24

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

Accessing an ECS from a pod in a CCE standard cluster that uses the VPC network
model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about the
parameters, see Table 10-17.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 368

Figure 10-50 Creating a VPC peering connection

Table 10-17 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
demo

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 369

Parameter Description Example

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 192.168.0.0/
18 and
172.1.0.0/24

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo2

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

10.1.0.0/16

d. After configuring the parameters, click Create Now.

2. In the displayed VPC Peering Connection Created dialog box, click Add Now
and add a route for the node subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-18.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 370

Figure 10-51 Adding a route for the node subnet and destination subnet

Table 10-18 Parameters for adding a route for the node subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 371

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

10.1.1.0/24

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo2

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 372

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo2
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.0.0/2
4

3. On the current page, click Add Route and add a route for the destination VPC

and the container CIDR block of the cluster. In the Add Route dialog box, set
VPC to vpc-demo2 and Destination to 172.18.1.0/24. For details, see Figure
10-52.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 373

Figure 10-52 Adding a route to the container CIDR block

4. Log in to the pod and enter the following code on the CloudShell page of the
pod again, where 10.1.1.24 indicates the IP address of the ECS to be accessed:
(For details about how to log in to a container, see Logging In to a
Container.)
ping 10.1.1.24

NO TE

If the access fails, check whether the traffic from the cluster node subnet and
container CIDR block is allowed in the inbound rules of the ECS security group. If it is
not allowed, you need to add a security group rule and allow the corresponding traffic.
For details, see Adding a Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.

i. Ensure that the pod can access the Internet. For details, see
Accessing the Internet from a Pod.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 374

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.
apt-get update
apt-get install iputils-ping

iii. Access the ECS again.
ping 10.1.1.24

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

Accessing an ECS from a pod in a CCE Turbo cluster that uses the Cloud Native 2.0
network model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about the
parameters, see Table 10-19.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 375

Figure 10-53 Creating a VPC peering connection

Table 10-19 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
demo

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 376

Parameter Description Example

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 192.168.0.0/
18 and
172.1.0.0/24

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo2

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

10.1.0.0/16

2. In the displayed VPC Peering Connection Created dialog box, click Add Now

and add a route for the container subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-20.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 377

Figure 10-54 Adding a route for the container subnet and the destination
subnet

Table 10-20 Parameters for adding a route for the container subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 378

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

10.1.1.0/24

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo2

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 379

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo2
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.60.0/
28

3. Log in to the pod and enter the following code on the CloudShell page of the

pod again, where 10.1.1.24 indicates the IP address of the ECS to be accessed:
(For details about how to log in to a container, see Logging In to a
Container.)
ping 10.1.1.24

NO TE

If the access fails, check whether the traffic from the cluster container subnet is
allowed in the inbound rules of the ECS security group. If it is not allowed, you need to
add a security group rule and allow the corresponding traffic. For details, see Adding
a Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.
i. Ensure that the pod can access the Internet. For details, see

Accessing the Internet from a Pod.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 380

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.
apt-get update
apt-get install iputils-ping

iii. Access the ECS again.
ping 10.1.1.24

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 10.1.1.24 (10.1.1.24): 56 data bytes
64 bytes from 10.1.1.24: seq=0 ttl=64 time=1.412 ms
64 bytes from 10.1.1.24: seq=1 ttl=64 time=1.400 ms
64 bytes from 10.1.1.24: seq=2 ttl=64 time=1.299 ms
64 bytes from 10.1.1.24: seq=3 ttl=64 time=1.283 ms
--- 10.1.1.24 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

Accessing a Cloud Service (RDS for MySQL as an Example) from a Pod
The following describes how to access an RDS for MySQL DB instance from pods
that run in clusters that use the tunnel network model, VPC network model, and
Cloud Native 2.0 network model, respectively. You can select a method based on
your cluster types.

Accessing an RDS for MySQL DB instance from a pod in a CCE standard cluster
that uses the tunnel network model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about some of
the parameters, see Table 10-21.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 381

Figure 10-55 Creating a VPC peering connection

Table 10-21 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
b34b

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 382

Parameter Description Example

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 172.16.0.0/1
2

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo1

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

192.168.0.0/
18 and
172.1.0.0/24

d. After configuring the parameters, click Create Now.

2. In the displayed VPC Peering Connection Created dialog box, click Add Now
and add a route for the node subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-22.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 383

Figure 10-56 Adding a route for the node subnet and destination subnet

Table 10-22 Parameters for adding a route for the node subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 384

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-d43b
(custom
route table)
NOTICE

The custom
route table
must be
associated
with the
subnet
connected by
the VPC
peering
connection.

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.0.0/2
4

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 385

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

172.16.0.0/24

3. Log in to the pod and enter the following code on the CloudShell page of the

pod again, where 172.16.0.167 indicates the IP address of the RDS for MySQL
DB instance to be accessed: (For details about how to log in to a container,
see Logging In to a Container.)
ping 172.16.0.167

NO TE

If the access fails, check whether the traffic from the cluster node subnet is allowed in
the inbound rules of the DB instance security group. If it is not allowed, you need to
add a security group rule and allow the corresponding traffic. For details, see Adding
a Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.

i. Ensure that the pod can access the Internet. For details, see
Accessing the Internet from a Pod.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 386

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.
apt-get update
apt-get install iputils-ping

iii. Access the RDS for MySQL DB instance again.
ping 172.16.0.167

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

Accessing an RDS for MySQL DB instance from a pod in a CCE standard cluster
that uses the VPC network model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about some of
the parameters, see Table 10-23.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 387

Figure 10-57 Creating a VPC peering connection

Table 10-23 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
b34b

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 388

Parameter Description Example

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 172.16.0.0/1
2

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo1

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

192.168.0.0/
18 and
172.1.0.0/24

d. After configuring the parameters, click Create Now.

2. In the displayed VPC Peering Connection Created dialog box, click Add Now
and add a route for the node subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-24.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 389

Figure 10-58 Adding a route for the node subnet and destination subnet

Table 10-24 Parameters for adding a route for the node subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 390

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-d43b
(custom
route table)
NOTICE

The custom
route table
must be
associated
with the
subnet
connected by
the VPC
peering
connection.

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.0.0/2
4

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 391

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

172.16.0.0/24

3. On the current page, click Add Route. In the displayed dialog box, set VPC to

vpc-373896-1 and Destination to 172.18.1.0/24 and add a route for the
destination VPC and the container CIDR block of the cluster. For details, see
Figure 10-59.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 392

Figure 10-59 Adding a route to the container CIDR block

4. Log in to the pod and enter the following code on the CloudShell page of the
pod again, where 172.16.0.167 indicates the IP address of the RDS for MySQL
DB instance to be accessed: (For details about how to log in to a container,
see Logging In to a Container.)
ping 172.16.0.167

NO TE

If the access fails, check whether the traffic from the cluster node subnet and
container CIDR block is allowed in the inbound rules of the DB instance security group.
If it is not allowed, you need to add a security group rule and allow the corresponding
traffic. For details, see Adding a Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.

i. Ensure that the pod can access the Internet. For details, see
Accessing the Internet from a Pod.

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 393

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

apt-get update
apt-get install iputils-ping

iii. Access the RDS for MySQL DB instance again.
ping 172.16.0.167

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

Accessing an RDS for MySQL DB instance from a pod in a CCE Turbo cluster that
uses the Cloud Native 2.0 network model

1. Create a VPC peering connection between the cluster VPC and the destination
VPC.

a. Switch to the console, click in the upper left corner, and choose
Networking > Virtual Private Cloud in the expanded list.

b. In the navigation pane, choose VPC Peering Connections. In the upper
right corner of the displayed page, click Create VPC Peering Connection.

c. Configure parameters following instructions. For details about some of
the parameters, see Table 10-25.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 394

Figure 10-60 Creating a VPC peering connection

Table 10-25 Parameters for creating a VPC peering connection

Parameter Description Example

VPC Peering
Connection
Name

Mandatory.
Enter a name for the VPC peering
connection.
The name can contain a maximum of 64
characters, including letters, digits,
hyphens (-), and underscores (_).

peering-
b34b

Local VPC Mandatory.
Local-end VPC of the peering connection.
You can choose one from the drop-down
list.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 395

Parameter Description Example

Local VPC
CIDR Block

CIDR block of the selected local-end VPC. 172.16.0.0/1
2

Account Mandatory.
● My account: The local and peer VPCs

are from the same account.
● Another account: The local and peer

VPCs are from different accounts.

My account

Peer Project The system fills in the corresponding
project by default because Account is set
to My account.
For example, vpc-demo1 and vpc-demo2
are both under account A in region A.
Then, the system fills in the project of
account A in region A by default.

None

Peer VPC This parameter is mandatory if Account
is set to My account.
VPC at the other end of the peering
connection. You can choose one from the
drop-down list.

vpc-demo1

Peer VPC
CIDR Block

CIDR block of the selected peer VPC.
NOTICE

If the local and peer VPCs have overlapping
CIDR blocks, the VPC peering connection may
not take effect.

192.168.0.0/
18 and
172.1.0.0/24

d. After configuring the parameters, click Create Now.

2. In the displayed VPC Peering Connection Created dialog box, click Add Now
and add a route for the container subnet and destination subnet. In the Add
Route dialog box, configure the parameters following instructions. For details
about the parameters, see Table 10-26.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 396

Figure 10-61 Adding a route to the container CIDR block

Table 10-26 Parameters for adding a route for the container subnet and
destination subnet

Parameter Description Example

VPC Select a VPC that is connected by the VPC
peering connection.

vpc-373896-
1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 397

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-d43b
(custom
route table)
NOTICE

The custom
route table
must be
associated
with the
subnet
connected by
the VPC
peering
connection.

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

192.168.60.0/
28

Add a route
for the other
VPC

If you select this option, you can also add a
route for the other VPC connected by the
VPC peering connection.
To allow VPCs connected through VPC
peering to communicate, you must include
forward and return routes in the VPCs' route
tables.

Selected

VPC By default, the system selects the other VPC
connected by the VPC peering connection.
You do not need to specify this parameter.

vpc-demo1

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 398

Parameter Description Example

Route Table Select the route table of the VPC. The route
will be added to this route table.
Each VPC comes with a default route table
that manages the flow of outgoing traffic
from the subnets in the VPC. In addition to
the default route table, you can create a
custom route table and associate it with the
subnets in the VPC. Then, the custom route
table controls outbound traffic of the
subnets.
● If there is only the default route table in

the drop-down list, select the default
route table.

● If there are both default and custom
route tables in drop-down list, select the
route table associated with the subnet
connected by the VPC peering
connection.

rtb-vpc-
demo1
(default
route table)

Destination IP address in the VPC at the other end of
the VPC peering connection. The value can
be a VPC CIDR block, subnet CIDR block, or
ECS IP address.

172.16.0.0/24

3. Log in to the pod and enter the following code on the CloudShell page of the

pod again, where 172.16.0.167 indicates the IP address of the RDS for MySQL
DB instance to be accessed: (For details about how to log in to a container,
see Logging In to a Container.)
ping 172.16.0.167

NO TE

If the access fails, check whether the traffic from the cluster container subnet is
allowed in the inbound rules of the DB instance security group. If it is not allowed, you
need to add a security group rule and allow the corresponding traffic. For details, see
Adding a Security Group Rule.

– If a ping command is available and information similar to the following is
displayed, cross-VPC access from the pod is successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

– If no ping command is available, add it.
ping: command not found

The following uses the Nginx:latest container as an example to describe
how to add a ping command. If the ping command is already available,
skip this step.

i. Ensure that the pod can access the Internet. For details, see
Accessing the Internet from a Pod.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 399

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_00356.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html

ii. Update the local software package index and install the iputils-ping
software package that provides the ping command.
apt-get update
apt-get install iputils-ping

iii. Access the RDS for MySQL DB instance again.
ping 172.16.0.167

If information similar to the following is displayed, the ping
command has been added and the cross-VPC access from the pod is
successful:
PING 172.16.0.167 (172.16.0.167) 56(84) bytes of data.
64 bytes from 172.16.0.167: icmp_seq=1 ttl=63 time=0.516 ms
64 bytes from 172.16.0.167: icmp_seq=2 ttl=63 time=0.418 ms
64 bytes from 172.16.0.167: icmp_seq=3 ttl=63 time=0.376 ms
--- 172.16.0.167 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1001ms

Troubleshooting a Pod Access Failure
If a pod cannot access the network, rectify the fault by referring to Table 10-27. If
the fault persists, submit a service ticket to contact Huawei Cloud customer
service.

NO TE

The CIDR blocks used for pod access depend on the cluster network model. For details, see
Table 10-13. The container CIDR blocks mentioned in the following section are specific to a
cluster that uses the VPC network model.

Table 10-27 Troubleshooting methods

Check Item Possible Fault Solution

Security
group rules of
the accessed
service

One of the following issues may be
the cause of the failure:
● The security group's inbound rules

prevent access to the node CIDR
block or container CIDR block.

● The security group's inbound rules
permit access to the node CIDR
block and container CIDR block, but
the protocol is incorrectly
configured.
NOTICE

Run the ping command and use ICMP
to test network connectivity. Before
doing so, enable the ICMP port in the
security group rule.

● For possible cause
1, add a security
group rule. For
details, see Adding
a Security Group
Rule.

● For possible cause
2, change the
protocol port in the
security group
rules. For details,
see Modifying a
Security Group
Rule.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 400

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-3&locale=en-us#/ticketindex/serviceTickets
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_SecurityGroup_0005.html

Check Item Possible Fault Solution

VPC peering
connection

The CIDR blocks of the local and peer
VPCs are overlapping.

There are two possible
causes for this issue.
For details, see
Overlapping CIDR
Blocks of Local and
Peer VPCs.
● If the subnet where

the node CIDR
block resides does
not overlap with
the subnet where
the accessed
service resides, you
can create a VPC
peering connection
that points to the
subnet.

● If the subnet where
the node CIDR
block resides
overlaps with the
subnet where the
accessed service
resides, you need
to replan the
network.

Route One of the following issues may be
the cause of the failure:
● The custom route table used to add

routes for the two VPCs is not
associated with the destination
subnet. (The cluster VPC route table
must be associated with the node
subnet, and the route table of the
accessed service must be associated
with the subnet where the accessed
service is located.)

● There is no route between the
accessed service subnet and the
container CIDR block.

● For possible cause
1, locate the target
route table, click
Associate Subnet,
and select the
correct subnet.

● For problem 2, add
a route for the
destination service
subnet and the
container CIDR
block.

Trustlist The trustlist for the accessed service
does not have the node CIDR block
and container CIDR block configured.

Add the container and
node CIDR blocks to
the trustlist. Find
more information in
the help document for
the relevant service.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 401

https://support.huaweicloud.com/intl/en-us/vpc_faq/vpc_faq_0069.html#section2
https://support.huaweicloud.com/intl/en-us/vpc_faq/vpc_faq_0069.html#section2
https://support.huaweicloud.com/intl/en-us/vpc_faq/vpc_faq_0069.html#section2

Check Item Possible Fault Solution

Domain name
resolution

When accessing an external domain
name, the pod uses its cluster's
domain name resolution to resolve the
destination address and accesses the
address based on the pod's network
policy. However, sometimes the
domain name cannot be resolved,
resulting in errors. The most common
errors are listed below:
● Name or service not known
● Temporary failure in name

resolution
● Unable to resolve hostname
● DNS resolution failed
● Could not resolve MYHOST

(nodename nor servname known),
where MYHOST indicates the
domain name that cannot be
resolved

Locate the cause of
the DNS exception.
For details, see DNS
Overview for
troubleshooting.

Network
policy
(applicable
only to tunnel
networks)

If you have configured a network
policy for both your tunnel network
cluster and the namespace where the
pod is located, the network policy may
prevent the pod from accessing the
destination address.

If so, modify the
network policy. For
details, see
Configuring Network
Policies to Restrict
Pod Access.

10.11 Deploying Nginx Ingress Controllers Using a
Chart

10.11.1 Deploying NGINX Ingress Controller in Custom Mode

Background
Nginx Ingress Controller is a popular open source ingress controller in the
industry and is widely used. Large-scale clusters require multiple ingress
controllers to distinguish different traffic. For example, if some services in a cluster
need to be accessed through a public network ingress, but some internal services
cannot be accessed through a public network and can only be accessed by other
services in the same VPC, you can deploy two independent Nginx Ingress
Controllers and bind two different load balancers.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 402

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0360.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0360.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0059.html
https://kubernetes.github.io/ingress-nginx/

Figure 10-62 Application scenario of multiple Nginx ingresses

Solution
You can use either of the following solutions to deploy multiple NGINX ingress
controllers in the same cluster.

● (Recommended) Install the NGINX Ingress Controller add-on and deploy
multiple instances in the same cluster with just a few clicks. For details, see
Nginx Ingress Controller.
For clusters 1.23, the add-on of 2.2.52 or later must be installed. For clusters
1.23 or later, the add-on of 2.5.4 or later must be installed.

● Install the open source Helm package. The parameters to be configured in
this solution are complex. You need to configure the ingress-class parameter
(default value: nginx) to declare the listening ranges of different NGINX
ingress controllers. In this way, when creating an ingress, you can select
different NGINX ingress controllers to distinguish traffic.

Prerequisites
● Public images may need to be pulled during the installation. Therefore, bind

an EIP to the node.

Constraints
● If multiple Nginx Ingress Controllers are deployed, each Controller needs to

interconnect with a load balancer. Ensure that the load balancer has at least
two listeners and ports 80 and 443 are not occupied by listeners. If dedicated
load balancers are used, specify the network type.

● When the nginx-ingress template and image provided by the community are
used, CCE does not provide additional maintenance for service loss caused by
community software defects. Exercise caution when serving commercial
purposes.

Deploying an Nginx Ingress Controller
You can perform the following steps to deploy another NGINX Ingress Controller
in the cluster.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 403

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0034.html#section5

Step 1 Obtain a chart.

Go to the chart page, select a proper version, and download the Helm chart
in .tgz format. This section uses the chart of version 4.4.2 as an example. This
chart applies to CCE clusters of v1.21 or later. The configuration items in the chart
may vary according to the version. The configuration in this section takes effect
only for the chart of 4.4.2 version.

Step 2 Upload the chart.

1. Log in to the CCE console and click the cluster name to access the cluster
console. In the navigation pane, choose App Templates and click Upload
Chart in the upper right corner.

2. Click Select File, select the chart to be uploaded, and click Upload.

Step 3 Customize the value.yaml file.

You can create a value.yaml configuration file on the local PC to configure
workload installation parameters. During workload installation, you only need to
import this configuration file for customized installation. Other unspecified
parameters will use the default settings.

The configuration content is as follows:
controller:
 image:
 repository: registry.k8s.io/ingress-nginx/controller
 registry: ""
 image: ""
 tag: "v1.5.1" # Controller version
 digest: ""
 ingressClassResource:
 name: ccedemo # The name of each Ingress Controller in the same cluster must be unique and
cannot be nginx or cce.
 controllerValue: "k8s.io/ingress-nginx-demo" # The listening identifier of each Ingress Controller in the
same cluster must be unique and cannot be set to k8s.io/ingress-nginx.
 ingressClass: ccedemo # The name of each Ingress Controller in the same cluster must be unique and
cannot be nginx or cce.
 service:
 annotations:
 kubernetes.io/elb.id: 5083f225-9bf8-48fa-9c8b-67bd9693c4c0 #ELB ID
 kubernetes.io/elb.class: performance # This annotation is required only for dedicated load balancers.
 config:
 keep-alive-requests: 100
 extraVolumeMounts: # Mount the /etc/localtime file on the node to synchronize the time zone.
 - name: localtime
 mountPath: /etc/localtime
 readOnly: true
 extraVolumes:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 404

https://github.com/kubernetes/ingress-nginx/releases
https://github.com/kubernetes/ingress-nginx/releases/tag/helm-chart-4.4.2
https://github.com/kubernetes/ingress-nginx/releases/tag/helm-chart-4.4.2

 - name: localtime
 type: Hostpath
 hostPath:
 path: /etc/localtime
 admissionWebhooks: # Disable webhook authentication.
 enabled: false
 patch:
 enabled: false
 resources: # Set the controller's resource limit, which can be customized.
 requests:
 cpu: 200m
 memory: 200Mi
defaultBackend: # Set defaultBackend.
 enabled: true
 image:
 repository: registry.k8s.io/defaultbackend-amd64
 registry: ""
 image: ""
 tag: "1.5"
 digest: ""

For details about the preceding parameters, see Table 10-28.

Step 4 Create a release.

1. Log in to the CCE console and click the cluster name to access the cluster
console. In the navigation pane, choose App Templates.

2. In the list of uploaded charts, click Install.
3. Set Release Name, Namespace, and Version.
4. Click Select File next to Configuration File, select the YAML file created

locally, and click Install.
5. On the Releases tab page, you can view the installation status of the release.

----End

Performing Verification
Deploy a workload and configure the newly deployed Nginx Ingress Controller to
provide network access for the workload.

Step 1 Create an Nginx workload.

1. Log in to the CCE console, click the created cluster, choose Workloads in the
navigation pane, and click Create Workload in the upper right corner.

2. Enter the following information and click OK.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 strategy:
 type: RollingUpdate
 template:
 metadata:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 405

 labels:
 app: nginx
 spec:
 containers:
 - image: nginx # If an image from an open-source image registry is used, enter the image
name. If you use an image in My Images, obtain the image path from SWR.
 imagePullPolicy: Always
 name: nginx
 imagePullSecrets:
 - name: default-secret

apiVersion: v1
kind: Service
metadata:
 labels:
 app: nginx
 name: nginx
spec:
 ports:
 - name: service0
 port: 80 # Port for accessing a Service.
 protocol: TCP # Protocol used for accessing a Service. The value can be TCP or UDP.
 targetPort: 80 # Port used by the service to access the target container. In this example, the
Nginx image uses port 80 by default.
 selector: # Label selector. A Service selects a pod based on the label and forwards the
requests for accessing the Service to the pod.
 app: nginx
 type: ClusterIP # Type of a Service. ClusterIP indicates that a Service is only reachable from
within the cluster.

Step 2 Create an ingress and use the newly deployed Nginx Ingress Controller to provide
network access.

1. In the navigation pane, choose Services & Ingresses. Click the Ingresses tab
and click Create from YAML in the upper right corner.

NO TE

When interconnecting with Nginx Ingress Controller that is not deployed using an add-
on, you can create an ingress only through YAML.

2. Enter the following information and click OK.
For clusters of v1.23 or later:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-test
 namespace: default
spec:
 ingressClassName: ccedemo # Enter the ingressClass of the newly created Nginx Ingress Controller.
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /
 pathType: ImplementationSpecific # The matching depends on IngressClass.
 backend:
 service:
 name: nginx # Replace it with the name of your target Service.
 port:
 number: 80 # Replace it with the port of your target Service.
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH

For clusters earlier than v1.23:
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 406

 name: tomcat-t1
 namespace: test
 annotations:
 kubernetes.io/ingress.class: ccedemo # Enter the ingressClass of the newly created Nginx Ingress
Controller.
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /
 pathType: ImplementationSpecific
 backend:
 serviceName: nginx # Replace it with the name of your target Service.
 servicePort: 80 # Replace it with the port of your target Service.
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH

Step 3 Log in to the cluster node and access the application through the Controller in the
nginx-ingress add-on of the cluster and the newly deployed Nginx Ingress
Controller service, respectively.
● Use the new Nginx Ingress Controller service to access the application (the

Nginx page is expected to be displayed). 192.168.114.60 is the ELB address of
the new Nginx Ingress Controller service.
curl -H "Host: foo.bar.com" http://192.168.114.60

● Use the Controller service in the nginx-ingress add-on (404 is expected to be
returned). 192.168.9.226 is the ELB address of the nginx-ingress add-on.
curl -H "Host: foo.bar.com" http://192.168.9.226

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 407

Parameter Description

Table 10-28 nginx-ingress parameters

Parameter Description

controller.image.reposito
ry

ingress-nginx image address. It is recommended that
this parameter be set to the same as the nginx-
ingress add-on image provided by CCE. You can also
customize the parameter.
● nginx-ingress add-on image: You can view its

image path in the YAML file of the installed add-
on.

● Custom: The custom path must ensure that the
image can be pulled.

controller.image.registry Domain name of the image repository. This
parameter must be set together with
controller.image.image.
If controller.image.repository has been set, you do
not need to set this parameter. You are advised to
leave controller.image.registry and
controller.image.image empty.

controller.image.image Image name. This parameter must be set together
with controller.image.registry.
If controller.image.repository has been set, you do
not need to set this parameter. You are advised to
leave controller.image.registry and
controller.image.image empty.

controller.image.tag ingress-nginx image version. It is recommended that
this parameter be set to the same as the nginx-
ingress add-on image provided by CCE. You can also
customize the image.
The image version of the nginx-ingress add-on can
be viewed in the YAML file of the installed add-on
and needs to be replaced based on the add-on
version.

controller.ingressClass Specifies the name of the IngressClass of the Ingress
Controller.
NOTE

The name of each Ingress Controller in the same cluster
must be unique and cannot be set to nginx or cce. nginx is
the default listening identifier of Nginx Ingress Controller in
the cluster, and cce is the configuration of ELB Ingress
Controller.
Example: ccedemo

controller.image.digest You are advised to leave this parameter empty. If this
parameter is specified, pulling the nginx- ingress
add-on image provided by CCE may fail.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 408

Parameter Description

controller.ingressClassRe
source.name

The parameter value must be the same as that of
ingressClass.
Example: ccedemo

controller.ingressClassRe
source.controllerValue

The listening identifier of each Ingress Controller in
the same cluster must be unique and cannot be set
to k8s.io/ingress-nginx, which is the default
listening identifier of Nginx Ingress Controller.
Example: k8s.io/ingress-nginx-demo

controller.config Nginx configuration parameter. For details, see
Community Documents. Parameter settings out of
the range do not take effect.
You are advised to add the following configurations:
"keep-alive-requests": "100"

controller.extraInitContai
ners

init container, which is executed before the main
container is started and can be used to initialize pod
parameters.
For details about parameter configuration examples,
see Parameter Optimization in High-Concurrency
Scenarios.

controller.admissionWeb
hooks.enabled

Specifies whether to enable admissionWebhooks to
verify the validity of ingress objects. This prevents
ingress-controller from continuously reloading
resources due to incorrect configurations, which may
cause service interruption.
Set this parameter to false, indicating that the
function is disabled. To enable this function, see the
example in admissionWebhook Configuration.

controller.admissionWeb
hooks.patch.enabled

Specifies whether to enable admissionWebhooks. Set
this parameter to false.

controller.service.annotat
ions

A key-value pair. The ELB ID needs to be added, as
shown in the following:
kubernetes.io/elb.id:
5083f225-9bf8-48fa-9c8b-67bd9693c4c0
For dedicated load balancers, add elb.class as
follows:
kubernetes.io/elb.class: performance

controller.resources.requ
ests.cpu

Specifies the quantity of CPU resources requested by
the Nginx controller. This parameter can be
customized.

controller.resources.requ
ests.memory

Specifies the quantity of memory resources
requested by the Nginx controller. This parameter
can be customized.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 409

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/

Parameter Description

defaultBackend.image.re
pository

default-backend image path. It is recommended that
this parameter be set to the same as the nginx-
ingress add-on image provided by CCE. You can also
customize the parameter.
● nginx-ingress add-on image: You can view its

image path in the YAML file of the installed add-
on.

● Custom: The custom path must ensure that the
image can be pulled.

defaultBackend.image.ta
g

default-backend image version. It is recommended
that this parameter be set to the same as the nginx-
ingress add-on image provided by CCE. You can also
customize the image.

For details about more parameters, see ingress-nginx.

10.11.2 Advanced Configuration of Nginx Ingress Controller

Parameter Optimization in High-Concurrency Scenarios
In high-concurrency scenarios, you can configure parameters for optimization in
either of the following ways:

1. Use ConfigMap to optimize the overall parameters of Nginx Ingress Controller.
2. Use InitContainers to optimize the kernel parameters of Nginx Ingress

Controller.

The optimized value.yaml configuration file is as follows:

controller:
 image:
 repository: registry.k8s.io/ingress-nginx/controller
 registry: ""
 image: ""
 tag: "v1.5.1" # Controller version
 digest: ""
 ingressClassResource:
 name: ccedemo # The name of each Ingress Controller in the same cluster must be unique and
cannot be nginx or cce.
 controllerValue: "k8s.io/ingress-nginx-demo" # The listening identifier of each Ingress Controller in the
same cluster must be unique and cannot be set to k8s.io/ingress-nginx.
 ingressClass: ccedemo # The name of each Ingress Controller in the same cluster must be unique and
cannot be nginx or cce.
 service:
 annotations:
 kubernetes.io/elb.id: 5083f225-9bf8-48fa-9c8b-67bd9693c4c0 #ELB ID
 kubernetes.io/elb.class: performance # This annotation is required only for dedicated load balancers.
Nginx parameter optimization
 config:
 keep-alive-requests: 10000
 upstream-keepalive-connections: 200
 max-worker-connections: 65536
Kernel parameter optimization
 extraInitContainers:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 410

https://artifacthub.io/packages/helm/ingress-nginx/ingress-nginx#values

 - name: init-myservice
 image: busybox
 securityContext:
 privileged: true
 command: ['sh', '-c', 'sysctl -w net.core.somaxconn=65535;sysctl -w
net.ipv4.ip_local_port_range="1024 65535"']
 extraVolumeMounts: # Mount the /etc/localtime file on the node to synchronize the time zone.
 - name: localtime
 mountPath: /etc/localtime
 readOnly: true
 extraVolumes:
 - name: localtime
 type: Hostpath
 hostPath:
 path: /etc/localtime
 admissionWebhooks: # Disable webhook authentication.
 enabled: false
 patch:
 enabled: false
 resources: # Set the controller's resource limit, which can be customized.
 requests:
 cpu: 200m
 memory: 200Mi
defaultBackend: # Set defaultBackend.
 enabled: true
 image:
 repository: registry.k8s.io/defaultbackend-amd64
 registry: ""
 image: ""
 tag: "1.5"
 digest: ""

admissionWebhook Configuration
Nginx Ingress Controller supports admissionWebhook configuration. You can
configure the controller.admissionWebhook parameter to verify the validity of
ingress objects. This prevents ingress-controller from continuously reloading
resources due to incorrect configuration, which may cause service interruption.

NO TE

● When the admissionWebhook feature is used, webhook-related configurations must be
enabled on the API server, including MutatingAdmissionWebhook and
ValidatingAdmissionWebhook.
The feature switch is --admission-
control=MutatingAdmissionWebhook,ValidatingAdmissionWebhook.
If it is not enabled, submit a service ticket to enable it.

● After admissionWebhook is enabled, if you need to uninstall and reinstall Nginx Ingress
Controller, residual secrets exist and need to be manually cleared.

The value.yaml configuration file for enabling admissionWebhook is as follows:

controller:
 image:
 repository: registry.k8s.io/ingress-nginx/controller
 registry: ""
 image: ""
 tag: "v1.5.1" # Controller version
 digest: ""
 ingressClassResource:
 name: ccedemo # The name of each Ingress Controller in the same cluster must be unique and
cannot be nginx or cce.
 controllerValue: "k8s.io/ingress-nginx-demo" # The listening identifier of each Ingress Controller in the
same cluster must be unique and cannot be set to k8s.io/ingress-nginx.
 ingressClass: ccedemo # The name of each Ingress Controller in the same cluster must be unique and

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 411

cannot be nginx or cce.
 service:
 annotations:
 kubernetes.io/elb.id: 5083f225-9bf8-48fa-9c8b-67bd9693c4c0 #ELB ID
 kubernetes.io/elb.class: performance # This annotation is required only for dedicated load balancers.
 config:
 keep-alive-requests: 100
 extraVolumeMounts: # Mount the /etc/localtime file on the node to synchronize the time zone.
 - name: localtime
 mountPath: /etc/localtime
 readOnly: true
 extraVolumes:
 - name: localtime
 type: Hostpath
 hostPath:
 path: /etc/localtime
 admissionWebhooks:
 annotations: {}
 enabled: true
 extraEnvs: []
 failurePolicy: Fail
 port: 8443
 certificate: "/usr/local/certificates/cert"
 key: "/usr/local/certificates/key"
 namespaceSelector: {}
 objectSelector: {}
 labels: {}
 existingPsp: ""
 networkPolicyEnabled: false
 service:
 annotations: {}
 externalIPs: []
 loadBalancerSourceRanges: []
 servicePort: 443
 type: ClusterIP
 createSecretJob:
 resources: #Annotation{}
 limits:
 cpu: 20m
 memory: 40Mi
 requests:
 cpu: 10m
 memory: 20Mi
 patchWebhookJob:
 resources: {}
 patch:
 enabled: true
 image:
 registry: registry.k8s.io #registry.k8s.io is the image repository of the webhook official website.
Replace it with the address of the repository where the image is located.
 image: ingress-nginx/kube-webhook-certgen # webhook image
 tag: v1.1.1
 digest: ""
 pullPolicy: IfNotPresent
 priorityClassName: ""
 podAnnotations: {}
 nodeSelector:
 kubernetes.io/os: linux
 tolerations: []
 labels: {}
 securityContext:
 runAsNonRoot: true
 runAsUser: 2000
 fsGroup: 2000
 resources: # Set the controller's resource limit, which can be customized.
 requests:
 cpu: 200m
 memory: 200Mi
defaultBackend: # Set defaultBackend.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 412

 enabled: true
 image:
 repository: registry.k8s.io/defaultbackend-amd64
 registry: ""
 image: ""
 tag: "1.5"
 digest: ""

Check whether admissionWebhook is verified when incorrect annotations are
configured for the ingress.

For example, configure the following incorrect annotations for the ingress:

...
 annotations:
 nginx.ingress.kubernetes.io/auth-tls-pass-certificate-to-upstream: "false"
 nginx.ingress.kubernetes.io/auth-tls-verify-client: optional
 nginx.ingress.kubernetes.io/auth-tls-verify-depth: "1"
...

When the ingress service is created, the following interception information is
displayed:

10.12 CoreDNS Configuration Optimization

10.12.1 CoreDNS Optimization Overview

Application Scenarios
DNS is one of the important basic services in Kubernetes. When the container DNS
policy is not properly configured and the cluster scale is large, DNS resolution may
time out or fail. In extreme cases, a large number of services in the cluster may
fail to be resolved. This section describes the best practices of CoreDNS
configuration optimization in Kubernetes clusters to help you avoid such problems.

Solution
CoreDNS configuration optimization includes clients and servers.

On the client, you can optimize domain name resolution requests to reduce
resolution latency, and use proper container images and NodeLocal DNSCache to
reduce resolution exceptions.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 413

● Optimizing Domain Name Resolution Requests

● Selecting a Proper Image

● Avoiding Occasional DNS Resolution Timeout Caused by IPVS Defects

● Using NodeLocal DNSCache

● Upgrading the CoreDNS in the Cluster Timely

● Adjusting the DNS Configuration of the VPC and VM

On the server, you can adjust the CoreDNS deployment status or CoreDNS
configuration to improve the availability and throughput of CoreDNS in the
cluster.

● Monitoring the coredns Add-on

● Adjusting the CoreDNS Deployment Status

● Configuring CoreDNS

For more information about CoreDNS configurations, see https://coredns.io/.

CoreDNS open source community: https://github.com/coredns/coredns

Prerequisites
● You have created a CCE cluster. For details about how to create a cluster, see

Buying a CCE Standard/Turbo Cluster.

● You can access the cluster using kubectl. For details, see Connecting to a
Cluster Using kubectl.

● The CoreDNS add-on is installed in the cluster. The latest version of CoreDNS
is recommended. For details, see CoreDNS.

10.12.2 Client

10.12.2.1 Optimizing Domain Name Resolution Requests

DNS resolution is frequently used in Kubernetes clusters. Based on the
characteristics of DNS resolution in Kubernetes, you can optimize domain name
resolution requests in the following ways.

Using a Connection Pool

When a containerized application needs to frequently request another service, you
are advised to use a connection pool. The connection pool can cache the link
information of the upstream service to avoid the overhead of DNS resolution and
TCP link reestablishment for each access.

Optimizing the resolve.conf File in the Container

The ndots and search parameters in the resolve.conf file determine the domain
name resolution efficiency. For details about the two parameters, see DNS
Configuration.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 414

https://coredns.io/
https://github.com/coredns/coredns
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0129.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0365.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0365.html

Optimizing the Domain Name Configuration

When a container needs to access a domain name, configure the domain name
based on the following rules to improve the domain name resolution efficiency.

1. When a pod accesses a Service in the same namespace, use <service-name>,
which indicates the Service name.

2. When a pod accesses a Service across namespaces, use <service-
name>.<namespace-name>. namespace-name indicates the namespace
where the Service is located.

3. When a pod accesses an external domain name of a cluster, it uses the FQDN
domain name. This type of domain name is specified by adding a period (.) at
the end of a common domain name to avoid multiple invalid search attempts
caused by search domain combination. For example, to access
www.huaweicoud.com, use the FQDN domain name
www.huaweicoud.com..

Using Local Cache

If the cluster specifications are large and the number of DNS resolution requests is
large, you can cache the DNS resolution result on the node. You are advised to use
NodeLocal DNSCache. For details, see Using NodeLocal DNSCache to Improve
DNS Performance.

10.12.2.2 Selecting a Proper Image

The musl libc library of the Alpine container image differs from the standard glibc
library in the following aspects:

● Alpine 3.3 and earlier versions do not support the search parameter. As a
result, search domains cannot be specified for discovering Services.

● Multiple DNS servers configured in /etc/resolve.conf are concurrently
requested. As a result, NodeLocal DNSCache cannot improve the DNS
performance.

● When the same Socket is used to request A and AAAA records concurrently,
the Conntrack source port conflict is triggered in the kernel of an earlier
version. As a result, packet loss occurs.

● If the domain name cannot be resolved when Alpine is used as the base
container image, update the base container image for testing.

For details about the functional differences from glibc, see Functional differences
from glibc.

10.12.2.3 Avoiding Occasional DNS Resolution Timeout Caused by IPVS
Defects

Description

When kube-proxy uses IPVS load balancing, you may encounter DNS resolution
timeout occasionally during CoreDNS scale-in or restart.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 415

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html
https://wiki.musl-libc.org/functional-differences-from-glibc.html
https://wiki.musl-libc.org/functional-differences-from-glibc.html

This problem is caused by a Linux kernel defect. For details, see https://
github.com/torvalds/linux/commit/
35dfb013149f74c2be1ff9c78f14e6a3cd1539d1.

Solution
You can use NodeLocal DNSCache to minimize the impact of IPVS defects. For
details, see Using NodeLocal DNSCache to Improve DNS Performance.

10.12.2.4 Using NodeLocal DNSCache

Challenges
When the number of DNS requests in a cluster increases, the load of CoreDNS
increases and the following issues may occur:

● Increased delay: CoreDNS needs to process more requests, which may slow
down the DNS query and affect service performance.

● Increased resource usage: To ensure DNS performance, CoreDNS requires
higher specifications.

Solution
NodeLocal DNSCache can improve the stability and performance of service
discovery.

For details about NodeLocal DNSCache and how to deploy it in a cluster, see
Using NodeLocal DNSCache to Improve DNS Performance.

10.12.2.5 Upgrading the CoreDNS in the Cluster Timely
CoreDNS provides simple functions and is compatible with different Kubernetes
versions. CCE periodically synchronizes bugs from the community and upgrades
the coredns add-on. You are advised to periodically upgrade the CoreDNS. The CCE
add-on management center supports the CoreDNS installation and upgrade. You
can define the CoreDNS version in the cluster. If the version can be upgraded,
upgrade the CoreDNS component in the cluster as soon as possible.

You can upgrade CoreDNS in a cluster by performing the following procedure:

Step 1 Log in to the CCE console and click the name of the target cluster to access the
cluster console. In the navigation pane, choose Add-ons.

Step 2 Locate the CoreDNS add-on and click Upgrade.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 416

https://github.com/torvalds/linux/commit/35dfb013149f74c2be1ff9c78f14e6a3cd1539d1
https://github.com/torvalds/linux/commit/35dfb013149f74c2be1ff9c78f14e6a3cd1539d1
https://github.com/torvalds/linux/commit/35dfb013149f74c2be1ff9c78f14e6a3cd1539d1
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0362.html

Step 3 Set parameters as prompted. For details, see coredns (System Resource Add-on,
Mandatory).

----End

10.12.2.6 Adjusting the DNS Configuration of the VPC and VM
When the coredns add-on is started, it obtains the DNS configuration in the
resolve.conf file from the deployed instance by default and uses the configuration
as the upstream resolution server address. Before the coredns add-on is restarted,
the resolve.conf configuration on the node is not reloaded. Suggestions:

● Ensure that the resolve.conf configuration of each node in the cluster is the
same. In this way, the coredns add-on can schedule requests to any node in
the cluster.

● When modifying the resolve.conf file, if the node has a coredns add-on,
restart the coredns add-on timely to ensure status consistency.

10.12.3 Server

10.12.3.1 Monitoring the coredns Add-on
● CoreDNS exposes health metrics such as resolution results through the

standard Prometheus API to detect exceptions on the CoreDNS server or even
upstream DNS server.

● Port for obtaining coredns metrics. The default zone listening IP address is
{$POD_IP}:9153. Retain the default value. Otherwise, Prometheus cannot
collect the metrics.

● If you use on-premises Prometheus to monitor Kubernetes clusters, you can
observe related metrics on Prometheus and configure alarms for the key
metrics. For details, see prometheus.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 417

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0129.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0129.html
https://coredns.io/plugins/metrics/

10.12.3.2 Adjusting the CoreDNS Deployment Status

In CCE clusters, the CoreDNS add-on is installed by default, and it can run on the
same cluster nodes as your service containers. You need to pay attention to the
following points when deploying CoreDNS:

● Properly Changing the Number of CoreDNS Replicas
● Properly Deploying the CoreDNS Pods
● Deploying CoreDNS Separately Using Custom Parameters
● Automatically Expanding the CoreDNS Capacity Based on the HPA

Properly Changing the Number of CoreDNS Replicas

You are advised to set the number of CoreDNS replicas to at least 2 in any case
and keep the number of replicas within a proper range to support the resolution
of the entire cluster. The default number of pods for installing the add-on in a CCE
cluster is 2.

● Modifying the number of CoreDNS replicas, CPUs, and memory size will
change CoreDNS' parsing capability. Therefore, evaluate the impact before the
operation.

● By default, podAntiAffinity (pod anti-affinity) is configured for the add-on. If
a node already has a CoreDNS pod, no new pod can be added. That is, only
one CoreDNS pod can run on a node. If there are more configured CoreDNS
replicas than cluster nodes, the excess pods cannot be scheduled. Therefore,
keep the number of replicas less than or equal to the number of nodes.

Properly Deploying the CoreDNS Pods
● By default, podAntiAffinity (pod anti-affinity) is configured for CoreDNS, so

CoreDNS pods are forcibly deployed on different nodes in a cluster. It is
recommended that you deploy CoreDNS pods on nodes in different AZs to
prevent the add-on from being interrupted by faults in a single AZ.

● The CPU and memory of the cluster node where the coredns add-on runs
must not be used up. Otherwise, the QPS and response of domain name
resolution will be affected. It is recommended that you use the custom
parameters to deploy CoreDNS separately.

Deploying CoreDNS Separately Using Custom Parameters

It is recommended that CoreDNS be deployed separately from resource-intensive
workloads to prevent CoreDNS performance deterioration or unavailability due to
service fluctuation. You can customize parameters to deploy CoreDNS on a
dedicated node.

NO TE

There should be more nodes than CoreDNS pods. You need to avoid deploying multiple
CoreDNS pods on a single node.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Nodes.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 418

Step 2 Click the Nodes tab, select the node dedicated for CoreDNS, and click Labels and
Taints above the node list.

Add the following labels:

● Key: node-role.kubernetes.io/coredns
● Value: true

Add the following taints:

● Key: node-role.kubernetes.io/coredns
● Value: true
● Effect: NoSchedule

Figure 10-63 Adding a label and a taint

Step 3 In the navigation pane, choose Add-ons, locate CoreDNS, and click Edit.

Step 4 Select Custom Policies for Node Affinity and add the preceding node label.

Add tolerations for the preceding taint.

Figure 10-64 Adding a toleration

Step 5 Click OK.

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 419

Automatically Expanding the CoreDNS Capacity Based on the HPA

HPA frequently scales down the number of the coredns add-on replicas. Therefore,
you are advised not to use HPA. If HPA is required, you can configure HPA auto
scaling policies using the CCE Advanced HPA add-on. The process is as follows:

Step 1 Log in to the CCE console and click the name of the target cluster to access the
cluster console. In the navigation pane, choose Add-ons, locate the CCE Advanced
HPA add-on on the right, and click Install.

Step 2 Configure the add-on parameters and click Install. For details about the add-on,
see CCE Advanced HPA.

Step 3 In the navigation pane, choose Workloads, select the kube-system namespace,
locate the row containing the CoreDNS pod, and click Auto Scaling in the
Operation column.

In the HPA Policies area, you can customize HPA policies based on metrics such as
CPU usage and memory usage to automatically scale out the CoreDNS pods.

Figure 10-65 Creating an auto scaling policy

Step 4 Click Create. If the latest status is Started, the policy has taken effect.

----End

10.12.3.3 Configuring CoreDNS

On the console, the CoreDNS add-on can only be configured with the preset
specifications, which can satisfy most of the service requirements. In some
scenarios where there are requirements on the CoreDNS resource usage, you may
need to customize the add-on specifications.

CoreDNS official document: https://coredns.io/plugins/

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 420

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0240.html
https://coredns.io/plugins/

Configuring CoreDNS Specifications

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Step 3 In the Specifications area, configure coredns specifications.

Step 4 Change the number of replicas, CPU quotas, and memory quotas as needed to
adjust the domain name resolution QPS provided by CoreDNS.

Step 5 Click OK.

----End

Properly Configuring the Stub Domain for DNS

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Step 3 Add a stub domain in the Parameters area. The format is a key-value pair. The
key is a DNS suffix domain name, and the value is a DNS IP address or a group of
DNS IP addresses, for example, consul.local -- 10.150.0.1.

Figure 10-66 Adding a stub domain

Corefile:
.:5353 {
 bind {$POD_IP}
 cache 30 {
 servfail 5s
 }
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 421

 forward . /etc/resolv.conf {
 policy random
 }
 reload
 ready {$POD_IP}:8081
}
consul.local:5353 {
 bind {$POD_IP}
 errors
 cache 30
 forward . 10.150.0.1
}

Step 4 Click OK.

Step 5 Choose ConfigMaps and Secrets in the navigation pane, select the kube-system
namespace, and view the ConfigMap data of coredns to check whether the
update is successful.

----End

Properly Configuring the Host
To specify hosts for a specific domain name, you can use the hosts add-on. An
example is as follows:

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Step 3 Edit extended parameters in Parameters and add the following content to the
plugins field:
{
 "configBlock": "192.168.1.1 www.example.com\nfallthrough",
 "name": "hosts"
}

NO TICE

The fallthrough field must be configured. fallthrough indicates that when the
domain name to be resolved cannot be found in the hosts file, the resolution task
is transferred to the next add-on of CoreDNS. If fallthrough is not specified, the
task ends and the domain name resolution stops. As a result, the domain name
resolution in the cluster fails.
For details about how to configure the hosts file, visit https://coredns.io/plugins/
hosts/.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 422

https://coredns.io/plugins/hosts/
https://coredns.io/plugins/hosts/

Figure 10-67 Modifying the CoreDNS hosts configuration

Corefile:
.:5353 {
 bind {$POD_IP}
 hosts {
 192.168.1.1 www.example.com
 fallthrough
 }
 cache 30
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153
 forward . /etc/resolv.conf {
 policy random
 }
 reload
 ready {$POD_IP}:8081
}

Step 4 Click OK.

Step 5 Choose ConfigMaps and Secrets in the navigation pane, select the kube-system
namespace, and view the ConfigMap data of coredns to check whether the
update is successful.

----End

Configuring the Default Protocol Between the forward Plug-in and the
Upstream DNS Service

Step 1 The NodeLocal DNSCache uses TCP to communicate with the CoreDNS. The
CoreDNS communicates with the upstream DNS server based on the protocol used
by the request source. By default, external domain name resolution requests from
service containers pass through NodeLocal DNSCache and CoreDNS in sequence,
and finally request the DNS server in the VPC using TCP.

Step 2 However, the cloud server does not support TCP. To use NodeLocal DNSCache,
modify the CoreDNS configuration so that UDP is preferentially used to
communicate with the upstream DNS server, preventing resolution exceptions. You
are advised to use the following method to modify the CoreDNS configuration file:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 423

The forward plug-in is used to set the upstream Nameservers DNS server. The
following parameters are included:

prefer_udp: Even if a request is received through TCP, UDP must be used first.

If you want CoreDNS to preferentially use UDP to communicate with upstream
systems, set the protocol in the forward plug-in to prefer_udp. For details about
the forward plug-in, see https://coredns.io/plugins/forward/.

1. Log in to the CCE console and click the cluster name to access the cluster
console.

2. In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.
3. Edit the advanced configuration under Parameters and modify the following

content in the plugins field:
{
 "configBlock": "prefer_udp",
 "name": "forward",
 "parameters": ". /etc/resolv.conf"
}

Corefile:
Corefile: |-
 .:5353 {
 bind {$POD_IP}
 cache 30 {
 servfail 5s
 }
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153
 forward . /etc/resolv.conf {
 prefer_udp
 }
 reload
 ready {$POD_IP}:8081
 }

----End

Configuring IPv6 Resolution Properly

If the IPv6 kernel module is not disabled on the Kubernetes cluster host machine,
the container initiates IPv4 and IPv6 resolution at the same time by default when
requesting the coredns add-on. Generally, only IPv4 addresses are used. Therefore,
if you only configure DOMAIN in IPv4 address, the coredns add-on forwards the
request to the upstream DNS server for resolution because the local configuration
cannot be found. As a result, the DNS resolution request of the container slows
down.

CoreDNS provides the template plug-in. After being configured, CoreDNS can
immediately return an empty response to all IPv6 requests to prevent the requests
from being forwarded to the upstream DNS.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 424

https://coredns.io/plugins/forward/

Step 3 Edit extended parameters in Parameters and add the following content to the
plugins field.
● AAAA indicates an IPv6 resolution request. If NXDOMAIN is returned in the

rcode control response, meaning that no resolution result is returned.

For details about the template plug-in, visit https://github.com/coredns/coredns/
tree/master/plugin/template.

{
 "configBlock": "rcode NXDOMAIN",
 "name": "template",
 "parameters": "ANY AAAA"
}

Step 4 Click OK.

Step 5 In the navigation pane, choose ConfigMaps and Secrets. In the kube-system
namespace, view the coredns configuration data to check whether the update is
successful.

Corresponding Corefile content:

.:5353 {
 bind {$POD_IP}
 cache 30
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153
 forward . /etc/resolv.conf {
 policy random
 }
 reload
 template ANY AAAA {
 rcode NXDOMAIN
 }
 ready {$POD_IP}:8081
}

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 425

https://github.com/coredns/coredns/tree/master/plugin/template
https://github.com/coredns/coredns/tree/master/plugin/template

Properly Configuring Cache Policies
If you configure CoreDNS with an upstream DNS server, you can implement a
cache policy that enables CoreDNS to use the expired local cache when it is
unable to access the upstream DNS server.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 In the navigation pane, choose Add-ons. Then, click Edit under CoreDNS.

Step 3 Edit extended parameters in Parameters and modify the cache content in the
plugins field. For details about how to configure the cache, see https://
coredns.io/plugins/cache/.
{
 "configBlock": "servfail 5s\nserve_stale 60s immediate",
 "name": "cache",
 "parameters": 30
}

Step 4 Click OK.

Step 5 In the navigation pane, choose ConfigMaps and Secrets. Select the kube-system
namespace, view the data of the ConfigMap named coredns to check whether the
update is successful.

Corresponding Corefile content:

.:5353 {
 bind {$POD_IP}
 cache 30 {
 servfail 5s
 serve_stale 60s immediate
 }
 errors
 health {$POD_IP}:8080
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 fallthrough in-addr.arpa ip6.arpa
 }
 loadbalance round_robin
 prometheus {$POD_IP}:9153

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 426

https://coredns.io/plugins/cache/
https://coredns.io/plugins/cache/

 forward . /etc/resolv.conf {
 policy random
 }
 reload
 ready {$POD_IP}:8081
}

----End

10.13 Pre-Binding Container ENI for CCE Turbo Clusters
In the Cloud Native 2.0 network model, each pod is allocated an ENI or a sub-ENI
(called container ENI). The speed of ENI creation and binding is slower than that
of pod scaling, severely affecting the container startup speed in large-scale batch
creation. Therefore, the Cloud Native Network 2.0 model provides the dynamic
pre-binding of container ENIs to accelerate pod startup while improving IP
resource utilization.

Constraints
● CCE Turbo clusters of 1.19.16-r4, 1.21.7-r0, 1.23.5-r0, 1.25.1-r0, or later

support ENI pre-binding, global configuration at the cluster level, and custom
settings at the node pool level. Custom settings of nodes out of a node pool is
not supported.

● CCE Turbo clusters of 1.19.16-r2, 1.21.5-r0, 1.23.3-r0 to 1.19.16-r4, 1.21.7-r0,
1.23.5-r0 only support two parameters, nic-minimum-target and nic-warm-
target, and do not support custom settings at the node pool level.

● Modify the dynamic pre-binding parameters using the console or API instead
of the node annotations in the background. Otherwise, the modified
annotations will be overwritten by the original values after the cluster is
upgraded.

● CCE Turbo clusters of 1.19.16-r4, 1.21.7-r0, 1.23.5-r0, 1.25.1-r0, or earlier
support high and low threshold for ENI buffers. If users have enabled this
feature, the original high and low threshold for ENI pre-binding parameters is
automatically converted to the dynamic pre-binding parameters of the
container ENIs. If you want to modify the dynamic pre-binding parameters of
the container ENIs on the console, change the original high and low threshold
to 0:0 on the cluster configuration management console.

● If the node type of a CCE Turbo node pool is BMS and the cluster version is
1.19.16-r4, 1.21.7-r0, 1.23.5-r0, or any version earlier than 1.25.1-r0, the high
and low thresholds for ENI pre-binding (0.3:0.6 by default) are used by
default. After the cluster is upgraded, the original high and low thresholds still
take effect. You are advised to convert the high and low threshold parameters
to the dynamic pre-binding parameters of container ENIs on the configuration
management console of the node pool and delete the high and low threshold
configuration to enable the latest dynamic pre-binding parameters.

● If the node type of a CCE Turbo node pool is not BMS and the cluster version
is 1.19.16-r4, 1.21.7-r0, 1.23.5-r0, or any version earlier than 1.25.1-r0, the
high and low thresholds for ENI pre-binding (0.3:0.6 by default) are used by
default. After the cluster is upgraded, the original high and low threshold still
takes effect. If you want to enable the cluster-level global configuration,
delete the annotation (node.yangtse.io/eni-warm-policy) of the node in the
background.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 427

How It Works

CCE Turbo provides four dynamic pre-binding parameters for container ENIs. You
can properly configure the parameters based on your service requirements. (The
node pool-level dynamic ENI pre-binding parameters take priority over the cluster-
level dynamic ENI pre-binding parameters.)

Table 10-29 Parameters of the dynamic ENI pre-binding policy

Parameter Defa
ult
Valu
e

Description Suggestion

Minimum
Number of
Container ENIs
Bound to a Node

10 Minimum number of container ENIs
bound to a node.
The parameter value must be a
positive integer. The value 10
indicates that there are at least 10
container ENIs bound to a node. If the
number you entered exceeds the
container ENI quota of the node, the
ENI quota will be used.

Configure
these
parameters
based on the
number of
pods.

Upper Limit of
Pre-bound
Container ENIs

0 If the number of ENIs bound to a
node exceeds the value of nic-
maximum-target, the system does
not proactively pre-bind ENIs.
If the value of this parameter is
greater than or equal to the value of
nic-minimum-target, the check on
the maximum number of the pre-
bound ENIs is enabled. Otherwise, the
check is disabled.
The parameter value must be a
positive integer. The value 0 indicates
that the check on the upper limit of
pre-bound container ENIs is disabled.
If the number you entered exceeds
the container ENI quota of the node,
the ENI quota will be used.

Configure
these
parameters
based on the
number of
pods.

Container ENIs
Dynamically Pre-
bound to a Node

2 Minimum number of pre-bound ENIs
on a node. The value must be a
number.
When the value of nic-warm-target +
the number of bound ENIs is greater
than the value of nic-maximum-
target, the system will pre-bind ENIs
based on the difference between the
value of nic-maximum-target and
the number of bound ENIs.

Set this
parameter
to the
number of
pods that
can be
scaled out
instantaneo
usly within
10 seconds.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 428

Parameter Defa
ult
Valu
e

Description Suggestion

Threshold for
Unbinding Pre-
bound Container
ENIs

2 Only when the number of idle ENIs on
a node minus the value of nic-warm-
target is greater than the threshold,
the pre-bound ENIs will be unbound
and reclaimed. The value can only be
a number.
● Setting a larger value of this

parameter slows down the
recycling of idle ENIs and
accelerates pod startup. However,
the IP address usage decreases,
especially when IP addresses are
insufficient. Therefore, exercise
caution when increasing the
value of this parameter.

● Setting a smaller value of this
parameter accelerates the recycling
of idle ENIs and improves the IP
address usage. However, when a
large number of pods increase
instantaneously, the startup of
some pods slows down.

Set this
parameter
based on the
difference
between the
number of
pods that
are
frequently
scaled on
most nodes
within
minutes and
the number
of pods that
are instantly
scaled out
on most
nodes within
10 seconds.

Configuration Example
Lev
el

Service Scenario Configuration Example

Clus
ter

All nodes use the c7.4xlarge.2 model (sub-
ENI quota: 128).
Most nodes run about 20 pods.
Most nodes can run a maximum of 60
pods.
Most nodes can scale out 10 pods within
10 seconds.
Most nodes frequently scale in or out 15
pods within minutes.

Cluster-level global
configuration:
● nic-minimum-target: 20
● nic-maximum-target: 60
● nic-warm-target: 10
● nic-max-above-warm-

target: 5

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 429

Lev
el

Service Scenario Configuration Example

Nod
e
pool

A node pool that uses the c7.8xlarge.2
high-specification model is created in the
cluster. (sub-ENI quota: 256)
Most nodes run about 100 pods.
Most nodes can run a maximum of 128
pods.
Most nodes can scale out 10 pods within
10 seconds.
Most nodes frequently scale in or out 12
pods within minutes.

Custom settings at the node
pool level:
● nic-minimum-target: 100
● nic-maximum-target: 120
● nic-warm-target: 10
● nic-max-above-warm-

target: 2

NO TE

Pods using HostNetwork are excluded.

Cluster-level Global Configuration

Step 1 Log in to the CCE console. In the navigation pane, choose Clusters.

Step 2 Click next to the target cluster and choose Manage.

Figure 10-68 Managing a cluster

Step 3 In the window that slides out from the right, click Networking Components. For
details about the parameter configurations, see Configuration Example.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 430

Step 4 After the configuration is complete, click OK. Wait for about 10 seconds for the
configuration to take effect.

----End

Custom Settings at the Node Pool Level

Step 1 Log in to the CCE console.

Step 2 Click the cluster name to access the cluster console, choose Nodes in the
navigation pane, and click the Node Pools tab.

Step 3 Locate the row containing the target node pool and click Manage.

Step 4 In the window that slides out from the right, click Networking Components and
enable node pool container ENI pre-binding. For details about the parameter
configurations, see Configuration Example.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 431

Step 5 After the configuration is complete, click OK. Wait for about 10 seconds for the
configuration to take effect.

----End

10.14 Connecting a Cluster to the Peer VPC Through an
Enterprise Router

Application Scenarios

An enterprise router connects virtual private clouds (VPCs) and on-premises
networks to build a central hub network and implement communication between
VPCs in the same region. It has high specifications, provides high bandwidth, and
delivers high performance. With the enterprise routers, CCE clusters in different
VPCs can access each other.

Clusters in different VPCs cannot communicate with VMs in the peer VPCs within a
short period of time after containers are created in the clusters. To solve this
problem, attach the peer VPCs to the enterprise routers. In a CCE Turbo cluster,
configure parameters to delay the pod startup to solve this problem. For details,
see Configuring Parameters to Delay the Pod Startup in a CCE Turbo Cluster.

Network Planning

Before attaching VPCs to the enterprise routers, determine the VPC CIDR blocks
and the enterprise routers' route table. Ensure that the following requirements are
met.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 432

Resource Description

VPC ● The VPC CIDR blocks cannot overlap.
● The CIDR blocks of the VPCs are propagated to the enterprise

routers' route tables. These CIDR blocks cannot be modified.
Overlapping CIDR blocks may cause route conflicts.
Additionally, the container CIDR blocks cannot conflict with the
node CIDR blocks in the peer VPCs. Otherwise, the network is
unavailable.

● If your existing VPCs have overlapping CIDR blocks, manually
add static routes to the route tables of the enterprise routers.
The destination can be the VPC subnet CIDR blocks or smaller
ones.

Enterprise
router

After Default Route Table Association and Default Route Table
Propagation are enabled and a VPC attachment is created, the
system automatically:
● Associates the VPC attachment with the default route table of

the enterprise router.
● Propagates the VPC attachment to the default route table of

the enterprise router. The route table automatically learns the
VPC CIDR blocks.

For details, see Step 1: Plan Networks and Resources.

Creating an Enterprise Router

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select the desired region and project.

Step 3 Choose Service List > Networking > Enterprise Router.

Step 4 Enter the Enterprise Router page.

Step 5 Click Create Enterprise Router in the upper right corner.

Step 6 Enter the Create Enterprise Router page.

Step 7 Configure basic information following instructions. For details about the
parameter settings, see Table 10-30.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 433

https://support.huaweicloud.com/intl/en-us/qs-er/er_01_0063.html

Figure 10-69 Creating an enterprise router

Table 10-30 Parameters for creating an enterprise router

Parameter Setting Example Value

Region Select the region nearest to your target users.
Once the enterprise router is created, the
region cannot be changed.

CN-Hong Kong

AZ Select two AZs to deploy your enterprise
router. You can change them after the
enterprise router is created.

AZ1
AZ2

Name Specify the enterprise router name. You can
change it after the enterprise router is created.

er-test-01

ASN Enter an ASN based on your network plan. It
cannot be changed after the enterprise router
is created.

64800

Default
Route Table
Association

If you select this option, you do not need to
create route tables or associations. You can
change your option after the enterprise router
is created.

Enable

Default
Route Table
Propagation

If you select this option, you do not need to
create route tables, propagations, or routes.
You can change your option after the
enterprise router is created.

Enable

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 434

Parameter Setting Example Value

Auto Accept
Shared
Attachment
s

If you do not select this option, you must
accept the requests for creating attachments
to this enterprise router from other users with
whom this enterprise router is shared.

Disable

Enterprise
Project

Select an enterprise project for the enterprise
router. You can change it after the enterprise
router is created.

default

Tag Add tags to help you identify your enterprise
router. You can change them after the
enterprise router is created.

Tag key: test
Tag value: 01

Description Provide supplementary information about the
enterprise router. You can change it after the
enterprise router is created.

-

Step 8 Click Create Now.

Step 9 Check the information on the page displayed and click Submit. Back to the
enterprise router list.

Step 10 View the enterprise router's status. If its status changes from Creating to Normal,
the enterprise router is created.

Figure 10-70 Enterprise router created

----End

Creating a VPC Attachment to an Enterprise Router

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select the desired region and project.

Step 3 Choose Service List > Networking > Enterprise Router.

Step 4 Search for the target enterprise router by name.

Step 5 Perform either of the following operations to go to the Attachments tab:
● Locate the pane containing the target enterprise router and click Manage

Attachment.
● Click the name of the enterprise router and click the Attachments tab. For

details, see Adding VPC Attachments to an Enterprise Router.

Step 6 Click Create Attachment to go to the corresponding page.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 435

https://support.huaweicloud.com/intl/en-us/usermanual-er/er_01_0070.html

Step 7 Configure the parameters following instructions. For details, see Table 10-31.

Figure 10-71 Creating an attachment

Table 10-31 Parameter description

Parameter Setting Example Value

Name Specify the name of the VPC attachment. You
can change it after the attachment is created.

er-attach-01

Attachment
Type

Select VPC. The type cannot be changed after
the attachment is created.

VPC

Attached
Resource

1. Select the VPC to be attached to the
enterprise router from the drop-down list.
The VPC cannot be changed after the
attachment is created.

2. Select the subnet to be attached to the
enterprise router from the drop-down list.
The subnet cannot be changed after the
attachment is created.

● VPC: vpc-
demo-01

● Subnet:
subnet-
demo-01

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 436

Parameter Setting Example Value

Auto Add
Routes

● If you enable Auto Add Routes when
creating a VPC attachment, you do not
need to manually add static routes to the
VPC route table. Instead, the system
automatically adds routes (with this
enterprise router as the next hop and
10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16 as the destinations) to all
route tables of the VPC.

● If an existing route in the VPC route tables
has a destination to 10.0.0.0/8,
172.16.0.0/12, or 192.168.0.0/16, the routes
will fail to be added. In this case, do not
enable Auto Add Routes. After the
attachment is created, manually add routes.

● Do not set the destination of a route (with
an enterprise router as the next hop) to
0.0.0.0/0 in the VPC route table. If an ECS in
the VPC has an EIP bound, the VPC route
table will have a policy-based route with
0.0.0.0/0 as the destination, which has a
higher priority than the route with the
enterprise router as the next hop. In this
case, traffic is forwarded to the EIP and
cannot reach the enterprise router.

Enable

Description Provide supplementary description about the
attachment. You can change it after the
attachment is created.

-

Tag Add tags to help you identify your attachment.
You can change them after the attachment is
created.

Tag key: test
Tag value: 01

Step 8 Click Create Now. If the status changes from Creating to Normal, the
attachment is created. Repeat steps Step 6 to Step 7 to attach other VPCs.

Figure 10-72 Attaching a VPC to the enterprise router

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 437

Verifying the Network

Step 1 Log in to the CCE console and search for the CCE cluster that has been attached to
the VPC.

Step 2 Click the name of the target cluster. In the navigation pane, choose Nodes to view
the IP address of the node.

Figure 10-73 Viewing the IP address of the node on the CCE console

Step 3 Log in to the node. For details, see Logging In to a Node. In this example, use
VNC provided on the management console to log in to the ECS.

Step 4 Run the following command on the ECS console:
ping {ECS address}

Take the cluster in vpc-ER-demo2 as an example. Log in to the er-demo2-04260
node and access the er-demo1-61379 node in the cluster in vpc-ER-demo1. The
IP address of the node is 192.168.0.131.

ping 192.168.0.131

If the following information is displayed, the network is accessible.

Figure 10-74 Viewing the command output

Step 5 Repeat the preceding steps to verify the communication between nodes.

If a node using the peer VPC cannot be pinged, check:

1. Whether the security group rules of the node allow the ICMP protocol.
2. Whether a CIDR block conflict occurs in the VPC route table. Note that the

container CIDR blocks cannot conflict with the default CIDR blocks of the
enterprise routers. For details, see Network Planning.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 438

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0185.html

Figure 10-75 Viewing the VPC route table

----End

10.15 Accessing an IP Address Outside a Cluster That
Uses a VPC Network Using Source Pod IP Addresses in
the Cluster

In a CCE cluster that uses a VPC network, when pods try to communicate with
external systems, CCE automatically translates the source IP addresses of the pods
into the IP addresses of the nodes that are running them. This allows pods to
communicate with external systems using the node IP addresses. This process is
known as pod IP address masquerading or Source Network Address Translation
(SNAT).

You are allowed to configure private CIDR blocks for your clusters using the
nonMasqueradeCIDRs parameter. If a pod tries to access a private CIDR block,
the source node will not perform NAT on the pod IP address. Instead, the VPC
route table can directly send the pod data packet to the destination, which means,
the pod IP address is directly used to communicate with the private CIDR block in
the cluster.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 439

Figure 10-76 Pod IP address translation

Prerequisites
You have a cluster that uses the VPC network and whose version is v1.23.14-r0,
v1.25.9-r0, v1.27.6-r0, v1.28.4-r0, or later.

Default Non-Masqueraded CIDR Block Settings in a CCE Cluster
By default, CCE uses the following well-known private CIDR blocks as non-
masqueraded CIDR blocks in each cluster:

● 10.0.0.0/8
● 172.16.0.0/12
● 192.168.0.0/16

Additionally, in a CCE cluster that uses a secondary VPC CIDR block, adding or
resetting a node will automatically include the secondary CIDR block in the non-
masqueraded CIDR blocks.

This means that when a pod communicates with external resources and accesses
these CIDR blocks, the source IP address of the data packet remains unchanged
and is not translated into the node IP address.

Scenarios Where the Default Non-Masqueraded CIDR Blocks Do Not Fit
The default non-masqueraded CIDR block settings in CCE clusters apply to typical
scenarios, but in certain specific scenarios, these default settings may not be
sufficient to meet user requirements. The following shows typical examples:

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 440

● Cross-node access to pods in a cluster

When a node in a Kubernetes cluster needs to access a pod on another node,
the response data packet sent from the pod is automatically subject to SNAT.
This changes the source IP address from the pod IP address to the IP address
of the node that runs the pod. However, this automatic IP address translation
can sometimes lead to communication issues, making cross-node access
impossible.

To enable a node to access pods on other nodes, you can add the CIDR block
of the subnet where the node is located to the nonMasqueradeCIDRs
parameter. This will skip SNAT and allow the original IP addresses of pods on
these nodes to be retained.

● Access from other resources in the same VPC as a cluster to pods in the
cluster

In certain scenarios, it may be necessary to access the original IP addresses of
pods on different nodes in a CCE cluster directly from other resources (such as
ECSs) in the same VPC as the cluster. However, with SNAT enabled by default,
the source IP addresses of the data packets are replaced with the IP addresses
of the nodes that run these pods when the data packets pass through the
nodes. This makes it difficult for these resources to access pods directly.

To enable direct access from resources in the same VPC as the cluster to pods,
you can add the CIDR blocks of the subnets where these resources are located
to the nonMasqueradeCIDRs parameter. This will skip SNAT and ensure that
the source IP addresses of the data packets remain the same as the original IP
addresses of pods.

Precautions

If a security group or ACL is configured for a cloud service and only the IP address
of the node where the pod runs is allowed to access the service, SNAT is required
to translate the pod IP address into the node IP address for successful access. As a
result, the CIDR block of the subnet where the server is located cannot be added
to the nonMasqueradeCIDRs configuration.

The default setting of pod IP address masquerading (SNAT) is usually sufficient.
However, if you need to retain the original IP addresses of pods in specific
scenarios, you can configure the nonMasqueradeCIDRs parameter.

Before doing so, make sure you have evaluated your application scenario and
understood the potential risks of improper configuration, because it may block
access within clusters. If you are unsure whether to configure this parameter, it is
recommended that you keep the default settings and adjust the configuration
later once the requirement is clarified.

Procedure

To reserve the source IP address of a pod when the pod accesses a CIDR block, you
can configure nonMasqueradeCIDRs to specify the CIDR block that does not need
to be masqueraded.

Step 1 Log in to the CCE console and click the name of the target cluster to access the
cluster console.

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 441

Step 2 In the navigation pane, choose Settings and click the Network tab.

Step 3 Modify the range of the CIDR block for non-masquerading access to preserve the
source pod IP address when accessing a specified CIDR block. Make sure the
parameter configuration complies with the following rules:
● Each CIDR block must comply with the CIDR format and must be a valid IPv4

CIDR block.
Example of a correct CIDR block: 192.168.1.0/24
Example of an incorrect CIDR block: 192.168.1.1/24 (incompliant with the
CIDR format)

● The CIDR blocks you configured do not overlap with each other.
Example of correct CIDR blocks: 192.168.1.0/24 and 192.168.2.0/24
Example of incorrect CIDR blocks: 192.168.1.0/24 and 192.168.1.128/25 (The
two CIDR blocks overlap.)

● The nonMasqueradeCIDRs parameter must contain all destination CIDR
blocks that you want them to use the original pod IP addresses for
communications.

Step 4 After the modification, click Confirm configuration. The setting takes effect
within 1 minute.

----End

Cloud Container Engine
Best Practices 10 Networking

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 442

11 Storage

11.1 Expanding the Storage Space
The storage classes that can be expanded for CCE nodes are as follows:

Table 11-1 Capacity expansion methods

Type Name Purpose Capacity Expansion
Method

Node
disk

System
disk

A disk attached to a node
for installing the operating
system

Expanding System Disk
Capacity

Data
disk

The first data disk attached
to a node for container
engine and kubelet

● Expanding the
Container Engine
Capacity

● Expanding the kubelet
Capacity

● Expanding Capacity of
the Disk Shared by
Container Engine and
kubelet

Contain
er
storage

Pod
containe
r space

The base size of a container,
which is, the upper limit of
the disk space occupied by
each pod (including the
storage space occupied by
container images)

Expanding the Capacity
of a Data Disk Used by
Pod (basesize)

PVC Storage resources mounted
to the containers

Expanding a PVC

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 443

Expanding System Disk Capacity
EulerOS 2.9 is used as the sample OS. There is only one partition (/dev/vda1) with
a capacity of 50 GiB in the system disk /dev/vda, and then 50 GiB is added to the
system disk. In this example, the additional 50 GiB is allocated to the
existing /dev/vda1 partition.

Step 1 Expand the system disk capacity on the EVS console. For details, see Expanding
EVS Disk Capacity.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the partition and file system.

Step 2 Log in to the node and run the growpart command to check whether growpart
has been installed.

If the tool operation guide is displayed, the growpart has been installed.
Otherwise, run the following command to install growpart:

yum install cloud-utils-growpart

Step 3 Run the following command to view the total capacity of the system disk /dev/
vda:
fdisk -l

If the following information is displayed, the total capacity of /dev/vda is 100 GiB.

[root@test-48162 ~]# fdisk -l
Disk /dev/vda: 100 GiB, 107374182400 bytes, 209715200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x78d88f0b

Device Boot Start End Sectors Size Id Type
/dev/vda1 * 2048 104857566 104855519 50G 83 Linux

Disk /dev/vdb: 100 GiB, 107374182400 bytes, 209715200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/vgpaas-dockersys: 90 GiB, 96632569856 bytes, 188735488 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/vgpaas-kubernetes: 10 GiB, 10733223936 bytes, 20963328 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Step 4 Run the following command to check the capacity of the system disk
partition /dev/vda1:
df -TH

Information similar to the following is displayed:

[root@test-48162 ~]# df -TH
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 1.8G 0 1.8G 0% /dev
tmpfs tmpfs 1.8G 0 1.8G 0% /dev/shm
tmpfs tmpfs 1.8G 13M 1.8G 1% /run
tmpfs tmpfs 1.8G 0 1.8G 0% /sys/fs/cgroup

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 444

https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html

/dev/vda1 ext4 53G 3.3G 47G 7% /
tmpfs tmpfs 1.8G 75M 1.8G 5% /tmp
/dev/mapper/vgpaas-dockersys ext4 95G 1.3G 89G 2% /var/lib/docker
/dev/mapper/vgpaas-kubernetes ext4 11G 39M 10G 1% /mnt/paas/kubernetes/kubelet
...

Step 5 Run the following command to extend the partition using growpart:
growpart System disk Partition number

The partition number is 1 because there is only one /dev/vda1 partition in the
system disk, as shown in the following command:

growpart /dev/vda 1

Information similar to the following is displayed:

CHANGED: partition=1 start=2048 old: size=104855519 end=104857567 new: size=209713119
end=209715167

Step 6 Run the following command to extend the file system:
resize2fs Disk partition

An example command is as follows:

resize2fs /dev/vda1

Information similar to the following is displayed:

resize2fs 1.45.6 (20-Mar-2020)
Filesystem at /dev/vda1 is mounted on /; on-line resizing required
old_desc_blocks = 7, new_desc_blocks = 13
The filesystem on /dev/vda1 is now 26214139 (4k) blocks long.

Step 7 Run the following command to view the new capacity of the /dev/vda1 partition:
df -TH

Information similar to the following is displayed:

[root@test-48162 ~]# df -TH
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 1.8G 0 1.8G 0% /dev
tmpfs tmpfs 1.8G 0 1.8G 0% /dev/shm
tmpfs tmpfs 1.8G 13M 1.8G 1% /run
tmpfs tmpfs 1.8G 0 1.8G 0% /sys/fs/cgroup
/dev/vda1 ext4 106G 3.3G 98G 4% /
tmpfs tmpfs 1.8G 75M 1.8G 5% /tmp
/dev/mapper/vgpaas-dockersys ext4 95G 1.3G 89G 2% /var/lib/docker
/dev/mapper/vgpaas-kubernetes ext4 11G 39M 10G 1% /mnt/paas/kubernetes/kubelet
...

Step 8 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

----End

Expanding Data Disk Capacity

The first data disk of a CCE node is composed of container engine and kubelet
space by default. If either of them reaches full capacity, you can expand the disk
space as needed.

In clusters of v1.21.10-r0, v1.23.8-r0, v1.25.3-r0, and later, CCE enables container
engine (Docker/containerd) and kubelet to share the space of the first data disk. If
the shared disk space is insufficient, you can expand it.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 445

Expanding the Container Engine Capacity
The available container engine space affects image pulls and container startup
and running. This section uses containerd as an example to describe how to
expand the container engine capacity.

Step 1 Expand the capacity of a data disk on the EVS console. For details, see Expanding
EVS Disk Capacity.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run the lsblk command to check the block device information of the node.

A data disk is divided depending on the container storage Rootfs:

Overlayfs: No independent thin pool is allocated. Image data is stored in
dockersys.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk # The data disk has been expanded to 150 GiB, but 50 GiB
space is not allocated.
├─vgpaas-dockersys 253:0 0 90G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Add the new disk capacity to the dockersys logical volume used by the
container engine.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where dockersys is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <90.00 GiB (23039 extents) to 140.00
GiB (35840 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/containerd; on-line resizing required
old_desc_blocks = 12, new_desc_blocks = 18
The filesystem on /dev/vgpaas/dockersys is now 36700160 blocks long.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 446

https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html

3. Check whether the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Devicemapper: A thin pool is allocated to store image data.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm # Space used by thinpool
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Option 1: Add the new disk capacity to the thin pool disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where thinpool is located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/thinpool
specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/thinpool

Information similar to the following is displayed:
Size of logical volume vgpaas/thinpool changed from <67.00 GiB (23039 extents) to <167.00
GiB (48639 extents).
Logical volume vgpaas/thinpool successfully resized.

c. Do not need to adjust the size of the file system, because the thin pool is
not mounted to any devices.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the thin pool, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 167G 0 lvm # Thin pool space after
capacity expansion
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Option 2: Add the new disk capacity to the dockersys disk.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 447

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where dockersys is
located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <18.00 GiB (4607 extents) to <118.00
GiB (30208 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/docker; on-line resizing required
old_desc_blocks = 3, new_desc_blocks = 15
The filesystem on /dev/vgpaas/dockersys is now 30932992 blocks long.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the dockersys, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 118G 0 lvm /var/lib/docker # dockersys after
capacity expansion
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

----End

Expanding the kubelet Capacity
The kubelet space serves as a temporary storage location for kubelet components
and EmptyDir. You can follow the following steps to increase the kubelet capacity:

Step 1 Expand the capacity of a data disk on the EVS console. For details, see Expanding
EVS Disk Capacity.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run lsblk to view the block device information of the node.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 448

https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 200G 0 disk #The data disk has been expanded to 200 GiB, but 50 GiB space
is not allocated.
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Step 5 Perform the following operations on the node to add the new disk capacity to the
kubelet space:

1. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where kubelet is located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

2. Expand 100% of the free capacity to the logical volume. vgpaas/kubernetes
specifies the logical volume used by kubelet.
lvextend -l+100%FREE -n vgpaas/kubernetes

Information similar to the following is displayed:
Size of logical volume vgpaas/kubernetes changed from <10.00 GiB (2559 extents) to <60.00 GiB
(15359 extents).
Logical volume vgpaas/kubernetes successfully resized.

3. Adjust the size of the file system. /dev/vgpaas/kubernetes specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/kubernetes

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/kubernetes is mounted on /mnt/paas/kubernetes/kubelet; on-line resizing
required
old_desc_blocks = 2, new_desc_blocks = 8
The filesystem on /dev/vgpaas/kubernetes is now 15727616 blocks long.

Step 6 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 60G 0 lvm /mnt/paas/kubernetes/kubelet # Allocate the new disk to
the kubelet space.

----End

Expanding Capacity of the Disk Shared by Container Engine and kubelet

To expand the capacity of the disk shared by container engine and kubelet,
perform the following steps:

Step 1 Expand the capacity of a data disk on the EVS console. For details, see Expanding
EVS Disk Capacity.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 449

https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0007.html

Step 3 Log in to the target node.

Step 4 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 120G 0 disk # The data disk has been expanded to 120 GiB, but 20 GiB space is not
allocated.
└─vgpaas-share 253:0 0 100G 0 lvm /mnt/paas # Space used by the container engine and the kubelet
component

Step 5 Run the following commands on the node to add the new disk capacity to the
shared disk:

1. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where the shared disk is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

2. Expand 100% of the free capacity to the logical volume. vgpaas/share
specifies the logical volume shared by the container engine and the kubelet
component.
lvextend -l+100%FREE -n vgpaas/share

Information similar to the following is displayed:
Size of logical volume vgpaas/share changed from <100.00 GiB (25599 extents) to <120.00 GiB
(30719 extents).
Logical volume vgpaas/share successfully resized.

3. Adjust the size of the file system. /dev/vgpaas/share specifies the file system
path of the shared disk.
resize2fs /dev/vgpaas/share

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/share is mounted on /mnt/paas; on-line resizing required
old_desc_blocks = 13, new_desc_blocks = 15
The filesystem on /dev/vgpaas/share is now 31456256 blocks long.

Step 6 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 120G 0 disk
└─vgpaas-share 253:0 0 120G 0 lvm /mnt/paas # Space of the new disk used by the container engine
and the kubelet component

----End

Expanding the Capacity of a Data Disk Used by Pod (basesize)

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 Choose Nodes from the navigation pane.

Step 3 Click the Nodes tab, locate the row containing the target node, and choose More
> Reset Node in the Operation column.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 450

NO TICE

Resetting a node may make the node-specific resources (such as local storage and
workloads scheduled to this node) unavailable. Exercise caution when performing
this operation to avoid impact on running services.

Step 4 Reconfigure node parameters.

If you need to adjust the container storage space, pay attention to the following
configurations:

Storage Settings: Click Expand next to the data disk to set the following
parameter:

Space Allocation for Pods: indicates the base size of a pod. It is the maximum
size that a workload's pods (including the container images) can grow to in the
disk space. Proper settings can prevent pods from taking all the disk space
available and avoid service exceptions. It is recommended that the value is less
than or equal to 80% of the container engine space. This parameter is related to
the node OS and container storage rootfs and is not supported in some scenarios.

For more information about container storage space allocation, see Data Disk
Space Allocation.

Step 5 After the node is reset, log in to the node and check whether the container
capacity has been expanded. The command output varies with the container
storage rootfs.
● Overlayfs: No independent thin pool is allocated. Image data is stored in

dockersys. Run the following command to check whether the container
capacity has been expanded:
docker exec -it container_id /bin/sh or kubectl exec -it container_id /bin/sh
df -h
If the information similar to the following is displayed, the overlay capacity
has been expanded from 10 GiB to 15 GiB.
Filesystem Size Used Avail Use% Mounted on
overlay 15G 104K 15G 1% /
tmpfs 64M 0 64M 0% /dev
tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
/dev/mapper/vgpaas-share 98G 4.0G 89G 5% /etc/hosts
...

● Devicemapper: A thin pool is allocated to store image data. Run the following
command to check whether the container capacity has been expanded:
docker exec -it container_id /bin/sh or kubectl exec -it container_id /bin/sh
df -h
If the information similar to the following is displayed, the thin pool capacity
has been expanded from 10 GiB to 15 GiB.
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vgpaas-thinpool-snap-84 15G 232M 15G 2% /
tmpfs 64M 0 64M 0% /dev
tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
/dev/mapper/vgpaas-kubernetes 11G 41M 11G 1% /etc/hosts
/dev/mapper/vgpaas-dockersys 20G 1.1G 18G 6% /etc/hostname
...

----End

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 451

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0341.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0341.html

Expanding a PVC
Cloud storage:

● OBS and SFS: There is no storage restriction and capacity expansion is not
required.

● EVS:
– You can expand the capacity of automatically created pay-per-use

volumes on the console. The procedure is as follows:

i. Choose Storage in the navigation pane. In the right pane, click the
PVCs tab. Click More in the Operation column of the target PVC and
select Scale-out.

ii. Enter the capacity to be added and click OK.
– For yearly/monthly-billed instances, expand the capacity on the EVS

console and then change the capacity in the PVC.
● SFS Turbo: You can expand the capacity on the SFS console and then change

the capacity in the PVC.

11.2 Mounting Object Storage Across Accounts

Application Scenarios
● Cross-account data sharing. For example, multiple teams within a company

need to share data, but each team uses a different account.
● Cross-account data migration and backup. When account A is about to be

disabled, all data stored in the account needs to be transferred to a new
account (account B).

● Data processing and analysis. For example, account B is an external data
processor and needs to access raw data from account A to perform tasks such
as big data analysis and machine learning.

By linking object storage across accounts, you can share data, lower storage and
transmission expenses, and guarantee data security and consistency. This enables
various teams or organizations to securely and conveniently access each other's
data resources, eliminating the need for repeated storage and redundant
transmission. Additionally, data is kept current and compliant, enhancing overall
service efficiency and security.

Procedure
Assume that account B needs to access and use an OBS bucket of account A. For
details, see Figure 11-1 and Table 11-2.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 452

Figure 11-1 Mounting an OBS bucket across accounts

Table 11-2 Process description

Procedure Description

Step 1: Create an
OBS Bucket Policy
and ACL

Configure an OBS bucket policy and ACL using account
A and grant account B required permissions like the
read and write permissions.

Step 2: Create a
Workload with an
OBS Volume
Mounted

Create a PV and a PVC based on the OBS bucket of
account A using account B and mount the PVC to the
required workload.

Step 3: Check the
Pod Actions on the
OBS Bucket

Check whether the pod created by account B has the
required permissions based on the bucket policy.

Step 4: Clear
Resources

Once you have studied this example, delete any
associated resources to prevent incurring settlement
fees.

Prerequisites
● The involved accounts are in the same region.
● You have created a cluster where the CCE Container Storage (Everest) add-on

is installed. The add version must be 1.1.11 or later, and the cluster version
must be 1.15 or later. If no cluster is available, create one by referring to
Buying a CCE Standard/Turbo Cluster.

● An ECS with an EIP bound has been created in the same VPC as the cluster,
and the ECS has been connected to the cluster through kubectl. For details

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 453

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html

about how to connect an ECS to a cluster, see Connecting to a Cluster Using
kubectl.

Step 1: Create an OBS Bucket Policy and ACL
Configure an OBS bucket policy and ACL using account A and grant account B
required permissions like the read and write permissions.

Step 1 Log in to the OBS console. In the navigation pane, choose Object Storage.

Step 2 Click the name of the target bucket to go to the Objects page.

Step 3 In the navigation pane, choose Permissions > Bucket Policies. On the page
displayed, click Create.

Step 4 Configure the parameters. In this example, only some mandatory parameters are
described. You can keep the default values for other parameters. For details about
the parameters, see Bucket Policies.

Table 11-3 Bucket policy parameters

Parameter Description Example

Policy Name Enter a name. example01

Effect Specify the behavior of a policy.
● Allow: The actions defined in the policy

are allowed.
● Deny: The actions defined in the policy

are denied.

Allow

Principal Specify authorized accounts. (Multiple
accounts can be selected.) For different
types of authorized accounts, the OBS
console provides different templates for
authorizations. For details, see Creating a
Bucket Policy with a Template.
● All accounts: Any account can execute

the current bucket policy without
identity authentication, which may pose
data security risks.

● Current account: Grant permissions to
a specific IAM account under the
current account.

● Other accounts: Grant permissions to a
specific IAM account under another
account.

Other accounts
XXX(account
ID)/XXX (IAM ID)

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 454

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/perms-cfg-obs/obs_40_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0142.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0142.html

Parameter Description Example

Resources Specify the authorized resources.
● Entire bucket (including the objects

in it): Allow authorized accounts to
perform certain actions on a bucket and
the objects in it.

● Current bucket: Allow authorized
accounts to perform certain actions on
the current bucket.

● Specific objects: Allow authorized
accounts to perform certain actions on
the specified objects in a bucket.

Entire bucket
(including the
objects in it)

Actions Specify actions.
● Use a template: Use a permission

template preset on the OBS console. If
you selected Bucket Read/Write, the
Specified actions option will be
selected by default in the Advanced
Settings area.

● Customize: Customize the actions.

Use a template >
Bucket Read/
Write

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 455

Figure 11-2 Creating a bucket policy

Step 5 In the navigation pane, choose Permissions > Bucket ACL. In the right pane, click
Add under User Access. Enter the account ID of the authorized user, select Read
and Write for Access to Bucket, select Read for Access to Objects, select Read
and Write for Access to ACL, and click OK.

----End

Step 2: Create a Workload with an OBS Volume Mounted
Create a PV and a PVC based on the OBS bucket of account A using account B and
mount the PVC to the required workload.

Step 1 Create a ConfigMap named paas-obs-endpoint and configure the region and
endpoint of OBS.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 456

vim config.yaml

The content is as follows: (For details about the parameters, see Table 11-4.)

apiVersion: v1
kind: ConfigMap
metadata:
 name: paas-obs-endpoint # The value must be paas-obs-endpoint.
 namespace: kube-system # The value must be kube-system.
data:
 obs-endpoint: |
 {"<region_name>": "<endpoint_address>"}

Create the ConfigMap using config.yaml.

kubectl create -f config.yaml

Table 11-4 ConfigMap parameters

ConfigMap Description Example

metadata.na
me

ConfigMap name, which is fixed at paas-obs-
endpoint and cannot be changed

paas-obs-endpoint

metadata.na
mespace

Namespace, which is fixed at kube-system and
cannot be changed

kube-system

data.obs-
endpoint

Region names and endpoints are in key-value
pairs. Replace <region_name> and
<endpoint_address> with specific values. If
multiple values are needed, use commas (,) to
separate them.
For details about its value, see Regions and
Endpoints.

{"ap-southeast-1": "https://
obs.ap-
southeast-1.myhuaweicloud.com
:443", "ap-southeast-3": "https://
obs.ap-
southeast-3.myhuaweicloud.com
:443"}

Step 2 Create a secret named test-user. (This secret is used to provide access credentials
when volumes are mounted to CSI, and its name can be customized.)

1. Obtain the AK. Go back to the management console, hover the cursor over
the username in the upper right corner and choose My Credentials from the
drop-down list.
In the navigation pane, choose Access Keys. On the page displayed, click
Create Access Key.
Click OK and download the AK.

2. Encode the AK using Base64 and save the encoded AK and SK. If the AK
obtained is xxx and the SK is yyy, run the following commands:
echo -n xxx|base64
echo -n yyy|base64

3. Create a secret YAML file, for example, test_user.yaml.
vim test_user.yaml

The content is as follows: (For details about the parameters, see Table 11-5.)
apiVersion: v1
data:
 access.key: QUxPQUlJU******
 secret.key: aVMwZkduQ******
kind: Secret
metadata:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 457

https://developer.huaweicloud.com/intl/en-us/endpoint
https://developer.huaweicloud.com/intl/en-us/endpoint

 name: test-user
 namespace: default
type: cfe/secure-opaque

Create a secret using test_user.yaml.
kubectl create -f test_user.yaml

Table 11-5 Secret parameters

Parameter Description Example

access.key A Base64-encoded AK QUxPQUlJU******

secret.key A Base64-encoded SK aVMwZkduQ******

type Key type, which is fixed at cfe/
secure-opaque and cannot be
changed
When this type is used, the data
entered by users will be
automatically encrypted.

cfe/secure-opaque

Step 3 Create a PV named testing_abc and mount the secret named test_user to the PV.
vim testing_abc.yaml

The content is as follows: (For details about the parameters, see Table 11-6.)

kind: PersistentVolume
apiVersion: v1
metadata:
 name: testing-abc
 annotations:
 pv.kubernetes.io/bound-by-controller: 'yes'
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
spec:
 capacity:
 storage: 1Gi
 mountOptions:
 - default_acl=bucket-owner-full-control #New OBS mounting parameters
 csi:
 driver: obs.csi.everest.io
 volumeHandle: obs-cce-test # Name of the OBS bucket to be mounted
 fsType: s3fs # obsfs indicates a parallel file system, and s3fs indicates an OBS bucket.
 volumeAttributes:
 everest.io/obs-volume-type: STANDARD # Bucket type, which can be STANDARD or WARM when an
OBS bucket is used
 everest.io/region: <region_name> # Region where the OBS bucket is located (Replace it with the
actual value.)
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 nodePublishSecretRef: # AK/SK used for mounting the OBS bucket
 name: test-user
 namespace: default
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain # PV reclaim policy
 storageClassName: csi-obs # csi-obs specifies an OBS storage class that is automatically
created. You can customize it as required.
 volumeMode: Filesystem

Create the PV using testing_abc.yaml.

kubectl create -f testing_abc.yaml

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 458

Table 11-6 PV parameters

Paramet
er

Description Example

mountOp
tions.defa
ult_acl

Specify access control policies for a bucket
and objects in the bucket. In this example,
account A owns the bucket, and both account
A and account B have the ability to upload
data.
● private: The bucket or objects can only be

fully accessed by the owner of the bucket.
● public-read: The owner of the bucket has

complete control over both the bucket and
its objects. While other users can read data
from the bucket, they are unable to
modify, delete, or upload any data within
it.

● public-read-write: The owner of the
bucket has complete control over the
bucket and its objects. Other users can
read and write data from and to the
bucket.

● bucket-owner-read: Users who have
uploaded objects to the bucket has
complete control over the objects, while
the bucket owner is only granted read
permissions for said objects. This mode is
usually used in cross-account sharing
scenarios.

● bucket-owner-full-control: Users who
have uploaded objects to the bucket are
granted write permissions for those specific
objects, but not read permissions by
default. The bucket owner has complete
control over all objects within the bucket.
This mode is usually used in cross-
account sharing scenarios.

bucket-owner-full-
control
NOTE

Due to the bucket
policy that was
configured using
account A, account
B has been granted
read and write
permissions for the
entire bucket,
including objects
uploaded by both
account A and B.

csi.nodeP
ublishSec
retRef

Specify the secret to be mounted.
● name: name of a secret
● namespace: namespace where the secret is

in

test-user
default

csi.volum
eHandle

Specify the name of the OBS bucket to be
mounted.

obs-cce-test (OBS
bucket name
authorized by
account A)

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 459

Paramet
er

Description Example

csi.fsType Specify the file type.
● obsfs: Create an OBS parallel file system.
● s3fs: Create an OBS bucket.

s3fs
NOTICE

The file type
specified by the PV
and the PVC must
match in order for
the PV to be bound
to the corresponding
PVC. If they do not
match, the binding
cannot occur.

accessMo
des

Specify the access mode of the storage
volume. OBS supports only ReadWriteMany.
● ReadWriteOnce: A storage volume can be

mounted to a single node in read-write
mode.

● ReadWriteMany: A storage volume can be
mounted to multiple nodes in read-write
mode.

ReadWriteMany

persistent
VolumeR
eclaimPol
icy

Specify the reclaim policy for the PV.
● Delete: When a PVC is deleted, both the

PV and underlying storage resources will
be deleted. If the everest.io/reclaim-
policy: retain-volume-only annotation is
added to the YAML file, the underlying
storage resources will be retained.

● Retain: When a PVC is deleted, both the
PV and underlying storage resources will
be retained. You need to manually delete
them. After the PVC is deleted, the PV is in
the Released state and cannot be bound
to a PVC again.

Retain
NOTE

If multiple PVs use
the same OBS
volume, use Retain
to prevent the
underlying volume
from being deleted
with one of the PV.

Step 4 Create a PVC named pvc-test-abc and bind the new PV testing_abc to it.
vim pvc_test_abc.yaml

The file content is as follows:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-test-abc
 namespace: default
 annotations:
 csi.storage.k8s.io/node-publish-secret-name: test-user # Mount a secret.
 csi.storage.k8s.io/node-publish-secret-namespace: default # Namespace of the secret
 everest.io/obs-volume-type: STANDARD # Bucket type, which can be STANDARD or WARM when an
OBS bucket is used
 csi.storage.k8s.io/fstype: s3fs # File type. obsfs indicates a parallel file system, and s3fs indicates
an OBS bucket.
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
spec:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 460

 accessModes:
 - ReadWriteMany # The value must be ReadWriteMany for object storage.
 resources:
 requests:
 storage: 1Gi # Storage capacity of a PVC. This parameter is valid only for verification (fixed to 1,
cannot be empty or 0). The value setting does not take effect for OBS buckets.
 storageClassName: csi-obs # csi-obs specifies an OBS storage class that is automatically created. You can
customize it as required.
 volumeName: testing-abc # PV name

Create the PVC using pvc_test_abc.yaml.

kubectl create -f pvc_test_abc.yaml

Step 5 Create a workload and mount the PVC to it. The following uses an Nginx
Deployment as an example.
vim obs_deployment_example.yaml

The file content is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: obs-deployment-example # Workload name, which can be customized
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 app: obs-deployment-example # Label, which can be customized
 template:
 metadata:
 labels:
 app: obs-deployment-example
 spec:
 containers:
 - image: nginx
 name: container-0
 volumeMounts:
 - mountPath: /tmp # PVC mount path, which can be customized as required
 name: pvc-obs-example
 restartPolicy: Always
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: pvc-obs-example
 persistentVolumeClaim:
 claimName: pvc-test-abc # PVC name

Create the workload named obs-deployment-example using
obs_deployment_example.yaml.

kubectl create -f obs_deployment_example.yaml

Check whether the workload has been created.

kubectl get pod

If information similar to the following is displayed and the workload is in the
Running state, the workload has been created.

NAME READY STATUS RESTARTS AGE
obs-deployment-example-6b4dfd7b57-frfxv 1/1 Running 0 22h

----End

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 461

Step 3: Check the Pod Actions on the OBS Bucket

Check whether the pod created by account B has the required permissions based
on the bucket policy.

Step 1 Check whether the pod can read and write objects in the OBS bucket created by
account A and assume that a test.txt file is present in the OBS bucket.

Run the following command to access the created workload. (You can press Ctrl
+D to exit the current workload.)
kubectl -n default exec -it obs-deployment-example-6b4dfd7b57-frfxv -c container-0 /bin/bash

Run the following command to check the pod actions on test.txt. /tmp specifies
the PVC mount path.

ls -l /tmp/test.txt

If information similar to the following is displayed, the pod has the read and write
permissions on the test.txt file, which is related to the bucket policy set by
account A.

-rwxrwxrwx 1 root root 4 Sep 5 09:09 /tmp/test.txt

Step 2 Check whether the pod can read and write data from and to the objects uploaded
by itself in the OBS bucket.

Create a test01.txt file in /tmp and write test\n into the file.
echo -e "test\n" > /tmp/test01.txt

Run the following command to check the test01.txt content and check whether
the pod can read and write new objects uploaded by itself: (Account A can check
the new objects in the OBS bucket.)

cat /tmp/test01.txt

If information similar the following is displayed, the pod has the read and write
permissions on the objects uploaded by itself.

test

----End

Step 4: Clear Resources

Once you have studied this example, delete any associated resources to prevent
incurring settlement fees. If you plan to learn other examples, wait until they are
finished before doing any clean-up.

Step 1 Run the following command to delete the workload:
kubectl delete -f obs_deployment_example.yaml

Information similar to the following is displayed:

deployment.apps "obs-deployment-example" deleted

Step 2 Run the following command to delete the PVC:
kubectl delete -f pvc_test_abc.yaml

Information similar to the following is displayed:

persistentvolumeclaim "pvc-test-abc" deleted

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 462

Step 3 Run the following command to delete the PV:
kubectl delete -f testing_abc.yaml

Information similar to the following is displayed:

persistentvolume "testing-abc" deleted

Step 4 Run the following command to delete the secret:
kubectl delete -f test_user.yaml

Information similar to the following is displayed:

secret "test-user" deleted

Step 5 Run the following command to delete the ConfigMap:
kubectl delete -f config.yaml

Information similar to the following is displayed:

configmap "paas-obs-endpoint" deleted

----End

Common Issues

If a workload fails to be created, locate the fault based on the error information in
the pod events. For details, see Table 11-7. If the problem persists, create a
service ticket to contact customer service for help.

Table 11-7 Locating the fault

Error Possible
Cause

Fault Locating

0/4 nodes are
available: pod
has unbound
immediate
PersistentVolum
eClaims.
preemption: 0/4
nodes are
available: 4
Preemption is
not helpful for
scheduling.

The PVC
is not
bound
to any
PV.

1. Run the following command to check the PVC
status:
kubectl get pv
If the PVC is in the Pending state, it is not
bound to any PV.

2. Check the PVC details and locate the cause of
the binding failure.
kubectl describe pv <pv_name>

3. Modify the YAML file to rectify the fault if the
fault is caused by any of the following reasons:
● The PVC is not bound to the proper PV.
● The PVC and PV parameters do not match.

This includes fsType, StorageClass,
accessModes, and storage. The
StorageClass must be object storage, and
accessModes must be set to
ReadWriteMany because OBS buckets only
support this mode. Additionally, the storage
value requested by the PVC must be equal
to or less than the storage value provided
by the PV.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 463

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-3&locale=en-us#/ticketindex/serviceTickets
https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-3&locale=en-us#/ticketindex/serviceTickets

Error Possible
Cause

Fault Locating

MountVolume.S
etUp failed for
volume "obs-
cce-example":
rpc error: code =
Unknown desc =
failed to get
secret(paas.long
aksk), err: get
secret(paas.long
aksk) failed: get
secret
paas.longaksk
from namespace
kube-system
failed: secrets
"paas.longaksk"
not found

The
required
secret
cannot
be
found
when
the
storage
volume
is
mounte
d to the
workloa
d.

1. Check whether the mounted secret is present.
kubectl get secret
If it is present, the secret may be incorrectly
configured. If it is not present, you can create
one by referring to Step 2.

2. Check the secret parameter configurations. The
following shows the common issues:
● The access.key and secret.key parameters

are not set to the AK and SK encoded using
Base64.

● The type parameter is not set to cfe/
secure-opaque.

MountVolume.S
etUp failed for
volume "pv-obs-
example": rpc
error: code =
Internal desc =
[8032c354-4e1b
-41b0-81ce-9d4
b3f8c49c9] get
obsUrl failed
before mount
bucket obs-cce-
example, get
configMap paas-
obs-endpoint
from namespace
kube-system
failed:
configmaps
"paas-obs-
endpoint" not
found

The
ConfigM
ap that
stores
the OBS
endpoin
t is not
present
or is
incorrect
ly
configur
ed.

1. Check whether the ConfigMap is present.
kubectl get configmap
If it is present, the ConfigMap may be
incorrectly configured. If it is not present, you
can create one by referring to Step 1.

2. Check the ConfigMap parameter
configurations. The following shows the
common issues:
● The name parameter is not set to paas-

obs-endpoint.
● The namespace parameter is not set to

kube-system.
● The region name is not set to the region

where the OBS bucket is located.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 464

11.3 Dynamically Creating an SFS Turbo Subdirectory
Using StorageClass

Background
The minimum capacity of an SFS Turbo file system is 500 GiB, and the SFS Turbo
file system cannot be billed by usage. By default, the root directory of an SFS
Turbo file system is mounted to a container which, in most case, does not require
such a large capacity.

The everest add-on allows you to dynamically create subdirectories in an SFS
Turbo file system and mount these subdirectories to containers. In this way, an SFS
Turbo file system can be shared by multiple containers to increase storage
efficiency.

Notes and Constraints
● Only clusters of v1.15 or later are supported.
● The cluster must use the everest add-on of version 1.1.13 or later.
● Kata containers are not supported.
● When the everest add-on earlier than 1.2.69 or 2.1.11 is used, a maximum of

10 PVCs can be created concurrently at a time by using the subdirectory
function. everest of 1.2.69 or later or of 2.1.11 or later is recommended.

● A subPath volume is a subdirectory of an SFS Turbo file system. Increasing the
capacity of a PVC of this type only changes the resource range specified by
the PVC, but does not change the total capacity of the SFS Turbo file system.
If the SFS Turbo file system's total resource capacity is not enough, the
available capacity of the subPath volume will be restricted. To fix this, you
must increase the resource capacity of the SFS Turbo file system on the SFS
Turbo console.
Deleting the subPath volume does not result in the deletion of the resources
of the SFS Turbo file system.

Creating an SFS Turbo Volume of the subPath Type

Step 1 Create an SFS Turbo file system in the same VPC and subnet as the cluster.

Step 2 Create a YAML file of StorageClass, for example, sfsturbo-subpath-sc.yaml.

The following is an example:

apiVersion: storage.k8s.io/v1
allowVolumeExpansion: true
kind: StorageClass
metadata:
 name: sfsturbo-subpath-sc # Storage class name
mountOptions: #Mount options
- lock
parameters:
 csi.storage.k8s.io/csi-driver-name: sfsturbo.csi.everest.io
 csi.storage.k8s.io/fstype: nfs
 everest.io/archive-on-delete: "true"
 everest.io/share-access-to: 7ca2dba2-1234-1234-1234-626371a8fb3a

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 465

 everest.io/share-expand-type: bandwidth
 everest.io/share-export-location: 192.168.1.1:/sfsturbo/ # Mount directory configuration
 everest.io/share-source: sfs-turbo
 everest.io/share-volume-type: STANDARD
 everest.io/volume-as: subpath
 everest.io/volume-id: 0d773f2e-1234-1234-1234-de6a35074696 # ID of an SFS Turbo volume
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate

In this example:

● name: indicates the name of the StorageClass.
● mountOptions: indicates the mount options. This field is optional.

– In versions later than everest 1.1.13 and earlier than everest 1.2.8, only
the nolock parameter can be configured. By default, the nolock
parameter is used for the mount operation and does not need to be
configured. If nolock is set to false, the lock field is used.

– Starting from everest 1.2.8, more mount options are supported. For
details, see Configuring SFS Turbo Mount Options. Do not set nolock
to true. Otherwise, the mount operation will fail.
mountOptions:
- vers=3
- timeo=600
- nolock
- hard

● everest.io/volume-as: This parameter is set to subpath to use the subPath
volume.

● everest.io/share-access-to: This parameter is optional. In a subPath volume,
set this parameter to the ID of the VPC where the SFS Turbo file system is
located.

● everest.io/share-expand-type: This parameter is optional. If the type of the
SFS Turbo file system is SFS Turbo Standard – Enhanced or SFS Turbo
Performance – Enhanced, set this parameter to bandwidth.

● everest.io/share-export-location: This parameter indicates the mount
directory. It consists of the SFS Turbo shared path and sub-directory. The
shared path can be obtained on the SFS Turbo console. The sub-directory is
user-defined. The PVCs created using the StorageClass are located in this sub-
directory.

● everest.io/share-volume-type: This parameter is optional. It specifies the SFS
Turbo file system type. The value can be STANDARD or PERFORMANCE. For
enhanced types, this parameter must be used together with everest.io/share-
expand-type (whose value should be bandwidth).

● everest.io/zone: This parameter is optional. Set it to the AZ where the SFS
Turbo file system is located.

● everest.io/volume-id: This parameter indicates the ID of the SFS Turbo
volume. You can obtain the volume ID on the SFS Turbo page.

● everest.io/archive-on-delete: If this parameter is set to true and Delete is
selected for Reclaim Policy, the original documents of the PV will be archived
to the directory named archived-{$PV name.timestamp} before the PVC is
deleted. If this parameter is set to false, the SFS Turbo subdirectory of the
corresponding PV will be deleted. The default value is true, indicating that the
original documents of the PV will be archived to the directory named
archived-{$PV name.timestamp} before the PVC is deleted.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 466

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0626.html

Step 3 Run kubectl create -f sfsturbo-subpath-sc.yaml.

Step 4 Create a PVC YAML file named sfs-turbo-test.yaml.

The following is an example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: sfs-turbo-test # PVC name
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 50Gi
 storageClassName: sfsturbo-subpath-sc # Storage class name
 volumeMode: Filesystem

In this example:

● name: indicates the name of the PVC.
● storageClassName: specifies the name of the StorageClass.
● storage: In a subPath volume, modifying the value of this parameter does not

impact the resource capacity of the SFS Turbo file system. A subPath volume
is essentially a file path within an SFS Turbo file system. As a result, increasing
the capacity of the subPath volume in a PVC does not lead to an increase in
the resources of the SFS Turbo file system.

NO TE

The capacity of a subPath volume is restricted by the overall resource capacity of the
corresponding SFS Turbo file system. If the resources of the SFS Turbo file system are
inadequate, you can adjust the resource capacity via the SFS Turbo console.

Step 5 Run kubectl create -f sfs-turbo-test.yaml.

----End

Creating a Deployment and Mounting an Existing Volume

Step 1 Create a YAML file for the Deployment, for example, deployment-test.yaml.

The following is an example:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: test-turbo-subpath-example # Name of the created workload
 namespace: default
 generation: 1
 labels:
 appgroup: ''
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test-turbo-subpath-example
 template:
 metadata:
 labels:
 app: test-turbo-subpath-example
 spec:
 containers:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 467

 - image: nginx:latest # Image of the workload
 name: container-0
 volumeMounts:
 - mountPath: /tmp #Mount path in a container
 name: pvc-sfs-turbo-example
 restartPolicy: Always
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: pvc-sfs-turbo-example
 persistentVolumeClaim:
 claimName: sfs-turbo-test # Name of an existing PVC

In this example:

● name: indicates the name of the created workload.
● image: specifies the image used by the workload.
● mountPath: indicates the mount path of the container. In this example, the

volume is mounted to the /tmp directory.
● claimName: indicates the name of an existing PVC.

Step 2 Create the Deployment.

kubectl create -f deployment-test.yaml

----End

Dynamically Creating a subPath Volume for a StatefulSet

Step 1 Create a YAML file for a StatefulSet, for example, statefulset-test.yaml.

The following is an example:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: test-turbo-subpath # Name of the created workload
 namespace: default
 generation: 1
 labels:
 appgroup: ''
spec:
 replicas: 2
 selector:
 matchLabels:
 app: test-turbo-subpath
 template:
 metadata:
 labels:
 app: test-turbo-subpath
 annotations:
 metrics.alpha.kubernetes.io/custom-endpoints: '[{"api":"","path":"","port":"","names":""}]'
 pod.alpha.kubernetes.io/initialized: 'true'
 spec:
 containers:
 - name: container-0
 image: 'nginx:latest' # Image of the workload
 resources: {}
 volumeMounts:
 - name: sfs-turbo-160024548582479676
 mountPath: /tmp # Mount path in a container
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 imagePullPolicy: IfNotPresent
 restartPolicy: Always

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 468

 terminationGracePeriodSeconds: 30
 dnsPolicy: ClusterFirst
 securityContext: {}
 imagePullSecrets:
 - name: default-secret
 affinity: {}
 schedulerName: default-scheduler
 volumeClaimTemplates:
 - metadata:
 name: sfs-turbo-160024548582479676
 namespace: default
 annotations: {}
 spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: sfsturbo-subpath-sc # Enter the name of a self-managed storage class.
 serviceName: wwww
 podManagementPolicy: OrderedReady
 updateStrategy:
 type: RollingUpdate
 revisionHistoryLimit: 10

In this example:

● name: indicates the name of the created workload.
● image: specifies the image used by the workload.
● mountPath: indicates the mount path of the container. In this example, the

volume is mounted to the /tmp directory.
● spec.template.spec.containers.volumeMounts.name and

spec.volumeClaimTemplates.metadata.name: must be consistent because
they have a mapping relationship.

● storageClassName: specifies the name of an on-premises StorageClass.

Step 2 Create the StatefulSet.

kubectl create -f statefulset-test.yaml

----End

11.4 Changing the Storage Class Used by a Cluster of
v1.15 from FlexVolume to CSI Everest

In clusters later than v1.15.11-r1, CSI (the everest add-on) has taken over all
functions of fuxi FlexVolume (the storage-driver add-on) for managing container
storage. You are advised to use CSI Everest.

To migrate your storage volumes, create a static PV to associate with the original
underlying storage, and then create a PVC to associate with this static PV. When
you upgrade your application, mount the new PVC to the original mounting path
to migrate the storage volumes.

WARNING

Services will be interrupted during the migration. Therefore, properly plan the
migration and back up data.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 469

Procedure

Step 1 (Optional) Back up data to prevent data loss in case of exceptions.

Step 2 Configure a YAML file of the PV in the CSI format according to the PV in the
FlexVolume format and associate the PV with the existing storage.

To be specific, run the following commands to configure the pv-example.yaml file,
which is used to create a PV.

touch pv-example.yaml

vi pv-example.yaml

Configuration example of a PV for an EVS volume:
apiVersion: v1
kind: PersistentVolume
metadata:
 labels:
 failure-domain.beta.kubernetes.io/region: ap-southeast-1
 failure-domain.beta.kubernetes.io/zone: <zone name>
 annotations:
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
 name: pv-evs-example
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 10Gi
 csi:
 driver: disk.csi.everest.io
 fsType: ext4
 volumeAttributes:
 everest.io/disk-mode: SCSI
 everest.io/disk-volume-type: SAS
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 volumeHandle: 0992dbda-6340-470e-a74e-4f0db288ed82
 persistentVolumeReclaimPolicy: Delete
 storageClassName: csi-disk

Pay attention to the fields in bold and red. The parameters are described as
follows:

Table 11-8 EVS volume configuration parameters

Parameter Description

failure-
domain.beta.kuber
netes.io/region

Region where the EVS disk is located. Use the same value
as that of the FlexVolume PV.

failure-
domain.beta.kuber
netes.io/zone

AZ where the EVS disk is located. Use the same value as
that of the FlexVolume PV.

name Name of the PV, which must be unique in the cluster.

storage EVS volume capacity in the unit of Gi. Use the value of
spec.capacity.storage of the FlexVolume PV.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 470

Parameter Description

driver Storage driver used to attach the volume. Set the driver to
disk.csi.everest.io for the EVS volume.

volumeHandle Volume ID of the EVS disk. Use the value of
spec.flexVolume.options.volumeID of the FlexVolume PV.

everest.io/disk-
mode

EVS disk mode. Use the value of
spec.flexVolume.options.disk-mode of the FlexVolume
PV.

everest.io/disk-
volume-type

EVS disk type. Currently, high I/O (SAS) and ultra-high I/O
(SSD) are supported. Use the value of kubernetes.io/
volumetype in the storage class corresponding to
spec.storageClassName of the FlexVolume PV.

storageClassName Name of the Kubernetes storage class associated with the
storage volume. Set this field to csi-disk for EVS disks.

Configuration example of a PV for an SFS volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-sfs-example
 annotations:
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 10Gi
 csi:
 driver: nas.csi.everest.io
 fsType: nfs
 volumeAttributes:
 everest.io/share-export-location: sfs-nas01.ap-southeast-1.myhuaweicloud.com:/share-436304e8
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 volumeHandle: 682f00bb-ace0-41d8-9b3e-913c9aa6b695
 persistentVolumeReclaimPolicy: Delete
 storageClassName: csi-nas

Pay attention to the fields in bold and red. The parameters are described as
follows:

Table 11-9 SFS volume configuration parameters

Parameter Description

name Name of the PV, which must be unique in the cluster.

storage File storage size in the unit of Gi. Use the value of
spec.capacity.storage of the FlexVolume PV.

driver Storage driver used to attach the volume. Set the driver to
nas.csi.everest.io for the file system.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 471

Parameter Description

everest.io/share-
export-location

Shared path of the file system. Use the value of
spec.flexVolume.options.deviceMountPath of the
FlexVolume PV.

volumeHandle File system ID. Use the value of
spec.flexVolume.options.volumeID of the FlexVolume PV.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
nas.

Configuration example of a PV for an OBS volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-obs-example
 annotations:
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 csi:
 driver: obs.csi.everest.io
 fsType: s3fs
 volumeAttributes:
 everest.io/obs-volume-type: STANDARD
 everest.io/region: ap-southeast-1
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 volumeHandle: obs-normal-static-pv
 persistentVolumeReclaimPolicy: Delete
 storageClassName: csi-obs

Pay attention to the fields in bold and red. The parameters are described as
follows:

Table 11-10 OBS volume configuration parameters

Parameter Description

name Name of the PV, which must be unique in the cluster.

storage Storage capacity, in the unit of Gi. Set this parameter to
the fixed value 1Gi.

driver Storage driver used to attach the volume. Set the driver to
obs.csi.everest.io for the OBS volume.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 472

Parameter Description

fsType File type. Value options are obsfs or s3fs. If the value is
s3fs, an OBS bucket is created and mounted using s3fs. If
the value is obsfs, an OBS parallel file system is created
and mounted using obsfs. Set this parameter according to
the value of spec.flexVolume.options.posix of the
FlexVolume PV. If the value of
spec.flexVolume.options.posix is true, set this parameter
to obsfs. If the value is false, set this parameter to s3fs.

everest.io/obs-
volume-type

Storage class, including STANDARD (standard bucket) and
WARM (infrequent access bucket). Set this parameter
according to the value of
spec.flexVolume.options.storage_class of the FlexVolume
PV. If the value of spec.flexVolume.options.storage_class
is standard, set this parameter to STANDARD. If the value
is standard_ia, set this parameter to WARM.

everest.io/region Region where the OBS bucket is located. Use the value of
spec.flexVolume.options.region of the FlexVolume PV.

volumeHandle OBS bucket name. Use the value of
spec.flexVolume.options.volumeID of the FlexVolume PV.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
obs.

Configuration example of a PV for an SFS Turbo volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-efs-example
 annotations:
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 10Gi
 csi:
 driver: sfsturbo.csi.everest.io
 fsType: nfs
 volumeAttributes:
 everest.io/share-export-location: 192.168.0.169:/
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 volumeHandle: 8962a2a2-a583-4b7f-bb74-fe76712d8414
 persistentVolumeReclaimPolicy: Delete
 storageClassName: csi-sfsturbo

Pay attention to the fields in bold and red. The parameters are described as
follows:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 473

Table 11-11 SFS Turbo volume configuration parameters

Parameter Description

name Name of the PV, which must be unique in the cluster.

storage File system size. Use the value of spec.capacity.storage of
the FlexVolume PV.

driver Storage driver used to attach the volume. Set it to
sfsturbo.csi.everest.io.

everest.io/share-
export-location

Shared path of the SFS Turbo volume. Use the value of
spec.flexVolume.options.deviceMountPath of the
FlexVolume PV.

volumeHandle SFS Turbo volume ID. Use the value of
spec.flexVolume.options.volumeID of the FlexVolume PV.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
sfsturbo for SFS Turbo volumes.

Step 3 Configure a YAML file of the PVC in the CSI format according to the PVC in the
FlexVolume format and associate the PVC with the PV created in Step 2.

To be specific, run the following commands to configure the pvc-example.yaml
file, which is used to create a PVC.

touch pvc-example.yaml

vi pvc-example.yaml

Configuration example of a PVC for an EVS volume:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 labels:
 failure-domain.beta.kubernetes.io/region: ap-southeast-1
 failure-domain.beta.kubernetes.io/zone: <zone name>
 annotations:
 everest.io/disk-volume-type: SAS
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
 name: pvc-evs-example
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 volumeName: pv-evs-example
 storageClassName: csi-disk

Pay attention to the fields in bold and red. The parameters are described as
follows:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 474

Table 11-12 PVC configuration parameters for an EVS volume

Parameter Description

failure-
domain.beta.kuber
netes.io/region

Region where the cluster is located. Use the same value as
that of the FlexVolume PVC.

failure-
domain.beta.kuber
netes.io/zone

AZ where the EVS disk is deployed. Use the same value as
that of the FlexVolume PVC.

everest.io/disk-
volume-type

Storage class of the EVS disk. The value can be SAS or
SSD. Set this parameter to the same value as that of the
PV created in Step 2.

name PVC name, which must be unique in the namespace. The
value must be unique in the namespace. (If the PVC is
dynamically created by a stateful application, the value of
this parameter must be the same as the name of the
FlexVolume PVC.)

namespace Namespace to which the PVC belongs. Use the same value
as that of the FlexVolume PVC.

storage Requested capacity of the PVC, which must be the same
as the storage size of the existing PV.

volumeName Name of the PV. Set this parameter to the name of the
static PV in Step 2.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
disk for EVS disks.

Configuration example of a PVC for an SFS volume:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
 name: pvc-sfs-example
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-nas
 volumeName: pv-sfs-example

Pay attention to the fields in bold and red. The parameters are described as
follows:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 475

Table 11-13 PVC configuration parameters for an SFS volume

Parameter Description

name PVC name, which must be unique in the namespace. The
value must be unique in the namespace. (If the PVC is
dynamically created by a stateful application, the value of
this parameter must be the same as the name of the
FlexVolume PVC.)

namespace Namespace to which the PVC belongs. Use the same value
as that of the FlexVolume PVC.

storage Storage capacity, in the unit of Gi. The value must be the
same as the storage size of the existing PV.

storageClassName Set this field to csi-nas.

volumeName Name of the PV. Set this parameter to the name of the
static PV in Step 2.

Configuration example of a PVC for an OBS volume:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
 everest.io/obs-volume-type: STANDARD
 csi.storage.k8s.io/fstype: s3fs
 name: pvc-obs-example
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-obs
 volumeName: pv-obs-example

Pay attention to the fields in bold and red. The parameters are described as
follows:

Table 11-14 PVC configuration parameters for an OBS volume

Parameter Description

everest.io/obs-
volume-type

OBS volume type, which can be STANDARD (standard
bucket) and WARM (infrequent access bucket). Set this
parameter to the same value as that of the PV created in
Step 2.

csi.storage.k8s.io/
fstype

File type, which can be obsfs or s3fs. The value must be
the same as that of fsType of the static OBS volume PV.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 476

Parameter Description

name PVC name, which must be unique in the namespace. The
value must be unique in the namespace. (If the PVC is
dynamically created by a stateful application, the value of
this parameter must be the same as the name of the
FlexVolume PVC.)

namespace Namespace to which the PVC belongs. Use the same value
as that of the FlexVolume PVC.

storage Storage capacity, in the unit of Gi. Set this parameter to
the fixed value 1Gi.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
obs.

volumeName Name of the PV. Set this parameter to the name of the
static PV created in Step 2.

Configuration example of a PVC for an SFS Turbo volume:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
 name: pvc-efs-example
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-sfsturbo
 volumeName: pv-efs-example

Pay attention to the fields in bold and red. The parameters are described as
follows:

Table 11-15 PVC configuration parameters for an SFS Turbo volume

Parameter Description

name PVC name, which must be unique in the namespace. The
value must be unique in the namespace. (If the PVC is
dynamically created by a stateful application, the value of
this parameter must be the same as the name of the
FlexVolume PVC.)

namespace Namespace to which the PVC belongs. Use the same value
as that of the FlexVolume PVC.

storageClassName Name of the Kubernetes storage class. Set this field to csi-
sfsturbo.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 477

Parameter Description

storage Storage capacity, in the unit of Gi. The value must be the
same as the storage size of the existing PV.

volumeName Name of the PV. Set this parameter to the name of the
static PV created in Step 2.

Step 4 Upgrade the workload to use a new PVC.

For Deployments

1. Run the kubectl create -f commands to create a PV and PVC.
kubectl create -f pv-example.yaml
kubectl create -f pvc-example.yaml

NO TE

Replace the example file name pvc-example.yaml in the preceding commands with
the names of the YAML files configured in Step 2 and Step 3.

2. Go to the CCE console. On the workload upgrade page, click Upgrade >
Advanced Settings > Data Storage > Cloud Storage.

3. Uninstall the old storage and add the PVC in the CSI format. Retain the
original mounting path in the container.

4. Click Submit.
5. Wait until the pods are running.

For StatefulSets that use existing storage

1. Run the kubectl create -f commands to create a PV and PVC.
kubectl create -f pv-example.yaml
kubectl create -f pvc-example.yaml

NO TE

Replace the example file name pvc-example.yaml in the preceding commands with
the names of the YAML files configured in Step 2 and Step 3.

2. Run the kubectl edit command to edit the StatefulSet and use the newly
created PVC.
kubectl edit sts sts-example -n xxx

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 478

NO TE

Replace sts-example in the preceding command with the actual name of the
StatefulSet to upgrade. xxx indicates the namespace to which the StatefulSet belongs.

3. Wait until the pods are running.

NO TE

The current console does not support the operation of adding new cloud storage for
StatefulSets. Use the kubectl commands to replace the storage with the newly created PVC.

For StatefulSets that use dynamically allocated storage

1. Back up the PV and PVC in the flexVolume format used by the StatefulSet.
kubectl get pvc xxx -n {namespaces} -oyaml > pvc-backup.yaml
kubectl get pv xxx -n {namespaces} -oyaml > pv-backup.yaml

2. Change the number of pods to 0.
3. On the storage page, disassociate the flexVolume PVC used by the StatefulSet.
4. Run the kubectl create -f commands to create a PV and PVC.

kubectl create -f pv-example.yaml
kubectl create -f pvc-example.yaml

NO TE

Replace the example file name pvc-example.yaml in the preceding commands with
the names of the YAML files configured in Step 2 and Step 3.

5. Change the number of pods back to the original value and wait until the pods
are running.

NO TE

The dynamic allocation of storage for StatefulSets is achieved by using
volumeClaimTemplates. This field cannot be modified by Kubernetes. Therefore, data
cannot be migrated by using a new PVC.
The PVC naming rule of the volumeClaimTemplates is fixed. When a PVC that meets the
naming rule exists, this PVC is used.
Therefore, disassociate the original PVC first and then create a PVC with the same name in
the CSI format.

6. (Optional) Recreate the stateful application to ensure that a CSI PVC is used
when the application is scaled out. Otherwise, FlexVolume PVCs are used in
scaling out.

● Run the following command to obtain the YAML file of the StatefulSet:

kubectl get sts xxx -n {namespaces} -oyaml > sts.yaml

● Run the following command to back up the YAML file of the StatefulSet:

cp sts.yaml sts-backup.yaml

● Modify the definition of volumeClaimTemplates in the YAML file of the
StatefulSet.

vi sts.yaml

Configuration example of volumeClaimTemplates for an EVS volume:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 479

 volumeClaimTemplates:
 - metadata:
 name: pvc-161070049798261342
 namespace: default
 creationTimestamp: null
 annotations:
 everest.io/disk-volume-type: SAS
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk

The parameter value must be the same as the PVC of the EVS volume created in
Step 3.

Configuration example of volumeClaimTemplates for an SFS volume:

 volumeClaimTemplates:
 - metadata:
 name: pvc-161063441560279697
 namespace: default
 creationTimestamp: null
 spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-nas

The parameter value must be the same as the PVC of the SFS volume created in
Step 3.

Configuration example of volumeClaimTemplates for an OBS volume:

 volumeClaimTemplates:
 - metadata:
 name: pvc-161070100417416148
 namespace: default
 creationTimestamp: null
 annotations:
 csi.storage.k8s.io/fstype: s3fs
 everest.io/obs-volume-type: STANDARD
 spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-obs

The parameter value must be the same as the PVC of the OBS volume created in
Step 3.

● Delete the StatefulSet.

kubectl delete sts xxx -n {namespaces}

● Create the StatefulSet.

kubectl create -f sts.yaml

Step 5 Check service functions.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 480

1. Check whether the application is running properly.
2. Checking whether the data storage is normal.

NO TE

If a rollback is required, perform Step 4. Select the PVC in FlexVolume format and upgrade
the application.

Step 6 Uninstall the PVC in the FlexVolume format.

If the application functions normally, unbind the PVC in the FlexVolume format on
the storage management page.

You can also run the kubectl command to delete the PVC and PV of the
FlexVolume format.

CA UTION

Before deleting a PV, change the persistentVolumeReclaimPolicy of the PV to
Retain. Otherwise, the underlying storage will be reclaimed after the PV is
deleted.
If the cluster has been upgraded before the storage migration, PVs may fail to be
deleted. You can remove the PV protection field finalizers to delete PVs.
kubectl patch pv {pv_name} -p '{"metadata":{"finalizers":null}}'

----End

11.5 Using Custom Storage Classes

Background
When using storage resources in CCE, the most common method is to specify
storageClassName to define the type of storage resources to be created when
creating a PVC. The following configuration shows how to use a PVC to apply for
an SAS (high I/O) EVS disk (block storage).

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-evs-example
 namespace: default
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk

To specify the EVS disk type, you can configure the everest.io/disk-volume-type
field. The value SAS is used as an example here, indicating the high I/O EVS disk
type. Or you can choose SSD (ultra-high I/O).

This configuration method may not work if you want to:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 481

● Set storageClassName only, which is simpler than specifying the EVS disk
type by using everest.io/disk-volume-type.

● Avoid modifying YAML files or Helm charts. Some users switch from self-built
or other Kubernetes services to CCE and have written YAML files of many
applications. In these YAML files, different types of storage resources are
specified by different StorageClassNames. When using CCE, they need to
modify a large number of YAML files or Helm charts to use storage resources,
which is labor-consuming and error-prone.

● Set the default storageClassName for all applications to use the default
storage class. In this way, you can create storage resources of the default type
without needing to specify storageClassName in the YAML file.

Solution
This section describes how to set a custom storage class in CCE and how to set the
default storage class. You can specify different types of storage resources by
setting storageClassName.

● For the first scenario, you can define custom storageClassNames for SAS and
SSD EVS disks. For example, define a storage class named csi-disk-sas for
creating SAS disks. The following figure shows the differences before and
after you use a custom storage class.

● For the second scenario, you can define a storage class with the same name
as that in the existing YAML file without needing to modify
storageClassName in the YAML file.

● For the third scenario, you can set the default storage class as described
below to create storage resources without specifying storageClassName in
YAML files.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-evs-example
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 482

Creating a StorageClass Using a YAML File
As of now, CCE provides StorageClasses such as csi-disk, csi-nas, and csi-obs by
default. When defining a PVC, you can use a StorageClassName to automatically
create a PV of the corresponding type and automatically create underlying storage
resources.

Run the following kubectl command to obtain the StorageClasses that CCE
supports. Use the CSI add-on provided by CCE to create a StorageClass.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d # EVS disk
csi-disk-topology everest-csi-provisioner 17d # EVS disks created with delay
csi-nas everest-csi-provisioner 17d # SFS 1.0
csi-sfs everest-csi-provisioner 17d # SFS 3.0
csi-obs everest-csi-provisioner 17d # OBS
csi-sfsturbo everest-csi-provisioner 17d # SFS Turbo
csi-local everest-csi-provisioner 17d # Local PV
csi-local-topology everest-csi-provisioner 17d # Local PV created with delay

Each StorageClass contains the default parameters used for dynamically creating a
PV. The following is an example of StorageClass for EVS disks:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-disk
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS
 everest.io/passthrough: 'true'
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

Table 11-16 Key parameters

Parameter Description

provisioner Specifies the storage resource provider, which is the Everest add-
on for CCE. Set this parameter to everest-csi-provisioner.

parameters Specifies the storage parameters, which vary with storage types.
For details, see Table 11-17.

reclaimPolicy Specifies the value of persistentVolumeReclaimPolicy for
creating a PV. The value can be Delete or Retain. If
reclaimPolicy is not specified when a StorageClass object is
created, the value defaults to Delete.
● Delete: When a PVC is deleted, its associated underlying

storage resources will be deleted and the PV resources will be
removed. Exercise caution if you select this option.

● Retain: When a PVC is deleted, both of the PV and its
associated underlying storage resources will be retained and
the PV is marked as released. If you manually delete the PV
afterwards, the underlying storage resources will not be
deleted. To bind the PV to a new PVC, you need to remove
the original binding information from the PV.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 483

Parameter Description

allowVolume
Expansion

Specifies whether the PV of this StorageClass supports dynamic
capacity expansion. The default value is false. Dynamic capacity
expansion is implemented by the underlying storage add-on.
This is only a switch.

volumeBindi
ngMode

Specifies the volume binding mode, that is, the time when a PV
is dynamically created. The value can be Immediate or
WaitForFirstConsumer.
● Immediate: After a PVC is created, the storage resources and

PV will be created and associated with the PVC without delay.
● WaitForFirstConsumer: After a PVC is created, it will not be

immediately bound to a PV. Instead, the storage resources
and PV will be generated and bound to the PVC only after
the pod that requires the PVC is scheduled.

mountOptio
ns

This field must be supported by the underlying storage. If this
field is not supported but is specified, the PV creation will fail.

Table 11-17 Parameters

Volum
e Type

Parameter Mandat
ory

Description

EVS csi.storage.k8s.io/
csi-driver-name

Yes Driver type. If an EVS disk is used, the
parameter value is fixed at
disk.csi.everest.io.

csi.storage.k8s.io/
fstype

Yes If an EVS disk is used, the parameter
value can be ext4.

everest.io/disk-
volume-type

Yes EVS disk type. All letters are in
uppercase.
● SAS: high I/O
● SSD: ultra-high I/O
● GPSSD: general-purpose SSD
● ESSD: extreme SSD
● GPSSD2: general-purpose SSD v2,

which is supported when the Everest
version is 2.4.4 or later and the
everest.io/disk-iops and everest.io/
disk-throughput annotations are
configured

everest.io/
passthrough

Yes The parameter value is fixed at true,
which indicates that the EVS device
type is SCSI. Other parameter values
are not allowed.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 484

Volum
e Type

Parameter Mandat
ory

Description

everest.io/disk-
iops

No Preconfigured IOPS, which is supported
only by general-purpose SSD v2 and
extreme SSD v2 EVS disks.
● The IOPS of general-purpose SSD v2

EVS disks ranges from 3000 to
128000, and the maximum value is
500 times of the capacity (GiB).
If the IOPS of general-purpose SSD
v2 disks is greater than 3000, extra
IOPS will be billed. For details, see
Price Calculator.

● The IOPS of extreme SSD v2 disks
ranges from 100 to 256000, and the
maximum value is 1000 times of the
capacity (GiB).
The IOPS of extreme SSD v2 disks
will be billed separately. For details,
see Price Calculator.

everest.io/disk-
throughput

No Preconfigured throughput, which is
supported only by general-purpose SSD
v2 EVS disks.
The value ranges from 125 MiB/s to
1000 MiB/s. The maximum value is a
quarter of IOPS.
If the throughput is greater than 125
MiB/s, extra throughput will be billed.
For details, see Price Calculator.

SFS csi.storage.k8s.io/
csi-driver-name

Yes Driver type. If SFS is used, the
parameter value is fixed at
nas.csi.everest.io.

csi.storage.k8s.io/
fstype

Yes If SFS is used, the value can be nfs.

everest.io/share-
access-level

Yes The parameter value is fixed at rw,
indicating that the SFS data is readable
and writable.

everest.io/share-
access-to

Yes VPC ID of the cluster.

everest.io/share-
is-public

No The parameter value is fixed at false,
indicating that the file is shared to
private.
When you use SFS 3.0, there is no need
to configure this parameter.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 485

https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/evs
https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/evs
https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/evs

Volum
e Type

Parameter Mandat
ory

Description

everest.io/sfs-
version

No This parameter is only required for SFS
3.0 and its value is fixed at sfs3.0.

SFS
Turbo

csi.storage.k8s.io/
csi-driver-name

Yes Driver type. If SFS Turbo is used, the
parameter value is fixed at
sfsturbo.csi.everest.io.

csi.storage.k8s.io/
fstype

Yes If SFS Turbo is used, the value can be
nfs.

everest.io/share-
access-to

Yes VPC ID of the cluster.

everest.io/share-
expand-type

No Extension type. The default value is
bandwidth, indicating an enhanced file
system. This parameter does not take
effect.

everest.io/share-
source

Yes The parameter value is fixed at sfs-
turbo.

everest.io/share-
volume-type

No SFS Turbo StorageClass. The default
value is STANDARD, indicating
standard and standard enhanced
editions. This parameter does not take
effect.

OBS csi.storage.k8s.io/
csi-driver-name

Yes Driver type. If OBS is used, the
parameter value is fixed at
obs.csi.everest.io.

csi.storage.k8s.io/
fstype

Yes Instance type, which can be obsfs or
s3fs.
● obsfs: a parallel file system
● s3fs: object bucket

everest.io/obs-
volume-type

Yes OBS StorageClass.
● If fsType is set to s3fs, STANDARD

(standard bucket) and WARM
(infrequent access bucket) are
supported.

● This parameter is invalid when
fsType is set to obsfs.

Custom Storage Classes
You can customize a high I/O storage class in a YAML file. For example, the name
csi-disk-sas indicates that the disk type is SAS (high I/O).

apiVersion: storage.k8s.io/v1
kind: StorageClass

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 486

metadata:
 name: csi-disk-sas # Name of the high I/O storage class, which can be customized.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS # High I/O EVS disk type, which cannot be customized.
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true # true indicates that capacity expansion is allowed.

For an ultra-high I/O storage class, you can set the class name to csi-disk-ssd to
create SSD EVS disk (ultra-high I/O).

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-ssd # Name of the ultra-high I/O storage class, which can be customized.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SSD # Ultra-high I/O EVS disk type, which cannot be customized.
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

reclaimPolicy: indicates the recycling policies of the underlying cloud storage. The
value can be Delete or Retain.

● Delete: When a PVC is deleted, both the PV and the EVS disk are deleted.
● Retain: When a PVC is deleted, the PV and underlying storage resources are

not deleted. Instead, you must manually delete these resources. After that,
the PV resource is in the Released state and cannot be bound to the PVC
again.

NO TE

The reclamation policy configured here has no impact on the SFS Turbo storage and the
subscribed SFS Turbo resources will not be reclaimed.

If high data security is required, you are advised to select Retain to prevent data
from being deleted by mistake.

After the definition is complete, run the kubectl create commands to create
storage resources.

kubectl create -f sas.yaml
storageclass.storage.k8s.io/csi-disk-sas created
kubectl create -f ssd.yaml
storageclass.storage.k8s.io/csi-disk-ssd created

Query the storage class again. Two more types of storage classes are displayed in
the command output, as shown below.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d
csi-disk-sas everest-csi-provisioner 2m28s
csi-disk-ssd everest-csi-provisioner 16s
csi-disk-topology everest-csi-provisioner 17d
csi-nas everest-csi-provisioner 17d
csi-obs everest-csi-provisioner 17d
csi-sfsturbo everest-csi-provisioner 17d

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 487

Other types of storage resources can be defined in the similar way. You can use
kubectl to obtain the YAML file and modify it as required.

● File storage
kubectl get sc csi-nas -oyaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-nas
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: nas.csi.everest.io
 csi.storage.k8s.io/fstype: nfs
 everest.io/share-access-level: rw
 everest.io/share-access-to: 5e3864c6-e78d-4d00-b6fd-de09d432c632 # ID of the VPC to which the
cluster belongs
 everest.io/share-is-public: 'false'
 everest.io/zone: xxxxx # AZ
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

● Object storage
kubectl get sc csi-obs -oyaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-obs
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: obs.csi.everest.io
 csi.storage.k8s.io/fstype: s3fs # Object storage type. s3fs indicates an object bucket, and obsfs
indicates a parallel file system.
 everest.io/obs-volume-type: STANDARD # Storage class of the OBS bucket
reclaimPolicy: Delete
volumeBindingMode: Immediate

Specifying an Enterprise Project for Storage Classes
CCE allows you to specify an enterprise project when creating EVS disks and OBS
PVCs. The created storage resources (EVS disks and OBS) belong to the specified
enterprise project. The enterprise project can be the enterprise project to
which the cluster belongs or the default enterprise project.

If you do not specify any enterprise project, the enterprise project in StorageClass
is used by default. The created storage resources by using the csi-disk and csi-obs
storage classes of CCE belong to the default enterprise project.

If you want the storage resources created from the storage classes to be in the
same enterprise project as the cluster, you can customize a storage class and
specify the enterprise project ID, as shown below.

NO TE

To use this function, the everest add-on must be upgraded to 1.2.33 or later.
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-disk-epid #Customize a storage class name.
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS
 everest.io/enterprise-project-id: 86bfc701-9d9e-4871-a318-6385aa368183 #Specify the enterprise project

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 488

ID.
 everest.io/passthrough: 'true'
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

Specifying a Default Storage Class
You can specify a storage class as the default class. In this way, if you do not
specify storageClassName when creating a PVC, the PVC is created using the
default storage class.

For example, to specify csi-disk-ssd as the default storage class, edit your YAML
file as follows:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-ssd
 annotations:
 storageclass.kubernetes.io/is-default-class: "true" # Specifies the default storage class in a cluster. A
cluster can have only one default storage class.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SSD
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

Delete the created csi-disk-ssd disk, run the kubectl create command to create a
csi-disk-ssd disk again, and then query the storage class. The following
information is displayed.
kubectl delete sc csi-disk-ssd
storageclass.storage.k8s.io "csi-disk-ssd" deleted
kubectl create -f ssd.yaml
storageclass.storage.k8s.io/csi-disk-ssd created
kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d
csi-disk-sas everest-csi-provisioner 114m
csi-disk-ssd (default) everest-csi-provisioner 9s
csi-disk-topology everest-csi-provisioner 17d
csi-nas everest-csi-provisioner 17d
csi-obs everest-csi-provisioner 17d
csi-sfsturbo everest-csi-provisioner 17d

Verification
● Use csi-disk-sas to create a PVC.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: sas-disk
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-sas

Create a storage class and view its details. As shown below, the object can be
created and the value of STORAGECLASS is csi-disk-sas.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 489

kubectl create -f sas-disk.yaml
persistentvolumeclaim/sas-disk created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
sas-disk Bound pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO csi-disk-sas
24s
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO Delete Bound default/
sas-disk csi-disk-sas 30s

View the PVC details on the CCE console. On the PV details page, you can see
that the disk type is high I/O.

● If storageClassName is not specified, the default configuration is used, as
shown below.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ssd-disk
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Create and view the storage resource. You can see that the storage class of
PVC ssd-disk is csi-disk-ssd, indicating that csi-disk-ssd is used by default.
kubectl create -f ssd-disk.yaml
persistentvolumeclaim/ssd-disk created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
sas-disk Bound pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO csi-disk-sas
16m
ssd-disk Bound pvc-4d2b059c-0d6c-44af-9994-f74d01c78731 10Gi RWO csi-disk-ssd
10s
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-4d2b059c-0d6c-44af-9994-f74d01c78731 10Gi RWO Delete Bound
default/ssd-disk csi-disk-ssd 15s
pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO Delete Bound default/
sas-disk csi-disk-sas 17m

View the PVC details on the CCE console. On the PV details page, you can see
that the disk type is ultra-high I/O.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 490

11.6 Scheduling EVS Disks Across AZs Using csi-disk-
topology

Background

EVS disks cannot be attached to a node deployed in another AZ. For example, the
EVS disks in AZ 1 cannot be attached to a node in AZ 2. If the storage class csi-
disk is used for StatefulSets, when a StatefulSet is scheduled, a PVC and a PV are
created immediately (an EVS disk is created along with the PV), and then the PVC
is bound to the PV. However, when the cluster nodes are located in multiple AZs,
the EVS disk created by the PVC and the node to which the pods are scheduled
may be in different AZs. As a result, the pods fail to be scheduled.

Solution

CCE provides a storage class named csi-disk-topology, which is a late-binding EVS
disk type. When you use this storage class to create a PVC, no PV will be created
in pace with the PVC. Instead, the PV is created in the AZ of the node where the
pod will be scheduled. An EVS disk is then created in the same AZ to ensure that
the EVS disk can be attached and the pod can be successfully scheduled.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 491

Failed Pod Scheduling Due to csi-disk Used in Cross-AZ Node Deployment

Create a cluster with three nodes in different AZs.

Use the csi-disk storage class to create a StatefulSet and check whether the
workload is successfully created.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
spec:
 serviceName: nginx # Name of the headless Service
 replicas: 4
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 600m
 memory: 200Mi
 requests:
 cpu: 600m
 memory: 200Mi
 volumeMounts: # Storage mounted to the pod
 - name: data
 mountPath: /usr/share/nginx/html # Mount the storage to /usr/share/nginx/html.
 imagePullSecrets:
 - name: default-secret
 volumeClaimTemplates:
 - metadata:
 name: data
 annotations:
 everest.io/disk-volume-type: SAS
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-disk

The StatefulSet uses the following headless Service.

apiVersion: v1
kind: Service # Object type (Service)
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Port number for communication between pods
 selector:
 app: nginx # Select the pod whose label is app:nginx.
 clusterIP: None # Set this parameter to None, indicating the headless Service.

After the creation, check the PVC and pod status. In the following output, the PVC
has been created and bound successfully, and a pod is in the Pending state.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 492

kubectl get pvc -owide
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE VOLUMEMODE
data-nginx-0 Bound pvc-04e25985-fc93-4254-92a1-1085ce19d31e 1Gi RWO csi-disk
64s Filesystem
data-nginx-1 Bound pvc-0ae6336b-a2ea-4ddc-8f63-cfc5f9efe189 1Gi RWO csi-disk
47s Filesystem
data-nginx-2 Bound pvc-aa46f452-cc5b-4dbd-825a-da68c858720d 1Gi RWO csi-disk
30s Filesystem
data-nginx-3 Bound pvc-3d60e532-ff31-42df-9e78-015cacb18a0b 1Gi RWO csi-disk
14s Filesystem

kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
nginx-0 1/1 Running 0 2m25s 172.16.0.12 192.168.0.121 <none> <none>
nginx-1 1/1 Running 0 2m8s 172.16.0.136 192.168.0.211 <none> <none>
nginx-2 1/1 Running 0 111s 172.16.1.7 192.168.0.240 <none> <none>
nginx-3 0/1 Pending 0 95s <none> <none> <none> <none>

The event information of the pod shows that the scheduling fails due to no
available node. Two nodes (in AZ 1 and AZ 2) do not have sufficient CPUs, and the
created EVS disk is not in the AZ where the third node (in AZ 3) is located. As a
result, the pod cannot use the EVS disk.

kubectl describe pod nginx-3
Name: nginx-3
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 111s default-scheduler 0/3 nodes are available: 3 pod has unbound
immediate PersistentVolumeClaims.
 Warning FailedScheduling 111s default-scheduler 0/3 nodes are available: 3 pod has unbound
immediate PersistentVolumeClaims.
 Warning FailedScheduling 28s default-scheduler 0/3 nodes are available: 1 node(s) had volume node
affinity conflict, 2 Insufficient cpu.

Check the AZ where the EVS disk created from the PVC is located. It is found that
data-nginx-3 is in AZ 1. In this case, the node in AZ 1 has no resources, and only
the node in AZ 3 has CPU resources. As a result, the scheduling fails. Therefore,
there should be a delay between creating the PVC and binding the PV.

Storage Class for Delayed Binding

If you check the cluster storage class, you can see that the binding mode of csi-
disk-topology is WaitForFirstConsumer, indicating that a PV is created and bound
when a pod uses the PVC. That is, the PV and the underlying storage resources are
created based on the pod information.

kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
csi-disk everest-csi-provisioner Delete Immediate true 156m
csi-disk-topology everest-csi-provisioner Delete WaitForFirstConsumer true
156m
csi-nas everest-csi-provisioner Delete Immediate true 156m
csi-obs everest-csi-provisioner Delete Immediate false 156m
csi-sfsturbo everest-csi-provisioner Delete Immediate true 156m

VOLUMEBINDINGMODE is displayed if your cluster is v1.19. It is not displayed in
clusters of v1.17 or v1.15.

You can also view the binding mode in the csi-disk-topology details.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 493

kubectl describe sc csi-disk-topology
Name: csi-disk-topology
IsDefaultClass: No
Annotations: <none>
Provisioner: everest-csi-provisioner
Parameters: csi.storage.k8s.io/csi-driver-name=disk.csi.everest.io,csi.storage.k8s.io/
fstype=ext4,everest.io/disk-volume-type=SAS,everest.io/passthrough=true
AllowVolumeExpansion: True
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: <none>

Create PVCs of the csi-disk and csi-disk-topology classes. Observe the differences
between these two types of PVCs.

● csi-disk
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: disk
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk # StorageClass

● csi-disk-topology
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: topology
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-topology # StorageClass

View the PVC details. As shown below, the csi-disk PVC is in Bound state and the
csi-disk-topology PVC is in Pending state.

kubectl create -f pvc1.yaml
persistentvolumeclaim/disk created
kubectl create -f pvc2.yaml
persistentvolumeclaim/topology created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
disk Bound pvc-88d96508-d246-422e-91f0-8caf414001fc 10Gi RWO csi-disk
18s
topology Pending csi-disk-topology 2s

View details about the csi-disk-topology PVC. You can see that "waiting for first
consumer to be created before binding" is displayed in the event, indicating that
the PVC is bound after the consumer (pod) is created.

kubectl describe pvc topology
Name: topology
Namespace: default
StorageClass: csi-disk-topology
Status: Pending

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 494

Volume:
Labels: <none>
Annotations: everest.io/disk-volume-type: SAS
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal WaitForFirstConsumer 5s (x3 over 30s) persistentvolume-controller waiting for first
consumer to be created before binding

Create a workload that uses the PVC. Set the PVC name to topology.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 volumeMounts:
 - mountPath: /tmp # Mount path
 name: topology-example
 restartPolicy: Always
 volumes:
 - name: topology-example
 persistentVolumeClaim:
 claimName: topology # PVC name

After the PVC is created, check the PVC details. You can see that the PVC is bound
successfully.

kubectl describe pvc topology
Name: topology
Namespace: default
StorageClass: csi-disk-topology
Status: Bound
....
Used By: nginx-deployment-fcd9fd98b-x6tbs
Events:
 Type Reason Age
From Message
 ---- ------ ----
---- -------
 Normal WaitForFirstConsumer 84s (x26 over 7m34s) persistentvolume-
controller waiting for first consumer to be created before
binding
 Normal Provisioning 54s everest-csi-provisioner_everest-csi-
controller-7965dc48c4-5k799_2a6b513e-f01f-4e77-af21-6d7f8d4dbc98 External provisioner is provisioning
volume for claim "default/topology"
 Normal ProvisioningSucceeded 52s everest-csi-provisioner_everest-csi-
controller-7965dc48c4-5k799_2a6b513e-f01f-4e77-af21-6d7f8d4dbc98 Successfully provisioned volume
pvc-9a89ea12-4708-4c71-8ec5-97981da032c9

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 495

Using csi-disk-topology in Cross-AZ Node Deployment

The following uses csi-disk-topology to create a StatefulSet with the same
configurations used in the preceding example.

 volumeClaimTemplates:
 - metadata:
 name: data
 annotations:
 everest.io/disk-volume-type: SAS
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-disk-topology

After the creation, check the PVC and pod status. As shown in the following
output, the PVC and pod can be created successfully. The nginx-3 pod is created
on the node in AZ 3.

kubectl get pvc -owide
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE VOLUMEMODE
data-nginx-0 Bound pvc-43802cec-cf78-4876-bcca-e041618f2470 1Gi RWO csi-disk-
topology 55s Filesystem
data-nginx-1 Bound pvc-fc942a73-45d3-476b-95d4-1eb94bf19f1f 1Gi RWO csi-disk-
topology 39s Filesystem
data-nginx-2 Bound pvc-d219f4b7-e7cb-4832-a3ae-01ad689e364e 1Gi RWO csi-disk-
topology 22s Filesystem
data-nginx-3 Bound pvc-b54a61e1-1c0f-42b1-9951-410ebd326a4d 1Gi RWO csi-disk-
topology 9s Filesystem

kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
nginx-0 1/1 Running 0 65s 172.16.1.8 192.168.0.240 <none> <none>
nginx-1 1/1 Running 0 49s 172.16.0.13 192.168.0.121 <none> <none>
nginx-2 1/1 Running 0 32s 172.16.0.137 192.168.0.211 <none> <none>
nginx-3 1/1 Running 0 19s 172.16.1.9 192.168.0.240 <none> <none>

11.7 Automatically Collecting JVM Dump Files That
Exit Unexpectedly Using SFS 3.0

If you are using Java to develop services, you may encounter an out of memory
(OOM) problem if the JVM heap space is insufficient. To address this issue, you
can use SFS 3.0 file systems to store logs and mount the file systems to the
relevant directories in containers. In the event of a JVM OOM, SFS 3.0 file systems
can record logs.

Prerequisites
● A CCE standard cluster has been created. For details, see Buying a CCE

Standard/Turbo Cluster.

● Before using SFS 3.0 file systems for CCE container storage, you need to
configure a VPC endpoint to communicate with SFS 3.0. For details, see
Configure a VPC Endpoint.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 496

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/qs-sfs/sfs_01_0134.html

Procedure

Step 1 Create a PVC based on SFS 3.0.
cat << EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: jvm-sfs-pvc
 namespace: default
 annotations: {}
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-sfs
EOF

Step 2 Create a Deployment using the following YAML to simulate Java OOM and dump
the generated dump files to the PV associated with the SFS 3.0 file system.
cat << EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
 name: java-application
 namespace: default
spec:
 selector:
 matchLabels:
 app: java-application
 template:
 metadata:
 labels:
 app: java-application
 spec:
 containers:
 - name: java-application
 image: swr.cn-east-3.myhuaweicloud.com/container/java-oom-demo:v1 #The image in this document
is only an example.
 imagePullPolicy: Always
 env:
 - name: POD_NAME # Use metadata.name as the value of the POD_NAME environment variable.
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.name
 - name: POD_NAMESPACE #Use metadata.namespace as the value of the POD_NAMESPACE
environment variable.
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 args:
 - java #Run the Java command.
 - -Xms80m #Configure the minimum heap size of the heap memory.
 - -Xmx80m #Configure the maximum heap size of the heap memory.
 - -XX:HeapDumpPath=/mnt/oom/logs #Heap memory dump path when OOM occurs
 - -XX:+HeapDumpOnOutOfMemoryError #Capture the heap OOM error.
 - Mycode #Run the application.
 volumeMounts:
 - name: java-oom-pv
 mountPath: "/mnt/oom/logs" # The container uses /mnt/oom/logs as the mount directory.
 subPathExpr: $(POD_NAMESPACE).$(POD_NAME) #Create a subdirectory using $
(POD_NAMESPACE).$(POD_NAME) and allow the OOM dump files to be generated to the subdirectory.
 imagePullSecrets:
 - name: default-secret
 volumes:

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 497

 - name: java-oom-pv
 persistentVolumeClaim:
 claimName: jvm-sfs-pvc #PVC using the SFS file system, named jvm-sfs-pvc
EOF

Step 3 Wait until the container automatically restarts due to OOM.
kubectl -n default get pod
NAME READY STATUS RESTARTS AGE
java-application-84dc6f897f-hc9q7 1/1 Running 1 (31s ago) 97s

Step 4 Obtain the files generated by the Java program due to OOM.

1. Log in to the CCE console and click the cluster name to access the cluster
console. In the navigation pane, choose Storage, click the PVCs tab, locate
the row containing jvm-sfs-pvc, and click the name of the associated PV.

2. After the system automatically switches to the row containing the
corresponding PV, click the name of the associated storage volume.

3. After the system automatically switches to the SFS console, copy the
mounting command.

4. Log in to a cluster node, create a mount point, and run the mount command
to mount the SFS volume to the node.
mkdir /test-jvm
mount -t nfs -o vers=3,timeo=600,noresvport,nolock,proto=tcp ***.com:/pvc-4ea9137e-4101-4610-
a4d2-9f8bb37043a1 /test-jvm

5. Check the files in the mounted file system. The dump file java_pid1.hprof is
present in the directory. To identify the line of code that triggers an OOM
error, download java_pid1.hprof to the local host and use Eclipse Memory
Analyzer Tool (MAT) to further analyze JVM stack information.

----End

11.8 Deploying Storage Volumes in Multiple AZs

Application Scenarios
● Deploying services in specific AZs within a cluster that has nodes running in

multiple AZs

● Preventing faults caused by a lack of resources in a single AZ with multi-AZ
deployment

Deploying storage volumes in multiple AZs reduces application interruptions
during rollout and ensures the stability of key systems and applications in case of
any faults.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 498

Prerequisites
● You have created a cluster with the CCE Container Storage (Everest) add-on

installed and the cluster version is 1.21 or later. If no cluster is available,
create one by referring to Buying a CCE Standard/Turbo Cluster.

● Nodes in the cluster must be in at least three different AZs. If the current
nodes are not in three different AZs, you need to create new nodes or node
pools in AZs that have no such resources deployed.

Procedure

Step 1 Use kubectl to access the cluster. For details, see Connecting to a Cluster Using
kubectl.

Step 2 Create a StorageClass YAML file.
vi storageclass.yaml

Enter the following content in the storageclass.yaml file: (The following shows
only a template for StorageClass configuration. You can modify it as required.)

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: test-disk-topology-alltype
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS #A high I/O EVS disk
 everest.io/passthrough: "true"
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

Table 11-18 StorageClass parameters

Parameter Description

provisioner Specifies the storage resource provider, which is the Everest
add-on for CCE. Set this parameter to everest-csi-
provisioner.

parameters Specifies the storage parameters, which vary with storage
types.
NOTICE

everest.io/disk-volume-type indicates the cloud disk type, which can
be any of the following:
● SAS: high I/O
● SSD: ultra-high I/O
● GPSSD: general purpose SSD
● ESSD: extreme SSD
● GPSSD2: general purpose SSD v2, which is supported when the

Everest version is 2.4.4 or later and the everest.io/disk-iops and
everest.io/disk-throughput annotations are configured.

● ESSD2: extreme SSD v2, which is supported when the Everest
version is 2.4.4 or later and the everest.io/disk-iops annotation is
configured.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 499

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0012.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0012.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

Parameter Description

reclaimPolicy Specifies the value of persistentVolumeReclaimPolicy for
creating a PV. The value can be Delete or Retain. If
reclaimPolicy is not specified when a StorageClass object is
created, the value defaults to Delete.
● Delete: indicates that a dynamically provisioned PV will be

automatically deleted when the PVC is deleted.
● Retain: indicates that a dynamically provisioned PV will be

retained when the PVC is deleted.

allowVolumeEx
pansion

Specifies whether the PV of this StorageClass supports
dynamic capacity expansion. The default value is false.
Dynamic capacity expansion is implemented by the
underlying storage add-on. This is only a switch.

volumeBinding
Mode

Specifies when a PV is dynamically provisioned. The value can
be Immediate or WaitForFirstConsumer.
● Immediate: The PV is dynamically provisioned when a PVC

is created.
● WaitForFirstConsumer: The PV is dynamically provisioned

when the PVC is used by the workload.

Step 3 Create the StorageClass.
kubectl create -f storageclass.yaml

Step 4 Create a StatefulSet YAML file.
vi statefulset.yaml

Enter the following content in the statefulset.yaml file: (The following shows only
a template for the standard StatefulSet configuration. You can customize it as
required.)

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
spec:
 replicas: 3
 serviceName: "nginx"
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 topologySpreadConstraints:
 - labelSelector: # Used to search for matched pods and count the pods that match the label selector
to determine the number of pods in the corresponding topology domain.
 matchLabels:
 app: nginx
 maxSkew: 1 # Maximum difference between the numbers of matched pods in any two topology
domains in a given topology type.
 topologyKey: topology.kubernetes.io/zone # Key of a node label
 whenUnsatisfiable: DoNotSchedule # How the scheduler processes pods when the pods do not meet
the spread constraints

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 500

 containers:
 - image: nginx:latest
 name: nginx
 env:
 - name: NGINX_ROOT_PASSWORD
 value: "nginx"
 volumeMounts:
 - name: disk-csi
 mountPath: /var/lib/nginx
 imagePullSecrets:
 - name: default-secret
 tolerations:
 - key: "app"
 operator: "Exists"
 effect: "NoSchedule"
 volumeClaimTemplates: # EVS disks are automatically created based on the specified number of replicas
for quick expansion.
 - metadata:
 name: disk-csi
 spec:
 accessModes: ["ReadWriteOnce"] # EVS disks can only be mounted to and accessed by a single node
in read/write mode, that is, ReadWriteOnce.
 storageClassName: test-disk-topology-alltype
 resources:
 requests:
 storage: 40Gi

Table 11-19 StatefulSet parameters

Parameter Description

topologySpreadCon
straints

Specifies the topology spread constraints, which are used
to control how pods are spread across a cluster among
topology domains, such as regions, AZs, nodes, and other
custom topology domains. For details, see Pod Topology
Spread Constraints.

topologySpreadCon
straints.labelSelecto
r

Used to search for matched pods. The number of pods
that match this label selector is counted to determine the
number of pods in the corresponding topology domain.

topologySpreadCon
straints.maxSkew

Specifies the maximum difference between the numbers
of matched pods in any two topology domains in a given
topology type. The value must be greater than 0 and is
used to indicate how much uneven distribution of pods is
allowed.

topologySpreadCon
straints.topologyKey

Specifies the key of a node label. If two nodes use this
key and have the same label value, the scheduler treats
them as being in the same topology domain and tries to
schedule an equal number of pods to each domain.

topologySpreadCon
straints.whenUnsati
sfiable

Specifies how the scheduler processes pods when the
pods do not meet the spread constraints. The value can
be:
● DoNotSchedule (Default): If a pod does not meet the

spread constraints, it will not be scheduled.
● ScheduleAnyway: If a pod does not meet the spread

constraints, it will be scheduled to the node with the
minimum skew preferentially.

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 501

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Parameter Description

volumeClaimTempla
tes

Specifies that EVS disks are automatically created based
on the specified number of replicas for quick expansion.

Step 5 Create the StatefulSet.
kubectl create -f statefulset.yaml

----End

Verification
The following shows how to verify that the dynamically created PVs are in
different AZs along with the pods.

Step 1 View the new PVs.
kubectl get pv

The command output is as follows: (The first three PVs are dynamically created
with the pods.)

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS VOLUMEATTRIBUTESCLASS REASON AGE
pvc-699eda75 40Gi RWO Delete Bound default/disk-csi-nginx-0 test-disk-topology-
alltype <unset> 132m
pvc-6c68f5a7 40Gi RWO Delete Bound default/disk-csi-nginx-1 test-disk-topology-
alltype <unset> 131m
pvc-8f74ce3a 40Gi RWO Delete Bound default/disk-csi-nginx-2 test-disk-topology-
alltype <unset> 131m
pvc-f738f8aa 10Gi RWO Delete Bound default/pvc csi-disk
<unset> 6d4h

Step 2 Check the AZs where the PVs are located based on the PV names.
kubectl describe pv pvc-699eda75 pvc-6c68f5a7 pvc-8f74ce3a | grep zone

The command output is as follows: (The three PVs are in different AZs to enable
multi-AZ deployment of storage volumes.)

Labels: failure-domain.beta.kubernetes.io/zone=cn-east-3d
 Term 0: failure-domain.beta.kubernetes.io/zone in [cn-east-3d]
Labels: failure-domain.beta.kubernetes.io/zone=cn-east-3b
 Term 0: failure-domain.beta.kubernetes.io/zone in [cn-east-3b]
Labels: failure-domain.beta.kubernetes.io/zone=cn-east-3c
 Term 0: failure-domain.beta.kubernetes.io/zone in [cn-east-3c]

----End

Cloud Container Engine
Best Practices 11 Storage

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 502

12 Container

12.1 Recommended Configurations for Workloads
When deploying a workload in a CCE cluster, you need to configure the workload
based on the actual service scenarios and environments to ensure that the
workload can run stably and reliably. This section provides some recommended
configurations and suggestions for workload deployment.

Specifying Pod Resources (Requests and Limits)

Requests and limits need to be configured based on the actual service scenarios.
The requests are used for the scheduler to check available resources and record
the allocated resources on each node. The allocated resources on a node are the
sum of container requests defined in all pods on the node. You can calculate the
available resources on a node using the following formula: Available resources on
a node = Total resources on the node – Allocated resources on the node. If there
are not enough available resources on a node to accommodate a pod's requests,
the pod will not be scheduled on that node.

If the requests are not configured, the scheduler cannot determine the resource
usage on a node and cannot schedule pods to suitable nodes. This can lead to a
situation where a node becomes overloaded with a large number of pods,
potentially causing issues with the node and impacting the actual services. It is
recommended that you configure requests for all containers so that the scheduler
can accurately monitor the resource usage on nodes and make appropriate
scheduling decisions.

The following shows an example of how to configure the request and limit for an
Nginx pod. The request specifies that the pod requires 0.5 CPU cores and 128 MiB
of memory. During running, the pod can use resources beyond the request, but it
cannot exceed the resource limit of 1 CPU core and 256 MiB of memory.

apiVersion: v1
kind: Pod
metadata:
 name: nginx-test
spec:
 containers:
 - name: container-1

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 503

 image: nginx
 resources: # Resource declaration
 resources:
 limits:
 cpu: 1000m
 memory: 256Mi
 requests:
 cpu: 500m
 memory: 128Mi
 imagePullSecrets:
 - name: default-secret

Configuring a Graceful Exit Period
The graceful exit period (terminationGracePeriodSeconds) is the time between a
failed pod triggering the termination process and the pod being forcefully stopped.
By default, if this parameter is not specified, the grace period is set to 30 seconds,
with a minimum value of 1 second. During this grace period, the pod can be
gracefully shut down, allowing it to perform operations such as saving its status,
completing ongoing tasks, and closing network connections. It is crucial to
configure terminationGracePeriodSeconds properly to ensure a smooth, orderly
termination of an application.

If you want a pod to wait for 60 seconds before termination, allowing the pod to
be properly cleared, you can include the following parameters in the pod
definition:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 version: v1
 template:
 metadata:
 labels:
 app: nginx
 version: v1
 spec:
 containers:
 - name: container-1
 image: nginx
 imagePullSecrets:
 - name: default-secret
 terminationGracePeriodSeconds: 60

Configuring Tolerations
Tolerations allow pods to be scheduled on nodes even if there are taints present.
For example, if an application heavily relies on the local state of a node, you may
want it to remain on that node for an extended period during a network partition,
waiting for the network to recover and avoiding eviction.

Sometimes, the Kubernetes node controller automatically adds taints to nodes. It
is recommended that you add tolerations for the built-in taints
node.kubernetes.io/not-ready (indicating the node is not ready) and
node.kubernetes.io/unreachable (indicating the node controller cannot access
the node). In the following example, a node has added the preceding tolerations,

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 504

and the pod will continue running on the node for 300 seconds before being
evicted.

apiVersion: v1
kind: Pod
metadata:
 name: nginx-test
spec:
 containers:
 - name: container-1
 image: nginx
 imagePullSecrets:
 - name: default-secret
 tolerations:
 - key: node.kubernetes.io/not-ready
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300

Configuring a Rolling Update
In Kubernetes, the strategy field in a workload determines how resources like
Deployments, StatefulSets, and DaemonSets are updated. To maintain service
continuity during a workload upgrade, you can use rolling updates to control the
number of available pods, minimizing downtime. For example, in a Deployment
with multiple pods, you can specify the maximum number of old pods that can be
unavailable and the maximum number of new pods that can be started and
running until the update is complete. Rolling updates ensure service stability and
availability while smoothly transitioning applications to new versions.

In the following example, a rolling update policy is configured, where both
maxUnavailable and maxSurge are set to 25%. This means that up to 25% of
old pods can be unavailable and up to 25% of new pods can be started during the
update.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 10
 selector:
 matchLabels:
 app: nginx
 version: v1
 template:
 metadata:
 labels:
 app: nginx
 version: v1
 spec:
 containers:
 - name: container-1
 image: nginx
 imagePullSecrets:
 - name: default-secret
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 25%

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 505

Configuring a Restart Policy
The restartPolicy parameter is used to define the behavior after a pod terminates.
You can customize the policy based on your specific services to enable automatic
restarts when a pod exits.

The following is an example of configuring an Nginx pod to always restart
automatically:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-test
spec:
 containers:
 - name: nginx
 image: nginx
 restartPolicy: Always
 imagePullSecrets:
 - name: default-secret

The options of restartPolicy include:
● Always: The pod always restarts automatically after any termination.
● OnFailure: The pod automatically restarts if it exits with an error. (The

process exit status is not 0).
● Never: The pod never restarts.

Configuring a Liveness Probe and a Readiness Probe
A liveness probe checks whether a pod is normal. In Kubernetes, if a pod is in the
Running state, it does not mean that the pod can provide services properly. The
pod may fail to provide services due to problems in processes such as deadlock.
You can configure a liveness probe to avoid similar problems and restart the pod
in a timely manner to restore your service.

A readiness probe detects whether a pod is ready to receive Service requests. If the
pod is faulty, the readiness probe avoids forwarding new traffic to the pod.

apiVersion: v1
kind: Pod
metadata:
 name: tomcat
spec:
 containers:
 - name: tomcat
 image: tomcat
 livenessProbe:
 httpGet:
 path: /index.jsp
 port: 8080
 initialDelaySeconds: 3
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /index.jsp
 port: 8080
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 506

12.2 Properly Allocating Container Computing
Resources

If a node has sufficient memory resources, a container on this node can use more
memory resources than requested, but no more than limited. If the memory
allocated to a container exceeds the upper limit, the container is stopped first. If
the container continuously uses memory resources more than limited, the
container is terminated. If a stopped container is allowed to be restarted, kubelet
will restart it, but other types of run errors will occur.

Scenario 1

The node's memory has reached the memory limit reserved for the node. As a
result, OOM killer is triggered.

Solution

You can either scale up the node or migrate the pods on the node to other nodes.

Scenario 2

The upper limit of resources configured for the pod is too small. When the actual
usage exceeds the limit, OOM killer is triggered.

Solution

Set a higher upper limit for the workload.

Example

A pod will be created and allocated memory that exceeds the limit. As shown in
the following configuration file of the pod, the pod requests 50 MiB memory and
the memory limit is set to 100 MiB.

Example YAML file (memory-request-limit-2.yaml):

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo-2
spec:
 containers:
 - name: memory-demo-2-ctr
 image: vish/stress
 resources:
 requests:
 memory: 50Mi
 limits:
 memory: "100Mi"
 args:
 - -mem-total
 - 250Mi
 - -mem-alloc-size
 - 10Mi
 - -mem-alloc-sleep
 - 1s

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 507

The args parameters indicate that the container attempts to request 250 MiB
memory, which exceeds the pod's upper limit (100 MiB).

Creating a pod:
kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --
namespace=mem-example

Viewing the details about the pod:
kubectl get pod memory-demo-2 --namespace=mem-example

In this stage, the container may be running or be killed. If the container is not
killed, repeat the previous command until the container is killed.
NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 24s

Viewing detailed information about the container:
kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example

This output indicates that the container is killed because the memory limit is
exceeded.
lastState:
 terminated:
 containerID: docker://7aae52677a4542917c23b10fb56fcb2434c2e8427bc956065183c1879cc0dbd2
 exitCode: 137
 finishedAt: 2020-02-20T17:35:12Z
 reason: OOMKilled
 startedAt: null

In this example, the container can be automatically restarted. Therefore, kubelet
will start it again. You can run the following command several times to see how
the container is killed and started:
kubectl get pod memory-demo-2 --namespace=mem-example

The preceding command output indicates how the container is killed and started
back and forth:
$ kubectl get pod memory-demo-2 --namespace=mem-example
NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 37s
$ kubectl get pod memory-demo-2 --namespace=mem-example
NAME READY STATUS RESTARTS AGE
memory-demo-2 1/1 Running 2 40s

Viewing the historical information of the pod:
kubectl describe pod memory-demo-2 --namespace=mem-example

The following command output indicates that the pod is repeatedly killed and
started.
... Normal Created Created container with id
66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511
... Warning BackOff Back-off restarting failed container

12.3 Upgrading Pods Without Interrupting Services

Application Scenarios
In a Kubernetes cluster, applications can be accessed externally through
Deployments and LoadBalancer Services. When an application is updated or

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 508

upgraded, new pods are created in the Deployment. These new pods will gradually
replace the old ones. During this process, services may be interrupted.

Solution
To prevent an application upgrade from interrupting services, configure
Deployments and Services as follows:

● In a Deployment, upgrade pods in the Rolling upgrade mode. In this mode,
pods are updated one by one, not all at once. In this way, you can control the
update speed and the number of concurrent pods to ensure that services are
not interrupted during the upgrade. For example, you can configure the
maxSurge and maxUnavailable parameters to control the number of new
pods created and the number of old pods deleted concurrently. Ensure that
there is always a workload that can provide services during the upgrade.

● There are two types of service affinity in a LoadBalancer:
– Cluster-level service affinity (externalTrafficPolicy: Cluster). In this

mode, if there is no pod deployed on a node, the request is forwarded to
pods on another node. During the cross-node forwarding, the source IP
address may be lost.

– Node-level service affinity (externalTrafficPolicy: Local). In this mode,
requests are directly forwarded to the node where the pod resides. Cross-
node forwarding is not involved. Therefore, the source IP address can be
preserved. However, if the node where the pod resides changes during
the rolling upgrade, the ELB backend server will change accordingly,
which may cause service interruption. In this case, you can upgrade pods
in place. This ensures that there is at least one pod running properly on
the ELB backend node.

The following table lists the solution for ensuring service continuity during a pod
upgrade.

Scenario Service Deployment

The source IP address
does not need to be
preserved.

Select the Cluster-level
service affinity.

Select Rolling upgrade
for Upgrade Mode,
configure a graceful
termination, and enable
Liveness probe and
Ready probe.

The source IP address
needs to be preserved.

Select the Node-level
service affinity.

Select Rolling upgrade
for Upgrade Mode,
configure a graceful
termination, enable
Liveness probe and
Ready probe, and add
Node Affinity policies.
(Ensure that there is at
least one pod running on
each node during the
update.)

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 509

Procedure
In this example, there are 200 replicas in the workload, and the workload is
exposed through the LoadBalance Service. The rolling upgrade of workloads
associated with Loadbalance or Ingress Services involves multiple Services.
Therefore, you need to pay attention to the configuration of rolling upgrade
parameters.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Workloads.

Step 2 In the workload list, click Upgrade in the Operation column of the workload to
be upgraded. The Upgrade Workload page is displayed.

1. Enable the liveness probe and ready probe. In the Container Settings area,
click Health Check and enable Liveness probe and Ready probe. In this
example, TCP is selected for Check Method. Configure the parameters based
on your requirements. Parameters like Period (s), Delay (s), and Timeout (s)
must be properly configured. Some applications take a long time to start. A
small value of these parameters will lead to repeated restart.
In this example, the ready probe delay is set to 20 to control the interval for
rolling workloads in batches.

Figure 12-1 Enabling the liveness probe and ready probe

2. Configure a rolling upgrade. In the Advanced Settings area, click Upgrade
and select Rolling upgrade for Upgrade Mode. This ensures that the
instances of the old versions are gradually replaced with the ones of the new
versions.
In this example, maxUnavailable is set to 2%, and maxSurge is set to 2% to
control the workload rolling step. This, works with the ready probe delay,
enables eight workloads to be upgraded every 20 seconds.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 510

Figure 12-2 Configuring a rolling upgrade

3. Configure a graceful termination.

a. In the Container Settings area, click Lifecycle and configure pre-stop
processing. Configure this parameter to the time required for the Service
to process all remaining requests, most of which are persistent
connection requests. You can, for example, set the workload to hibernate
for 30s after receiving a deletion request so that the workload can have
sufficient time to process the remaining requests to ensure proper service
running.

b. In the Advanced Settings area, click Upgrade. Configure Scale-In Time
Window (terminationGracePeriodSeconds) to specify the waiting time
for command execution before the container is stopped. The scale-in time
window must be greater than the pre-stop processing time. Add 30s to
the command execution time before the container is stopped. If, for
example, the pre-stop processing time is 30s, the scale-in time window
should be 60s.

Figure 12-3 Entering the pre-stop command

4. Add node affinity policies. Add this kind of policy when Node-level is selected
for a Service's Service Affinity. In the Advanced Settings area, click
Scheduling and add Node Affinity policies. When adding a scheduling policy,
specify the nodes that the workload requires affinity.

Figure 12-4 Adding node affinity policies

Step 3 After the configuration is complete, click Upgrade Workload.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 511

On the Pods tab, after a newly created pod is displayed, stop the old one. This
ensures that there is always a pod running in the workload.

----End

12.4 Modifying Kernel Parameters Using a Privileged
Container

Prerequisites
To access a Kubernetes cluster from a client, you can use the Kubernetes
command line tool kubectl. For details, see Connecting to a Cluster Using
kubectl.

Procedure

Step 1 Create a DaemonSet in the background, select the Nginx image, enable the
Privileged Container, configure the lifecycle, and add the hostNetwork field
(value: true).

1. Create a daemonSet file.
vi daemonSet.yaml
An example YAML file is provided as follows:

NO TICE

The spec.spec.containers.lifecycle field indicates the command that will be
run after the container is started.

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: daemonset-test
 labels:
 name: daemonset-test
spec:
 selector:
 matchLabels:
 name: daemonset-test
 template:
 metadata:
 labels:
 name: daemonset-test
 spec:
 hostNetwork: true
 containers:
 - name: daemonset-test
 image: nginx:alpine-perl
 command:
 - "/bin/sh"
 args:
 - "-c"
 - while :; do time=$(date);done
 imagePullPolicy: IfNotPresent
 lifecycle:
 postStart:

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 512

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

 exec:
 command:
 - sysctl
 - "-w"
 - net.ipv4.tcp_tw_reuse=1
 securityContext:
 privileged: true
 imagePullSecrets:
 - name: default-secret

2. Create a DaemonSet.
kubectl create –f daemonSet.yaml

Step 2 Check whether the DaemonSet is successfully created.

kubectl get daemonset DaemonSet name

In this example, run the following command:

kubectl get daemonset daemonset-test

Information similar to the following is displayed:

NAME DESIRED CURRENT READY UP-T0-DATE AVAILABLE NODE SELECTOR AGE
daemonset-test 2 2 2 2 2 <node> 2h

Step 3 Query the container ID of DaemonSet on the node.

docker ps -a|grep DaemonSet name

In this example, run the following command:

docker ps -a|grep daemonset-test

Information similar to the following is displayed:

897b99faa9ce 3e094d5696c1 "/bin/sh -c while..." 31 minutes ago Up 30
minutes ault_fa7cc313-4ac1-11e9-a716-fa163e0aalba_0

Step 4 Access the container.

docker exec -it containerid /bin/sh

In this example, run the following command:

docker exec -it 897b99faa9ce /bin/sh

Step 5 Check whether the configured command is executed after the container is started.

sysctl -a |grep net.ipv4.tcp_tw_reuse

If the following information is displayed, the system parameters are modified
successfully:

net.ipv4.tcp_tw_reuse=1

----End

12.5 Using Init Containers to Initialize an Application

Concepts
An init container is a type of container that starts and exits before the application
containers start. If there are multiple init containers, they will be started in the

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 513

defined sequence. The data generated in the init containers can be used by the
application containers because storage volumes in a pod are shared.

Init containers can be used in multiple Kubernetes resources, such as
Deployments, DaemonSets, and jobs. They perform initialization before application
containers are started.

Application Scenarios
Before deploying a service, you can use an init container to make preparations
before the service pod is deployed. After the preparations are complete, the init
container runs to completion and exits, and the container to be deployed will be
started.

● Scenario 1: Wait for other modules to be ready. For example, an application
contains two containerized services: web server and database. The web server
service needs to access the database service. However, when the application is
started, the database service may have not been started. Therefore, web
server may fail to access database. To solve this problem, you can use an init
container in the pod where web server is running to check whether database
is ready. The init container runs to completion only when database is
accessible. Then, web server is started and initiates a formal access request to
database.

● Scenario 2: Initialize the configuration. For example, the init container can
check all existing member nodes in the cluster and prepare the cluster
configuration information for the application container. After the application
container is started, it can be added to the cluster using the configuration
information.

● Other scenarios: For example, a pod is registered with a central database and
application dependencies are downloaded.

For details, see Init Containers.

Procedure

Step 1 Edit the YAML file of the init container workload.

vi deployment.yaml

An example YAML file is provided as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
spec:
 replicas: 1
 selector:
 matchLabels:
 name: mysql
 template:
 metadata:
 labels:
 name: mysql
 spec:
 initContainers:
 - name: getresource
 image: busybox
 command: ['sleep 20']

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 514

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

 containers:
 - name: mysql
 image: percona:5.7.22
 imagePullPolicy: Always
 ports:
 - containerPort: 3306
 resources:
 limits:
 memory: "500Mi"
 cpu: "500m"
 requests:
 memory: "500Mi"
 cpu: "250m"
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "mysql"

Step 2 Create an init container workload.

kubectl create -f deployment.yaml

Information similar to the following is displayed:

deployment.apps/mysql created

Step 3 Query the created Docker container on the node where the workload is running.

docker ps -a|grep mysql

The init container will exit after it runs to completion. The query result Exited (0)
shows the exit status of the init container.

----End

12.6 Setting Time Zone Synchronization

Case Scenarios
● Scenario 1: Setting Time Zone Synchronization Between Containers and

Nodes
● Scenario 2: Setting Time Zone Synchronization Among Containers,

Container Logs, and Nodes
● Scenario 3: Setting Time Zone Synchronization Between Workloads and

Nodes

Scenario 1: Setting Time Zone Synchronization Between Containers and
Nodes

Step 1 Log in to the CCE console.

Step 2 In the Basic Info area of the Create Workload page, enable Time Zone
Synchronization so that the same time zone will be used for both the container
and the node.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 515

Figure 12-5 Enabling the time zone synchronization

Step 3 Log in to the node, go to the container, and check whether the time zone of the
container is the same as that of the node.

date -R

Information similar to the following is displayed:

Tue, 04 Jun 2019 15::08:47 +0800

docker ps -a|grep test

Information similar to the following is displayed:

docker exec -it oedd74c66bdb /bin/sh

date -R

Information similar to the following is displayed:

Tue, 04 Jun 2019 15:09:20 +0800

----End

Scenario 2: Setting Time Zone Synchronization Among Containers, Container
Logs, and Nodes

The difference between the time when the Java application prints logs and the
container's standard time obtained in date -R mode is 8 hours.

Step 1 Log in to the CCE console.

Step 2 In the Basic Info area of the Create Workload page, enable Time Zone
Synchronization so that the same time zone will be used for both the container
and the node.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 516

Figure 12-6 Enabling the time zone synchronization

Step 3 Log in to the node, go to the container, and modify the catalina.sh script.

cd /usr/local/tomcat/bin

vi catalina.sh

If you cannot run the vi command in the container, go to Step 4 or run the vi
command to add -Duser.timezone=GMT+08 to the script, as shown in the
following figure.

Step 4 Copy the script from the container to the node, add -Duser.timezone=GMT+08 to
the script, and then copy the script from the node to the container.

Run the following command to copy files in the container to the host machine:

docker cp mycontainer: /usr/local/tomcat/bin/catalina.sh /home/catalina.sh

Run the following command to copy files from the host machine to the container:

docker cp /home/catalina.sh mycontainer:/ usr/local/tomcat/bin/catalina.sh

Step 5 Restart the container.

docker restart container_id

Step 6 Check whether the time zone of the logs is the same as that of the node.

On the CCE console, click the workload name. On the workload details page
displayed, click Logs in the upper right corner to view the log details. It takes
about 5 minutes to load the logs.

----End

Scenario 3: Setting Time Zone Synchronization Between Workloads and
Nodes

● Method 1: Set the time zone to CST when creating a container image.
● Method 2: If you do not want to modify the container, when creating a

workload on the CCE console, mount the /etc/localtime directory of the local
host to the /etc/localtime directory of the container.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 517

Example:
kind: Deployment
apiVersion: apps/v1
metadata:
 name: test
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 volumes:
 - name: vol-162979628557461404
 hostPath:
 path: /etc/localtime
 type: ''
 containers:
 - name: container-0
 image: 'nginx:alpine'
 volumeMounts:
 - name: vol-162979628557461404
 readOnly: true
 mountPath: /etc/localtime
 imagePullPolicy: IfNotPresent
 imagePullSecrets:
 - name: default-secret

12.7 Configuration Suggestions on Container Network
Bandwidth Limit

Application Scenarios
Containers on the same node share the host network bandwidth. Limiting the
network bandwidth of containers can effectively prevent mutual interference
between containers and improve container network stability.

Constraints
The following table lists the bandwidth limitation specifications of pods.

Specificat
ions

Tunnel VPC Cloud Native
Network 2.0

Supported
cluster
versions

All versions Clusters of v1.19.10
and later

Clusters of v1.19.10
and later

Egress
bandwidth
limitation

Supported Supported Supported

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 518

Specificat
ions

Tunnel VPC Cloud Native
Network 2.0

Ingress
bandwidth
limitation

Supported Supported Supported

Scenarios
where
bandwidth
limitation
is not
supported

None None ● Pod access to
cloud service
CIDR blocks such
as 100.125.0.0/16

● Pod health check

Bandwidth
limitation
range

Only the rate limit in the unit of Mbit/s or Gbit/s is supported, for
example, 100 Mbit/s and 1 Gbit/s. The minimum value is 1 Mbit/s
and the maximum value is 4.29 Gbit/s.

● Pod bandwidth limitation applies to regular containers (runC as the container
runtime), not secure containers (Kata Containers as the container runtime).

● Pod bandwidth limitation does not apply to hostNetwork pods.

Procedure

Step 1 Edit a YAML file for a workload.

vi deployment.yaml

Set the network bandwidth for the pod in spec.template.metadata.annotations to
limit the network traffic of the container. For details about the network bandwidth
limit fields, see Table 12-1.

If the parameters are not specified, the network bandwidth is not limited by
default.

An example is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 strategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: nginx
 annotations:
 # Ingress bandwidth
 kubernetes.io/ingress-bandwidth: 100M
 # Egress bandwidth
 kubernetes.io/egress-bandwidth: 1G
 spec:

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 519

 containers:
 - image: nginx
 imagePullPolicy: Always
 name: nginx
 imagePullSecrets:
 - name: default-secret

Table 12-1 Fields for limiting the network bandwidth of pods

Field Description Mandatory

kubernetes.io/ingress-
bandwidth

Ingress bandwidth for a pod.
Value range: 1k-1P. If this field is set
to a value greater than 32 Gbit/s, the
actual ingress bandwidth that a pod
can use is 32 Gbit/s.

No

kubernetes.io/egress-
bandwidth

Egress bandwidth for a pod.
Value range: 1k-1P. If this field is set
to a value greater than 32 Gbit/s, the
actual egress bandwidth that a pod
can use is 32 Gbit/s.

No

Step 2 Create a workload.

kubectl create -f deployment.yaml

Information similar to the following is displayed:

deployment.apps/nginx created

----End

12.8 Configuring the /etc/hosts File of a Pod Using
hostAliases

Application Scenarios
If DNS or other related settings are inappropriate, you can use hostAliases to
overwrite the resolution of the hostname at the pod level when adding entries to
the /etc/hosts file of the pod.

Procedure

Step 1 Use kubectl to connect to the cluster.

Step 2 Create the hostaliases-pod.yaml file.

vi hostaliases-pod.yaml

The field in bold in the YAML file indicates the image name and tag. You can
replace the example value as required.

apiVersion: v1
kind: Pod

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 520

metadata:
 name: hostaliases-pod
spec:
 hostAliases:
 - ip: 127.0.0.1
 hostnames:
 - foo.local
 - bar.local
 - ip: 10.1.2.3
 hostnames:
 - foo.remote
 - bar.remote
 containers:
 - name: cat-hosts
 image: tomcat:9-jre11-slim
 lifecycle:
 postStart:
 exec:
 command:
 - cat
 - /etc/hosts
 imagePullSecrets:
 - name: default-secret

Table 12-2 pod field description

Parameter Mandatory Description

apiVersion Yes API version number

kind Yes Type of the object to be created

metadata Yes Metadata definition of a resource
object

name Yes Name of a pod

spec Yes Detailed description of the pod. For
details, see Table 12-3.

Table 12-3 spec field description

Parameter Mandatory Description

hostAliases Yes Host alias

containers Yes For details, see Table 12-4.

Table 12-4 containers field description

Parameter Mandatory Description

name Yes Container name

image Yes Container image name

lifecycle No Lifecycle

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 521

Step 3 Create a pod.

kubectl create -f hostaliases-pod.yaml

If information similar to the following is displayed, the pod is created.

pod/hostaliases-pod created

Step 4 Query the pod status.

kubectl get pod hostaliases-pod

If the pod is in the Running state, the pod is successfully created.

NAME READY STATUS RESTARTS AGE
hostaliases-pod 1/1 Running 0 16m

Step 5 Check whether the hostAliases functions properly.

docker ps |grep hostaliases-pod

docker exec -ti Container ID /bin/sh

----End

12.9 Configuring Domain Name Resolution for CCE
Containers

This section describes how to configure domain name resolution for CCE
containers.

Service
● Create a Service before you create a workload (Deployment or ReplicaSet).

When the Kubernetes starts a container, it provides environment variables
that point to all the Services that are running when the container is started.
For example, if a Service named foo exists, all containers will obtain the
following variables when they are initialized.
FOO_SERVICE_HOST=<the host the Service is running on>
FOO_SERVICE_PORT=<the port the Service is running on>

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 522

Therefore, you must create a Service first. Otherwise, the environment
variables do not take effect. This restriction does not apply to DNS.

● CCE clusters provide the coredns add-on as the DNS server. The DNS server
monitors the Kubernetes APIs for the new Services and creates a set of DNS
records for each Service. If DNS is enabled throughout the cluster, all pods will
be able to automatically resolve the names of Services.

● Do not specify a hostPort for a pod unless necessary. When a pod is bound to
a hostPort, the number of locations to which the pod can be scheduled will be
limited because each <hostIP, hostPort, protocol> must be unique. If you do
not specify hostIP and protocol, Kubernetes uses 0.0.0.0 as the default host IP
address and TCP as the default protocol.

If you only need to access the port for debugging, you can use apiserver proxies or
kubectl port-forward.

If you want to open the pod port on the node, consider using the NodePort
Service before using hostPort.

● Do not use hostNetwork. The reason is the same as that of using hostPort.
● When kube-proxy load balancing is not required, use headless Services

(ClusterIP set to None) for service discovery.

DNS
By default, CCE provides a DNS add-on Service named coredns to automatically
assign DNS domain names for other Services. If it is running in the cluster, run the
following command to check the status:

kubectl get services coredns --namespace=kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.0.0.10 <none> 53/UDP,53/TCP 8m

If the pod is not running, you can run the describe command to check why the
pod is not started. Assume that there is a Service that has a permanent IP address
and a DNS server (coredns cluster add-on) that assigns domain name to the IP
address. In this way, any pod in the cluster can communicate with the Service. You
can run another application for testing. Enable a new pod, access the pod, and run
the curl command to check whether the domain name of the Service can be
correctly resolved. In some cases, the curl command cannot be executed due to
the DNS search principles and configuration.

When a pod is created on the CCE console, not all dnsConfig configurations are
opened and some default values of the pod domain name resolution parameters
are used. You need to know well the default configurations. A typical case is
ndots. If the number of dots is within the ndots threshold range, the domain
name is considered as an internal domain name of the Kubernetes cluster and
the ..svc.cluster.local suffix is added to the domain name.

DNS Search Principles and Rules
DNS configuration file: /etc/resolv.conf

nameserver 10.247.x.x
search default.svc.cluster.local svc.cluster.local cluster.local
options ndots:3

Parameters:

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 523

● nameserver: domain name resolution server
● search: domain name suffix search rule. More search configurations indicate

more matching times for domain name resolution. For example, if three
suffixes are matched, at least six search operations are required because both
IPv4 and IPv6 addresses need to be checked.

● options: domain name resolution option. Multiple KV values are available. A
typical case is ndots. If the number of dots in the domain name to be
accessed exceeds the value of ndots, the domain name is considered as a
complete domain name and is directly parsed. If the number of dots is less
than the value of ndots, the suffix ..svc.cluster.local will be added.

Parameters in Kubernetes dnsConfig
● nameservers: a list of IP addresses that will be used as DNS servers for the

pod. A maximum of three IP addresses can be specified. If pod's dnsPolicy is
set to None, the list must contain at least one IP address, otherwise this
property is optional. The servers listed will be combined to the base
nameservers generated from the specified DNS policy with duplicate
addresses removed.

● searches: a list of DNS search domains for hostname lookup in the pod. This
property is optional. When specified, the provided list will be merged into the
base search domain names generated from the chosen DNS policy. Duplicate
domain names are removed. Kubernetes allows for at most 6 search domains.

● options: an optional list of objects where each object may have a name
property (required) and a value property (optional). The contents in this
property will be merged to the options generated from the specified DNS
policy. Duplicate entries are removed.

For details, see DNS for Services and Pods.

Pod DNS Policies
DNS policies can be configured on a per-pod basis. Supported DNS policies are
Default, ClusterFirst, and None.

● Default: The DNS configuration of a pod inherits from the host. That is, the
DNS configuration of the pod is the same as that of the node.

● ClusterFirst: Unlike the Default policy, the ClusterFirst policy writes kube-
dns (or CoreDNS) information to the DNS configuration of a pod in advance.
ClusterFirst is the default pod policy. If PodPolicy is not specified for the pod,
dnsPolicy is preset to ClusterFirst. However, ClusterFirst is mutually
exclusive with HostNetwork=true. If HostNetwork is set to true, the
ClusterFirst policy will be forcibly changed to the Default policy.

● None: This policy will clear the DNS configuration preset for a pod. If
dnsPolicy is set to None, Kubernetes does not load any DNS configuration
that is determined by its own logic in advance for the pod. Therefore, if you
want to set dnsPolicy to None, you are advised to set dnsConfig to describe
custom DNS parameters. This setting ensures that the pod has DNS
configuration.

DNS configuration scenarios are provided as follows:

Scenario 1: Using a custom DNS

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 524

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

The following example allows you to use a custom DNS to resolve the application
domain name configuration in pods. After application migration, you do not need
to modify the configuration.
apiVersion: v1
kind: Pod
metadata:
 namespace: default
 name: dns-example
spec:
 containers:
 - name: test
 image: nginx
 dnsPolicy: "None"
 dnsConfig:
 nameservers:
 - 1.2.3.4
 searches:
 - ns1.svc.cluster.local
 - my.dns.search.suffix
 options:
 - name: ndots
 value: "2"
 - name: edns0

Scenario 2: Using the Kubernetes DNS add-on CoreDNS

The DNS service of Kubernetes is preferentially used for domain name resolution.
If the resolution fails, the DNS service of an external cascading system is used for
domain name resolution.
apiVersion: v1
kind: Pod
metadata:
 namespace: default
 name: dns-example
spec:
 containers:
 - name: test
 image: nginx
 dnsPolicy: ClusterFirst

Scenario 3: Using the public network domain name resolution

This mode applies to the scenario where the domain names in pods are to be
accessed from public networks. In this case, the applications in the pods resolve
domain names from an external DNS.
apiVersion: v1
kind: Pod
metadata:
 namespace: default
 name: dns-example
spec:
 containers:
 - name: test
 image: nginx
 dnsPolicy: Default

Scenario 4: Using hostNetwork

If hostNetwork: true is used to configure the networking in the pod, the network
ports of the host machine are exposed to the application running in the pod. All
network ports on the LAN where the host machine is located can be used to
access the application.
apiVersion: extensions/v1beta1
kind: Deployment

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 525

metadata:
 name: nginx
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 hostNetwork: true
 dnsPolicy: ClusterFirstWithHostNet
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

If dnsPolicy: ClusterFirstWithHostNet is not added, even if the pod uses the DNS
of the host machine by default, other pods in the Kubernetes cluster cannot be
accessed through the Service name in the container.

CoreDNS Configuration
1. Configuring the CoreDNS ConfigMap

The default CoreDNS configuration file is as follows:
Corefile: |
 .:53 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf
 cache 30
 loop
 reload
 loadbalance

Parameters:

● error: Errors are recorded in stdout.
● health: The CoreDNS running status report can be obtained from http://

localhost:8080/health.
● kubernetes: The CoreDNS returns a DNS query response based on the IP

addresses of the Kubernetes Service and pod.
● prometheus: The measurement standard of CoreDNS can be found in the

metrics in the format of http://localhost:9153/Prometheus. You can obtain
monitoring data in Prometheus format from http://localhost:9153/metrics.

● proxy and forward: Any query that is not in the Kubernetes cluster domain is
forwarded to the predefined resolver (/etc/resolv.conf). If the domain name
cannot be resolved locally, query the upper-level address. By default, the /etc/
resolv.conf configuration of the host machine is used.

● cache: The front-end cache is enabled.
● loop: Simple forwarding loops are detected. If a loop is detected, the CoreDNS

process is stopped.
● reload: The changed Corefile can be automatically reloaded. After editing the

ConfigMap, wait for two minutes for the modification to take effect.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 526

● loadbalance: This is a round-robin DNS load balancer that randomizes the
order of A, AAAA, and MX records in the answer.

2. Configuring an external DNS server

Some services are not in the Kubernetes environment and need to be accessed
through the DNS. The suffix of the service name is carey.com.

carey.com:53 {
 errors
 cache 30
 proxy . 10.150.0.1
 }

Complete configuration file:

Corefile: |
 .:53 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf
 cache 30
 loop
 reload
 loadbalance
 }
 carey.com:53 {
 errors
 cache 30
 proxy . 10.150.0.1
 }

Currently, CCE add-on management supports the configuration of stub-domains,
which is more flexible and convenient than the direct editing of ConfigMaps. You
do not need to configure the domain name resolution for pods.

12.10 Using Dual-Architecture Images (x86 and Arm)
in CCE

Background

CCE allows you to create x86 and Arm nodes in the same cluster. Due to different
underlying architectures, Arm images (applications) cannot run on x86 nodes, and
vice versa. As a result, workloads may fail to be deployed in the clusters
containing x86 and Arm nodes.

Solution

To address this issue, use either of the following methods:

● Set the service affinity when you create a workload so that the pod can be
scheduled to an Arm node when the Arm-based image is used or to an x86
node when the x86-based image is used.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 527

● Build a dual-architecture image that supports both x86 and Arm architectures.
When a pod is scheduled to an Arm node, the Arm variant in the image is
pulled. When a pod is scheduled to an x86 node, the x86 variant in the image
is pulled. A dual-architecture image has two variants but has one unified
access path. When deploying a workload, you only need to specify one image
path without configuring the service affinity. In this case, the workload
description file is simpler and easier to maintain.

Affinity Configuration Description
When creating a node, CCE automatically adds the kubernetes.io/arch label to
the node to indicate the node architecture.

kubernetes.io/arch=amd64

The value amd64 indicates the x86 architecture, and arm64 indicates the Arm
architecture.

When creating a workload, you can configure the node affinity to schedule pods
to nodes using the corresponding architecture.

You can use nodeSelector in the YAML file to configure the architecture.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: test
spec:
 selector:
 matchLabels:

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 528

 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 nodeSelector:
 kubernetes.io/arch: amd64
 containers:
 - name: container0
 image: swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-amd64:1.5
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret

Building a Dual-Architecture Image
NO TE

To create a dual-architecture image, ensure that the Docker client version is later than
18.03.

The essence of building a dual-architecture image is to build images based on the
x86 and Arm architectures separately and then build the dual-architecture image
manifest.

For example, the defaultbackend-linux-amd64:1.5 and defaultbackend-linux-
arm64:1.5 are images based on the x86 and Arm architectures, respectively.

Upload the two images to SWR. For details about how to upload an image, see
Uploading an Image Through a Container Engine Client.

Add a tag to the original amd64 image defaultbackend-linux-amd64:1.5.
docker tag defaultbackend-linux-amd64:1.5 swr.ap-southeast-1.myhuaweicloud.com/test-namespace/
defaultbackend-linux-amd64:1.5
Add a tag to the original arm64 image defaultbackend-linux-arm64:1.5.
docker tag defaultbackend-linux-arm64:1.5 swr.ap-southeast-1.myhuaweicloud.com/test-namespace/
defaultbackend-linux-arm64:1.5
Push the amd64 image to the image repository.
docker push swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-amd64:1.5
Push the arm64 image to the image repository.
docker push swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-arm64:1.5

Create a dual-architecture manifest file and upload it.

Enable DOCKER_CLI_EXPERIMENTAL.
export DOCKER_CLI_EXPERIMENTAL=enabled
Create the manifest image file.
docker manifest create --amend --insecure swr.ap-southeast-1.myhuaweicloud.com/test-namespace/
defaultbackend:1.5 swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-
arm64:1.5 swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-amd64:1.5
Add arch information to the manifest image file.
docker manifest annotate swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend:1.5
swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-amd64:1.5 --arch amd64
docker manifest annotate swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend:1.5
swr.ap-southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-arm64:1.5 --arch arm64
Push the manifest image file to the image repository.
docker manifest push -p --insecure swr.ap-southeast-1.myhuaweicloud.com/test-namespace/
defaultbackend:1.5

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 529

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html

In this way, you only need to use the image path swr.ap-
southeast-1.myhuaweicloud.com/test-namespace/defaultbackend:1.5 when
creating a workload.

● When a pod is scheduled to an x86 node, the swr.ap-
southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-
amd64:1.5 image is pulled.

● When a pod is scheduled to an Arm node, the swr.ap-
southeast-1.myhuaweicloud.com/test-namespace/defaultbackend-linux-
arm64:1.5 image is pulled.

12.11 Locating Container Faults Using the Core Dump
File

Application Scenarios
Linux allows you to create a core dump file if an application crashes, which
contains the data the application had in memory at the time of the crash. You can
analyze the file to locate the fault.

Generally, when a service application crashes, its container exits and is reclaimed
and destroyed. Therefore, container core files need to be permanently stored on
the host or cloud storage. This topic describes how to configure container core
dumps.

Constraints
When a container core dump is persistently stored to OBS (parallel file system or
object bucket), the default mount option umask=0 is used. As a result, although
the core dump file is generated, the core dump information cannot be written to
the core file. You can configure the OBS mount option umask=0077 to store core
dump files to OBS. For details, see Configuring OBS Mount Options.

Enabling Core Dump on a Node
Log in to the node, run the following command to enable core dump, and set the
path and format for storing core files:

echo "/tmp/cores/core.%h.%e.%p.%t" > /proc/sys/kernel/core_pattern

%h, %e, %p, and %t are placeholders, which are described as follows:

● %h: hostname (or pod name). You are advised to configure this parameter.
● %e: program file name. You are advised to configure this parameter.
● %p: (optional) process ID.
● %t: (optional) time of the core dump.

After the core dump function is enabled by running the preceding command, the
generated core file is named in the format of core.{Host name}.{Program file
name}.{Process ID}.{Time}.

You can also configure a pre-installation or post-installation script to
automatically run this command when creating a node.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 530

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0631.html

NO TE

EulerOS 2.3 Systemd has a bug that affects container core dump. To use core dump,
perform the following operations:
1. In the /usr/lib/systemd/system/docker.service file on the node, change the value of

LimitCORE to infinity.
2. Restart Docker.
3. Redeploy service containers.

Permanently Storing Core Dumps
A core file can be stored in your host (using a hostPath volume) or cloud storage
(using a PVC). The following is an example YAML file for using a hostPath volume.
apiVersion: v1
kind: Pod
metadata:
 name: coredump
spec:
 volumes:
 - name: coredump-path
 hostPath:
 path: /home/coredump
 containers:
 - name: ubuntu
 image: ubuntu:12.04
 command: ["/bin/sleep","3600"]
 volumeMounts:
 - mountPath: /tmp/cores
 name: coredump-path

Create a pod using kubectl.

kubectl create -f pod.yaml

Verification
After the pod is created, access the container and trigger a segmentation fault of
the current shell terminal.

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
coredump 1/1 Running 0 56s
$ kubectl exec -it coredump -- /bin/bash
root@coredump:/# kill -s SIGSEGV $$
command terminated with exit code 139

Log in to the node and check whether a core file is generated in the /home/
coredump directory. The following example indicates that a core file is generated.

ls /home/coredump
core.coredump.bash.18.1650438992

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 531

https://github.com/lnykryn/systemd-rhel/pull/67/commits/d7ee19aaae52a5c7471bd2193e2a73d8c43569ec

12.12 Configuring Parameters to Delay the Pod Startup
in a CCE Turbo Cluster

Application Scenarios
In a CCE Turbo cluster, the routing rules of the peer pod may take effect slowly in
some specific scenarios like cross-VPC and private line interconnections. To avoid
this problem, configure parameters to delay the pod startup.

You can also create enterprise routers to connect to the peer VPCs. For details, see
Connecting a Cluster to the Peer VPC Through an Enterprise Router.

Constraints
Only the CCE Turbo clusters of the following versions support the configuration of
this parameter:

● v1.19: v1.19.16-r40 or later
● v1.21: v1.21.11-r0 or later
● v1.23: v1.23.9-r0 or later
● v1.25: v1.25.4-r0 or later

Using kubectl
You can add annotations to a workload to configure whether to delay the pod
startup.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 10
 selector:
 matchLabels:
 app: nginx
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: nginx
 annotations:
 cni.yangtse.io/readiness-delay-seconds: "20"
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 532

 imagePullSecrets:
 - name: default-secret

In this example, the Deployment needs to be configured to access the IP addresses
of the cross-VPC VMs. The maximum number of replicas of this Deployment is 10
and the maximum rolling upgrade surge is 25%, which is, the maximum number
of pods to be upgraded concurrently is 13. In the annotation, the pod startup
delay is set to 20s. This ensures that the cross-VPC network can be accessed
normally after the pod is started.

Table 12-5 Configuring the annotation

Annotation Default
Value

Description Value
Range

cni.yangtse.io/readiness-
delay-seconds

None Indicates the waiting
time for the pod health
check.

0-60

12.13 Automatically Updating a Workload Version
Using SWR Triggers

Application Scenarios
CCE and SWR work together to enable automatic application updates. Whenever
images are updated, the applications that are built from them can be
automatically updated. This could be realized by adding a trigger to the desired
images.

Prerequisites
A containerized application has been created on CCE and a container image has
been deployed in the application.

If no workload is created, log in to the CCE console and create one. For details, see
Creating a Deployment or Creating a StatefulSet.

Procedure

Step 1 Log in to the SWR console.

Step 2 In the navigation pane, choose My Images and click the name of the target
image.

Step 3 Click the Triggers tab and click Add Trigger. On the page displayed, configure the
parameters by referring to Table 12-6 and click OK.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 533

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0048.html

Figure 12-7 Adding a trigger

Table 12-6 Trigger

Parameter Description

Name The name of a trigger.
The name can contain 1 to 64 characters, and must start with a
letter. Only letters, digits, underscores (_), and hyphens (-) are
allowed. The name cannot end with an underscore or hyphen.
Consecutive underscores or hyphens are not allowed and an
underscore cannot be placed next to a hyphen.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 534

Parameter Description

Condition The following trigger conditions are supported:
● All: Deployment is triggered when any image tags are

generated or updated.
● Specified: Deployment is triggered when a specific image tag is

generated or updated.
● RegEx: Deployment is triggered when an image tag that

matches the regular expression is generated or updated. The
regular expression rules are as follows:
– *: matches any field that does not contain the path

separator /.
– **: matches any field that contains the path separator /.
– ?: matches any single character except /.
– {option 1, option 2, ...}: matches multiple options.

Action Currently, only operation of updating images will be triggered. You
need to specify the application to be updated and the container of
the application.

Status Select Enable.

Type Select CCE.

Target Select the application whose image is to be updated and its
container.

----End

Example 1: The trigger condition is All.
A Deployment named Nginx is created using the Nginx v1 image. The
Deployment provides service to external systems with a welcome page displaying
Hello, SWR!

1. Add a trigger to the Nginx image.
Set Name to All_tags, Condition to All, and select the application and all its
containers that use the Nginx image.

2. The Nginx v2 image is pushed to SWR. The welcome page of the Deployment
created using this new image should display Hello, SoftWare Repository for
Container!

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 535

Figure 12-8 Image tag v2

3. Check whether the Deployment is triggered successfully.
On the Triggers tab, locate the trigger and click Records to check whether
the trigger is successful.

Figure 12-9 Result

The welcome page of the Deployment displays Hello, SoftWare Repository
for Container!

Example 2: The trigger condition is RegEx.
A Deployment named nginx is created using the Nginx image v0. The Deployment
provides service to external systems with a welcome page displaying Hello, SWR!

1. Add a trigger to the Nginx image.
Set Name to Tags_regular_expression, Condition to RegEx, enter the ^v2.*
regular expression, and select the application and all its containers that use
the Nginx image.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 536

Figure 12-10 Selecting RegEx

2. Push the Nginx image v1 to SWR. The welcome page of the Deployment
created using this new image should display Hello, SWR! (v1).

Figure 12-11 Image tag v1

On the Triggers tab, click to check the result. The workload redeployment
of the Nginx image v1 is not triggered.
The workload access page still displayed Hello, SWR!.

3. Push the Nginx image v2 to SWR. The welcome page of the Deployment
created using this new image should display Hello, SWR! (v2).

Figure 12-12 Image tag v2

4. Check whether the Deployment is triggered successfully.

On the Triggers tab, click to check the result. As shown in Figure 12-13,
only the deployment of the Nginx image v2 is triggered.

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 537

Figure 12-13 Result

The welcome page of the Deployment displays Hello, SWR! (v2).

Cloud Container Engine
Best Practices 12 Container

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 538

13 Permission

13.1 Configuring kubeconfig for Fine-Grained
Management on Cluster Resources

Application Scenarios
By default, the kubeconfig file provided by CCE for users has permissions bound to
the cluster-admin role, which are equivalent to the permissions of user root. It is
difficult to implement refined management on users with such permissions.

Purpose
Cluster resources are managed in a refined manner so that specific users have
only certain permissions (such as adding, querying, and modifying resources).

Precautions
Ensure that kubectl is available on your host. If not, download it from here
(corresponding to the cluster version or the latest version).

Configuration Method
NO TE

In the following example, only pods and Deployments in the test space can be viewed and
added, and they cannot be deleted.

Step 1 Set the service account name to my-sa and namespace to test.
kubectl create sa my-sa -n test

Step 2 Configure the role table and assign operation permissions to different resources.
vi role-test.yaml

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 539

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/README.md

The content is as follows:

NO TE

In this example, the permission rules include the read-only permission (get/list/watch) of
pods in the test namespace, and the read (get/list/watch) and create permissions of
deployments.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: myrole
 namespace: test
rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources:
 - pods
 - deployments
 verbs:
 - get
 - list
 - watch
 - create

Create a Role.

kubectl create -f role-test.yaml

Step 3 Create a RoleBinding and bind the service account to the role so that the user can
obtain the corresponding permissions.
vi myrolebinding.yaml

The content is as follows:
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: myrolebinding
 namespace: test
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: myrole
subjects:
- kind: ServiceAccount
 name: my-sa
 namespace: test

Create a RoleBinding.

kubectl create -f myrolebinding.yaml

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 540

The user information is configured. Now perform Step 5 to Step 7 to write the
user information to the configuration file.

Step 4 Manually create a token that is valid for a long time for ServiceAccount.
vi my-sa-token.yaml

The content is as follows:
apiVersion: v1
kind: Secret
metadata:
 name: my-sa-token-secret
 namespace: test
 annotations:
 kubernetes.io/service-account.name: my-sa
type: kubernetes.io/service-account-token

Create a token:

kubectl create -f my-sa-token.yaml

Step 5 Configure the cluster information.

1. Decrypt the ca.crt file in the secret and export it.
kubectl get secret my-sa-token-secret -n test -oyaml |grep ca.crt: | awk '{print $2}' |base64 -d > /home/
ca.crt

2. Set a cluster access mode. test-arm specifies the cluster to be accessed.
https://192.168.0.110:5443 specifies the apiserver IP address of the cluster.
For details about how to obtain the IP address, see Figure 13-1. /home/
test.config specifies the path for storing the configuration file.
– If the internal API server address is used, run the following command:

kubectl config set-cluster test-arm --server=https://192.168.0.110:5443 --certificate-authority=/
home/ca.crt --embed-certs=true --kubeconfig=/home/test.config

– If the public API server address is used, run the following command:
kubectl config set-cluster test-arm --server=https://192.168.0.110:5443 --kubeconfig=/home/
test.config --insecure-skip-tls-verify=true

NO TE

If you perform operations on a node in the cluster or the node that uses the
configuration is a cluster node, do not set the path of kubeconfig to /root/.kube/config.

By default, the apiserver IP address of the cluster is a private IP address. After an
EIP is bound, you can use the public network IP address to access the apiserver.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 541

Figure 13-1 Obtaining the internal or public API server address

Step 6 Configure the cluster authentication information.
1. Obtain the cluster token. (If the token is obtained in GET mode, run based64

-d to decode the token.)
token=$(kubectl describe secret my-sa-token-secret -n test | awk '/token:/{print $2}')

2. Set the cluster user ui-admin.
kubectl config set-credentials ui-admin --token=$token --kubeconfig=/home/test.config

Step 7 Configure the context information for cluster authentication access. ui-
admin@test specifies the context name.
kubectl config set-context ui-admin@test --cluster=test-arm --user=ui-admin --kubeconfig=/home/
test.config

Step 8 Configure the context. For details about how to use the context, see Verification.
kubectl config use-context ui-admin@test --kubeconfig=/home/test.config

NO TE

If you want to assign other users the above permissions to perform operations on the
cluster, provide the generated configuration file /home/test.config to the user after
performing step Step 7. The user must ensure that the host can access the API server
address of the cluster. When performing step Step 8 on the host and using kubectl, the user
must set the kubeconfig parameter to the path of the configuration file.

----End

Verification
1. Pods in the test namespace cannot access pods in other namespaces.

kubectl get pod -n test --kubeconfig=/home/test.config

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 542

2. Pods in the test namespace cannot be deleted.

Further Readings
For more information about users and identity authentication in Kubernetes, see
Authenticating.

13.2 Configuring Namespace-level Permissions for an
IAM User

Application Scenarios
In a containerized environment, various teams and departments have different
resource access needs. If the permissions are set too broadly, it can lead to issues
like cross-environment occupation, misoperations, and resource competition. To
address these problems, it is crucial to have precise control over permissions.

CCE permissions management offers fine-grained control over permissions using
IAM and Kubernetes RBAC. It supports IAM-based fine-grained permissions control
and IAM token authentication. With cluster-level and namespace-level permissions
control, users' access to specific resources can be effectively restricted, ensuring
resource isolation and security.

Table 13-1 IAM and RBAC authorization

Aut
hori
zati
on

Description

IAM
auth
oriza
tion

IAM authorization for user groups is primarily concerned with managing
access to cloud platform resources. Policies are used to control the
permissions of each user group on specific resources.
IAM emphasizes precise control over cloud resources.

RBA
C
auth
oriza
tion

RBAC authorization for user groups is role-based. Permissions are linked
to roles, which are then assigned to user groups. RBAC authorization is
typically employed for internal access control within applications.
RBAC places greater emphasis on aligning roles with tasks.

This example describes how to manage member account permissions at the
namespace level. For more information about CCE permissions management, see
Permissions.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 543

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0164.html

Solution
Assume that there are an R&D and test team and an O&M team. The two teams
need to access cluster A created by member account A and have different resource
access requirements, which are listed in Table 13-2.

Table 13-2 Resource access requirements

Team Permission Policy Content

R&D and test
team

Namespace A of
cluster A

Access and operations on resources in
Namespace A for software
development and testing

O&M team Namespace B of
cluster A

Access resources in Namespace B for
software development and testing

The details are as follows:

1. Create different user groups for different teams.
2. Assign different permissions to these user groups, which means, perform IAM

and RBAC authorization.

Figure 13-2 Solution details

Notes and Constraints
● Before granting permissions to user groups, you need to get familiar with the

system policies listed in Permissions for CCE. To grant permissions for other
services, you need to learn about all system-defined permissions supported
by IAM.

● Users with the Security Administrator permission, which includes all
permissions except IAM role switching, can manage authorization settings on
the namespace permissions page on the CCE console. They can also view the
current user group and its permissions. The admin user group, for example,
has this permission by default.

Step 1: Create Users and User Groups
Member account A creates users and user groups for the R&D and test team and
the O&M team, to make user and resource management easier. In this example,

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 544

https://support.huaweicloud.com/intl/en-us/productdesc-cce/cce_productdesc_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-permissions/iam_01_0001.html

three users are created: development, test, and O&M users. You can create
additional users as needed.

Step 1 Log in to the management console.

Step 2 Hover the cursor on the username in the upper right corner and choose Identity
and Access Management from the drop-down list.

Step 3 In the navigation pane, choose User Groups. In the upper right corner on the
displayed page, click Create User Group.

On the displayed page, enter a user group name and click OK.

In this example, you need to create two user groups, for example, group1 (for the
R&D and test team) and group2 (for the O&M team).

The two new user groups are displayed in the user group list.

Figure 13-3 Viewing the new user groups

Step 4 In the navigation pane, choose Users. In the upper right corner on the displayed
page, click Create User.

Configure parameters in Set User Details as required and click Next. For details,
see Figure 13-4.

Select the user group to which the user is to be added and click Create.

In this example, three users are created for the R&D, test, and O&M personnel.
The R&D and test users are added to group1, and the O&M user is added to
group2.

The three new users are displayed in the user list, as shown in Figure 13-5.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 545

https://console-intl.huaweicloud.com/console/?locale=en-us&iscros=true®ion=ap-southeast-3#/home

Figure 13-4 Creating a user

Figure 13-5 Viewing the new users

----End

Step 2: Perform IAM Authorization for the User Groups
Member account A grants IAM permissions to user groups group1 and group2
and manages user group permissions based on cloud services.

Step 1 In the navigation pane, choose User Groups, locate the user group to be
authorized, and click Authorize.

Step 2 On the displayed page, select Cloud Container Engine (CCE) in the upper right
corner.

Select a policy as required. For more information about CCE FullAccess and CCE
ReadOnlyAccess policies, see System-defined Policies.

In this example, select the CCE FullAccess and CCE ReadOnlyAccess policies for
group1, and select the CCE ReadOnlyAccess policy for group2.

Figure 13-6 IAM authorization

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 546

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0188.html#section4

Step 3 Click Next, select a more refined scope as required (for example, All resources),
and click OK.

Table 13-3 Authorization scopes

Solution Description

All resources IAM users will be able to use all resources, including those in
enterprise projects, region-specific projects, and global services
under your account based on assigned permissions.

Enterprise
projects

IAM users will be able to use resources in the selected
enterprise projects based on assigned permissions. For example,
an enterprise project may contain resources that are deployed
in different regions. After you associate the enterprise project
with the IAM users, they can access the resources in this
enterprise project based on the assigned permissions.
IAM users will be able to use resources in the selected
enterprise projects based on assigned permissions.

Region-
specific
projects

IAM users will be able to use resources in the selected region-
specific projects based on assigned permissions.
IAM users will be able to use resources in the selected region-
specific projects based on assigned permissions.

----End

Step 3: Perform RBAC Authorization for the User Groups

Member account A performs RBAC authorization on the two user groups for
namespace-level permissions management. This ensures that user groups with
different roles have the minimum permissions, improving system security and
management efficiency.

Step 1 Click in the upper left corner and choose Cloud Container Engine to access
the CCE console.

Step 2 In the navigation pane, choose Permissions. In the right pane, select a cluster to
be authorized and a namespace and click Add Permission in the upper right
corner.

Figure 13-7 Performing operations on the Permissions page

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 547

Step 3 On the displayed page, confirm the cluster name, select the user or user group to
be authorized, and select a namespace to be used for cluster authorization. In this
example, select the default namespace for group1 and the test namespace for
group2.

You can select a permission type based on your requirements. For details about
permission types, see Namespace Permissions (Kubernetes RBAC-based). In this
example, you can select Custom.

1. Click Add Custom Role.
2. Configure the custom role. Table 13-4 lists the custom role parameters of

group1 and group2.

Figure 13-8 Adding a custom role

Table 13-4 Description

Parame
ter

Example Description

Name group1:
example1
group2:
example2

Name of a custom role

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 548

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0189.html#section0

Parame
ter

Example Description

Type group1:
Role
group2:
Role

Custom roles are classified into
ClusterRole and Role. Each
ClusterRole or Role contains a group
of rules that represent related
permissions. For details, see Using
RBAC Authorization.
– ClusterRole: a cluster-level

resource that can be used to
configure cluster access
permissions.

– Role: used to configure access
permissions in a namespace. When
creating a Role, specify the
namespace to which the Role
belongs.

In this example, you only need to
configure namespace permissions.
Therefore, you can choose Role.

Rule group1:
– get, list, watch:

persistentvolume-
claims

– *: resources except
persistentvolume-
claims

group2:
– get, list, watch: *

The information on the left indicates
the permissions to be granted.
The right part indicates the resources
to which the permissions are granted.
You can configure this parameter
based on the actual requirements.

3. Click OK.

Step 4 On the Add Permission page, select the newly created role for Custom and click
OK.

In this example, two permissions, example1 and example2, need to be created
and assigned to group1 and group2, respectively.

The new permissions are displayed in the permissions list.

Figure 13-9 Viewing the permissions list

----End

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 549

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Step 4: Verify Permissions
Log in to the management console as the user created using Step 1: Create Users
and User Groups and check whether the user has the required permissions. This
section uses the develop user created previously as an example to verify whether
the permissions have been configured.

Step 1 Bind a mobile number following instructions and verify the login. Whether or not
a mobile number needs to be linked to an account depends on the choice made
during the initial setup of basic user information.

Reset the password following instructions (required for the first login).

Figure 13-10 Logging in to the management console

Step 2 Click in the upper left corner and choose Cloud Container Engine to access
the CCE console.

Step 3 Check whether the develop user can access other clusters except cce-example.

Click the name of another cluster. If you see a message stating that the user does
not have the necessary permissions, it means the user cannot access other
clusters.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 550

Figure 13-11 No permissions

Step 4 Check whether the develop user can access the cce-example cluster.

Click the name of the cce-example cluster to access the cluster console. In the
navigation pane, choose Namespace. In the right pane, only the default
namespace (namespace for which permissions are configured) is displayed.

Figure 13-12 Viewing namespaces

Step 5 Check whether the develop user can create a PVC.

In the navigation pane, choose Storage. In the right pane, click the PVs tab and
click Create PVC in the upper right corner.

In the window that slides out from the right, configure related parameters and
click Create. A message is displayed, indicating that the user does not have the
permissions. The develop user only has permissions to view the PVCs, but does
not have permissions to perform any operations on them because of the
permissions configured in Step 3: Perform RBAC Authorization for the User
Groups.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 551

Figure 13-13 PVC creation failed due to insufficient permissions

Step 6 Check whether the develop user can upgrade a workload.

In the navigation pane, choose Workloads. In the workload list, locate the row
containing the wordpress1 workload and click Upgrade.

Change the original image tag from php7.3 to latest and click Upgrade
Workload.

Figure 13-14 Changing the image tag of a workload

In the workload list, check whether the image tag of wordpress1 has been
changed to latest. If it is, the workload has been upgraded, and the operation
permissions of the develop user have been configured successfully.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 552

Figure 13-15 wordpress1 after upgrade

----End

Step 5: Clear Resources
If a user group no longer requires permissions, you can delete the permissions of
the user group using member account A or even delete the created user and user
group.

Step 1 Delete RBAC authorization.

Log in as member account A.

Click in the upper left corner and choose Cloud Container Engine to access
the CCE console.

In the navigation pane, choose Permissions. On the page displayed, select a
cluster and a namespace.

In the permissions list, locate the row containing the target permission and click
Delete. In the dialog box displayed, click Yes.

Step 2 Delete a user group.

Hover the cursor on the username in the upper right corner and choose Identity
and Access Management from the drop-down list.

In the navigation pane, choose User Groups. In the right pane, locate the row
containing the target user group and click Delete.

In the displayed dialog box, enter DELETE and click OK.

Step 3 Delete a user.

In the navigation pane, choose Users. In the right pane, locate the row containing
the target user and click Delete. You can also click Edit to disable the user and
enable it again as required.

In the displayed dialog box, enter DELETE and click OK.

----End

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 553

13.3 Performing RBAC Authentication on a Namespace
Using kubectl Commands

Background

CCE permissions are classified into cluster permissions and namespace
permissions. Namespace permissions are based on Kubernetes RBAC and can be
used to grant permissions on resources in clusters and namespaces.

Currently, the CCE console provides four types of namespace-level ClusterRole
permissions by default: cluster-admin, admin, edit, and view. However, these
permissions apply to resources in the namespace regardless of resource types
(pods, Deployments, and Services).

Solution

Kubernetes RBAC enables you to easily control permissions on namespace
resources.

● Role: defines a set of rules for accessing Kubernetes resources in a namespace.
● RoleBinding: defines the relationship between users and roles.
● ClusterRole: defines a set of rules for accessing Kubernetes resources in a

cluster (including all namespaces).
● ClusterRoleBinding: defines the relationship between users and cluster roles.

Role and ClusterRole specify actions that can be performed on specific resources.
RoleBinding and ClusterRoleBinding bind roles to specific users, user groups, or
ServiceAccounts. See the following figure.

Figure 13-16 Role binding

The user in the preceding figure can be an IAM user or user group in CCE. You can
efficiently control permissions on namespace resources through RoleBindings.

The section describes how to use Kubernetes RBAC to grant user user-example
with the permission for viewing pods. (This is the only permission the user has.)

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 554

Prerequisites
RBAC is supported only on clusters of v1.11.7-r2 or later.

Creating an IAM User and User Group
Log in to the IAM console and create an IAM user named user-example and a
user group named cce-role-group. For details about how to create an IAM user
and user group, see Creating an IAM User and Logging In and Creating a User
Group and Assigning Permissions.

Grant the CCE FullAccess permission to the cce-role-group user group. For details
about how to grant permissions to a user group, see Creating a User Group and
Assigning Permissions.

CCE FullAccess has the permissions for cluster operations (such as cluster
creation), but does not have the permissions to operate Kubernetes resources
(such as viewing pods).

Creating a Cluster
Log in to CCE and create a cluster.

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 555

https://support.huaweicloud.com/intl/en-us/qs-iam/iam_01_0031.html#section0
https://support.huaweicloud.com/intl/en-us/qs-iam/iam_01_0030.html#section0
https://support.huaweicloud.com/intl/en-us/qs-iam/iam_01_0030.html#section0
https://support.huaweicloud.com/intl/en-us/qs-iam/iam_01_0030.html#section1
https://support.huaweicloud.com/intl/en-us/qs-iam/iam_01_0030.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0189.html#section1

NO TICE

Do not use IAM user user-example to create a cluster because CCE automatically
assigns the cluster-admin permissions of all namespaces in the cluster to the user
who creates the cluster. That is, the user can fully control the resources in the
cluster and all its namespaces.

Log in to the CCE console as IAM user user-example, download the kubectl
configuration file in the cluster and access the cluster, and run the following
command to obtain the pod information. (The output shows that user-example
does not have the permission to view the pods or other resources.) This indicates
that user-example does not have the permissions to operate Kubernetes
resources.

kubectl get pod
Error from server (Forbidden): pods is forbidden: User "0c97ac3cb280f4d91fa7c0096739e1f8" cannot list
resource "pods" in API group "" in the namespace "default"
kubectl get deploy
Error from server (Forbidden): deployments.apps is forbidden: User "0c97ac3cb280f4d91fa7c0096739e1f8"
cannot list resource "deployments" in API group "apps" in the namespace "default"

Creating a Role and RoleBinding

Log in to the CCE console, download the kubectl configuration file in the
cluster and access the cluster, and create a Role and RoleBinding.

NO TE

Log in as the account used to create the cluster because CCE automatically assigns the
cluster-admin permissions to the account, which means that the account has the
permissions to create Roles and RoleBindings. Alternatively, you can use IAM users who
have the permissions to create Roles and RoleBindings.

The procedure for creating a Role is very simple. To be specific, specify a
namespace and then define rules. The rules in the following example are to allow
GET and LIST operations on pods in the default namespace.

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default # Namespace
 name: role-example
rules:
- apiGroups: [""]
 resources: ["pods"] # The pod can be accessed.
 verbs: ["get", "list"] # The GET and LIST operations can be performed.

● apiGroups indicates the API group to which the resource belongs.
● resources indicates the resources that can be operated. Pods, Deployments,

ConfigMaps, and other Kubernetes resources are supported.
● verbs indicates the operations that can be performed. get indicates querying

a specific object, and list indicates listing all objects of a certain type. Other
value options include create, update, and delete.

For details, see Using RBAC Authorization.

After creating a Role, you can bind the Role to a specific user, which is called
RoleBinding. The following shows an example:

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 556

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section2
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: RoleBinding-example
 namespace: default
 annotations:
 CCE.com/IAM: 'true'
roleRef:
 kind: Role
 name: role-example
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: User
 name: 0c97ac3cb280f4d91fa7c0096739e1f8 # IAM user ID
 apiGroup: rbac.authorization.k8s.io

The subjects section binds a Role with an IAM user so that the IAM user can
obtain the permissions defined in the Role, as shown in the following figure.

Figure 13-17 Binding a role to a user

You can also specify a user group in the subjects section. In this case, all users in
the user group obtain the permissions defined in the Role.

subjects:
- kind: Group
 name: 0c96fad22880f32a3f84c009862af6f7 # User group ID
 apiGroup: rbac.authorization.k8s.io

Verification
Use IAM user user-example to connect to the cluster and view the pods. The pods
can be viewed.

kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-658dff48ff-7rkph 1/1 Running 0 4d9h
nginx-658dff48ff-njdhj 1/1 Running 0 4d9h
kubectl get pod nginx-658dff48ff-7rkph
NAME READY STATUS RESTARTS AGE
nginx-658dff48ff-7rkph 1/1 Running 0 4d9h

Try querying Deployments and Services in the namespace. The output shows user-
example does not have the corresponding permissions. Try querying the pods in
namespace kube-system. The output shows user-example does not have the
corresponding permission, either. This indicates that the IAM user user-example
has only the GET and LIST Pod permissions in the default namespace, which is the
same as expected.

kubectl get deploy
Error from server (Forbidden): deployments.apps is forbidden: User "0c97ac3cb280f4d91fa7c0096739e1f8"

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 557

cannot list resource "deployments" in API group "apps" in the namespace "default"
kubectl get svc
Error from server (Forbidden): services is forbidden: User "0c97ac3cb280f4d91fa7c0096739e1f8" cannot list
resource "services" in API group "" in the namespace "default"
kubectl get pod --namespace=kube-system
Error from server (Forbidden): pods is forbidden: User "0c97ac3cb280f4d91fa7c0096739e1f8" cannot list
resource "pods" in API group "" in the namespace "kube-system"

Cloud Container Engine
Best Practices 13 Permission

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 558

14 Release

14.1 Overview

Background
When switching between old and new services, you may be challenged in ensuring
the system service continuity. If a new service version is directly released to all
users at a time, it can be risky because once an online accident or bug occurs, the
impact on users is great. It could take a long time to fix the issue. Sometimes, the
version has to be rolled back, which severely affects user experience.

Solution
Several release policies are developed for service upgrade: grayscale release, blue-
green deployment, A/B testing, rolling upgrade, and batch suspension of release.
Traffic loss or service unavailability caused by releases can be avoided as much as
possible.

This document describes the principles and practices of grayscale release and
blue-green deployment.

● Grayscale release, also called canary release, is a smooth iteration mode for
version upgrade. During the upgrade, some users use the new version, while
other users continue to use the old version. After the new version is stable
and ready, it gradually takes over all the live traffic. In this way, service risks
brought by the release of the new version can be minimized, the impact of
faults can be reduced, and quick rollback is supported.
The following figure shows the general process of grayscale release. First,
divide 20% of all service traffic to the new version. If the service version runs
normally, gradually increase the traffic proportion and continue to test the
performance of the new version. If the new version is stable, switch all traffic
to it and bring the old version offline.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 559

If an exception occurs in the new version when 20% of the traffic goes to the
new version, you can quickly switch back to the old version.

● Blue-green deployment provides a zero-downtime, predictable manner for
releasing applications to reduce service interruption during the release. A new
version is deployed while the old version is retained. The two versions are
online at the same time. The new and old versions work in hot backup mode.
The route weight is switched (0 or 100) to enable different versions to go
online or offline. If a problem occurs, the version can be quickly rolled back.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 560

Realizing Grayscale Release or Blue-Green Deployment
Kubernetes-native features can be used to implement simple grayscale release or
blue-green deployment. For example, you can change the value of the label that
determines the service version in the selector of a Service to change the pod
backing the Service. In this way, the service can be directly switched from one
version to another. If you have complex grayscale release or blue-green
deployment requirements, you can deploy service meshes and open-source tools,
such as Nginx Ingress and Traefik, to the cluster. You can obtain detailed
instructions in the following sections:

● Using Services to Implement Simple Grayscale Release and Blue-Green
Deployment

● Using Nginx Ingress to Implement Grayscale Release and Blue-Green
Deployment

Table 14-1 Implementation mode comparison

Impleme
ntation

Application
Scenario

Feature Disadvantage

Service Simple release
requirements
and small-scale
test scenarios

No need to introduce too
many plug-ins or complex
configurations

Manual
operations and
poor automation

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 561

Impleme
ntation

Application
Scenario

Feature Disadvantage

Nginx
Ingress

No special
requirements.

● Only the annotation
supported by Nginx
Ingress needs to be
configured.

● Header-based, cookie-
based, and service weight-
based traffic division
policies are supported.

The nginx-ingress
add-on needs to
be installed in the
cluster, which
consumes
resources.

Both Services and Nginx Ingresses use open source Kubernetes capabilities to
implement grayscale release and blue-green deployment. In this process, CCE
allows you to easily perform the following operations:

● All resources can be created, viewed, and modified on the console, which is
more intuitive than the kubectl command line tool.

● LoadBalancer Services are supported by the ELB service. When creating a
Service, you can use an existing ELB instance or create a new one.

● The nginx-ingress add-on can be installed in just a few clicks, and ELB load
balancers can be created and interconnected during the installation.

14.2 Using Services to Implement Simple Grayscale
Release and Blue-Green Deployment

To implement grayscale release for a CCE cluster, deploy other open-source tools,
such as Nginx Ingress, to the cluster or deploy services to a service mesh. These
solutions are difficult to implement. If your grayscale release requirements are
simple and you do not want to introduce too many plug-ins or complex
configurations, you can refer to this section to implement simple grayscale release
and blue-green deployment based on native Kubernetes features.

Principles
Users usually use Kubernetes objects such as Deployments and StatefulSets to
deploy services. Each workload manages a group of pods. The following figure
uses Deployment as an example.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 562

Generally, a Service is created for each workload. The Service uses the selector to
match the backend pod. Other Services or objects outside the cluster can access
the pods backing the Service. If a pod needs to be exposed, set the Service type to
LoadBalancer. The ELB load balancer functions as the traffic entrance.

● Grayscale release principles
Take a Deployment as an example. A Service, in most cases, will be created
for each Deployment. However, Kubernetes does not require that Services and
Deployments correspond to each other. A Service uses a selector to match
backend pods. If pods of different Deployments are selected by the same
selector, a Service corresponds to multiple versions of Deployments. You can
adjust the number of replicas of Deployments of different versions to adjust
the weights of services of different versions to achieve grayscale release. The
following figure shows the process:

● Blue-green deployment principles
Take a Deployment as an example. Two Deployments of different versions
have been deployed in the cluster, and their pods are labeled with the same
key but different values to distinguish versions. A Service uses the selector to
select the pod of a Deployment of a version. In this case, you can change the

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 563

value of the label that determines the version in the Service selector to
change the pod backing the Service. In this way, you can directly switch the
service traffic from one version to another. The following figure shows the
process:

Prerequisites

The Nginx image has been uploaded to SWR. The Nginx images have two
versions: v1 and v2. The welcome pages are Nginx-v1 and Nginx-v2.

Resource Creation

You can use YAML to deploy Deployments and Services in either of the following
ways:

● On the Create Deployment page, click Create YAML on the right and edit
the YAML file in the window.

● Save the sample YAML file in this section as a file and use kubectl to specify
the YAML file. For example, run the kubectl create -f xxx.yaml command.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 564

Step 1: Deploy Services of Two Versions

Two versions of Nginx services are deployed in the cluster to provide external
access through ELB.

Step 1 Create a Deployment of the first version. The following uses nginx-v1 as an
example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-v1
spec:
 replicas: 2 # Number of replicas of the Deployment, that is, the number of pods
 selector: # Label selector
 matchLabels:
 app: nginx
 version: v1
 template:
 metadata:
 labels: # Pod label
 app: nginx
 version: v1
 spec:
 containers:
 - image: {your_repository}/nginx:v1 # The image used by the container is nginx:v1.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Step 2 Create a Deployment of the second version. The following uses nginx-v2 as an
example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-v2
spec:
 replicas: 2 # Number of replicas of the Deployment, that is, the number of pods
 selector: # Label selector
 matchLabels:
 app: nginx
 version: v2
 template:
 metadata:
 labels: # Pod label
 app: nginx
 version: v2
 spec:
 containers:
 - image: {your_repository}/nginx:v2 # The image used by the container is nginx:v2.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 565

You can log in to the CCE console to view the deployment status.

----End

Step 2: Implement Grayscale Release

Step 1 Create a LoadBalancer Service for the Deployment. Do not specify the version in
the selector. Enable the Service to select the pods of the Deployments of two
versions. Example YAML:
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 586c97da-a47c-467c-a615-bd25a20de39c # ID of the ELB load balancer. Replace it
with the actual value.
 name: nginx
spec:
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 selector: # The selector does not contain version information.
 app: nginx
 type: LoadBalancer # Service type (LoadBalancer)

Step 2 Run the following command to test the access:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

The command output is as follows (Half of the responses are from the
Deployment of version v1, and the other half are from version v2):

Nginx-v2
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v2

Step 3 Use the console or kubectl to adjust the number of replicas of the Deployments.
Change the number of replicas to 4 for v1 and 1 for v2.

kubectl scale deployment/nginx-v1 --replicas=4

kubectl scale deployment/nginx-v2 --replicas=1

Step 4 Run the following command to test the access again:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

In the command output, among the 10 access requests, only two responses are
from the v2 version. The response ratio of the v1 and v2 versions is the same as
the ratio of the number of replicas of the v1 and v2 versions, that is, 4:1. Grayscale
release is implemented by controlling the number of replicas of services of
different versions.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 566

Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v1
Nginx-v1

NO TE

If the ratio of v1 to v2 is not 4:1, you can set the number of access times to a larger value,
for example, 20. Theoretically, the more the times, the closer the response ratio between v1
and v2 is to 4:1.

----End

Step 3: Implement Blue-Green Deployment

Step 1 Create a LoadBalancer Service for a deployed Deployment and specify that the v1
version is used. Example YAML:
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 586c97da-a47c-467c-a615-bd25a20de39c # ID of the ELB load balancer. Replace it
with the actual value.
 name: nginx
spec:
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 selector: # Set the version to v1 in the selector.
 app: nginx
 version: v1
 type: LoadBalancer # Service type (LoadBalancer)

Step 2 Run the following command to test the access:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

The command output is as follows (all responses are from the v1 version):

Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1

Step 3 Use the console or kubectl to modify the selector of the Service so that the v2
version is selected.

kubectl patch service nginx -p '{"spec":{"selector":{"version":"v2"}}}'

Step 4 Run the following command to test the access again:

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 567

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

The returned results show that are all responses are from the v2 version. The blue-
green deployment is successfully implemented.

Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2

----End

14.3 Using Nginx Ingress to Implement Grayscale
Release and Blue-Green Deployment

This section describes the scenarios and practices of using Nginx Ingress to
implement grayscale release and blue-green deployment.

Application Scenarios
Nginx Ingress supports three traffic division policies based on the header, cookie,
and service weight. Based on these policies, the following two release scenarios
can be implemented:

● Scenario 1: Split some user traffic to the new version.
Assume that Service A that provides layer-7 networking is running. A new
version is ready to go online, but you do not want to replace the original
Service A. You want to forward the user requests whose header or cookie
contains foo=bar to the new version of Service A. After the new version runs
stably for a period of time, you can gradually bring the new version online
and smoothly bring the old version offline. The following figure shows the
process:

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 568

● Scenario 2: Split a certain proportion of traffic to the new version.
Assume that Service B that provides layer-7 services is running. After some
problems are resolved, a new version of Service B needs to be released.
However, you do not want to replace the original Service B. Instead, you want
to switch 20% traffic to the new version of Service B. After the new version
runs stably for a period of time, you can switch all traffic from the old version
to the new version and smoothly bring the old version offline.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 569

Annotations
Nginx Ingress supports release and testing in different scenarios by configuring
annotations for grayscale release, blue-green deployment, and A/B testing. The
implementation process is as follows: Create two ingresses for the service. One is a
common ingress, and the other is an ingress with the annotation
nginx.ingress.kubernetes.io/canary: "true", which is called a canary ingress.
Configure a traffic division policy for the canary ingress. The two ingresses
cooperate with each other to implement release and testing in multiple scenarios.
The annotation of Nginx Ingress supports the following rules:

● nginx.ingress.kubernetes.io/canary-by-header
Header-based traffic division, which is applicable to grayscale release. If the
request header contains the specified header name and the value is always,
the request is forwarded to the backend service defined by the canary ingress.
If the value is never, the request is not forwarded and a rollback to the source
version can be performed. If other values are used, the annotation is ignored
and the request traffic is allocated according to other rules based on the
priority.

● nginx.ingress.kubernetes.io/canary-by-header-value
This rule must be used together with canary-by-header. You can customize
the value of the request header, including but not limited to always or never.
If the value of the request header matches the specified custom value, the
request is forwarded to the corresponding backend service defined by the
canary ingress. If the values do not match, the annotation is ignored and the
request traffic is allocated according to other rules based on the priority.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 570

● nginx.ingress.kubernetes.io/canary-by-header-pattern
This rule is similar to canary-by-header-value. The only difference is that this
annotation uses a regular expression, not a fixed value, to match the value of
the request header. If this annotation and canary-by-header-value exist at the
same time, this one will be ignored.

● nginx.ingress.kubernetes.io/canary-by-cookie
Cookie-based traffic division, which is applicable to grayscale release. Similar
to canary-by-header, this annotation is used for cookies. Only always and
never are supported, and the value cannot be customized.

● nginx.ingress.kubernetes.io/canary-weight
Traffic is divided based on service weights, which is applicable to blue-green
deployment. This annotation indicates the percentage of traffic allocated by
the canary ingress. The value ranges from 0 to 100. For example, if the value
is set to 100, all traffic is forwarded to the backend service backing the canary
ingress.

NO TE

● The preceding annotation rules are evaluated based on the priority. The priority is as
follows: canary-by-header -> canary-by-cookie -> canary-weight.

● When an ingress is marked as a canary ingress, all non-canary annotations except
nginx.ingress.kubernetes.io/load-balance and nginx.ingress.kubernetes.io/
upstream-hash-by are ignored.

● For more information, see Annotations.

Prerequisites
● To use Nginx Ingress to implement grayscale release of a cluster, install the

nginx-ingress add-on as the Ingress Controller and expose a unified traffic
entrance externally. For details, see Installing the Add-on.

● The Nginx image has been uploaded to SWR. The Nginx images have two
versions. The welcome pages are Old Nginx and New Nginx.

Resource Creation
You can use YAML to deploy Deployments and Services in either of the following
ways:

● On the Create Deployment page, click Create YAML on the right and edit
the YAML file in the window.

● Save the sample YAML file in this section as a file and use kubectl to specify
the YAML file. For example, run the kubectl create -f xxx.yaml command.

Step 1: Deploy Services of Two Versions
Two versions of Nginx are deployed in the cluster, and Nginx Ingress is used to
provide layer-7 domain name access for external systems.

Step 1 Create a Deployment and Service for the first version. This section uses old-nginx
as an example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 571

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0034.html

 name: old-nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: old-nginx
 template:
 metadata:
 labels:
 app: old-nginx
 spec:
 containers:
 - image: {your_repository}/nginx:old # The image used by the container is nginx:old.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

apiVersion: v1
kind: Service
metadata:
 name: old-nginx
spec:
 selector:
 app: old-nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: NodePort

Step 2 Create a Deployment and Service for the second version. This section uses new-
nginx as an example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: new-nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: new-nginx
 template:
 metadata:
 labels:
 app: new-nginx
 spec:
 containers:
 - image: {your_repository}/nginx:new # The image used by the container is nginx:new.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 572

apiVersion: v1
kind: Service
metadata:
 name: new-nginx
spec:
 selector:
 app: new-nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: NodePort

You can log in to the CCE console to view the deployment status.

Step 3 Create an ingress to expose the service and point to the service of the old version.
Example YAML:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: gray-release
 namespace: default
 annotations:
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: old-nginx # Set the back-end service to old-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

Step 4 Run the following command to verify the access:
curl -H "Host: www.example.com" http://<EXTERNAL_IP>

In the preceding command, <EXTERNAL_IP> indicates the external IP address of
the Nginx ingress.

Expected outputs:

Old Nginx

----End

Step 2: Launch the New Version of the Service in Grayscale Release Mode
Set the traffic division policy for the service of the new version. CCE supports the
following policies for grayscale release and blue-green deployment:

Header-based, cookie-based, and weight-based traffic division rules

Grayscale release can be implemented based on all these policies. Blue-green
deployment can be implemented by adjusting the new service weight to 100%.
For details, see the following examples.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 573

CA UTION

Pay attention to the following:
● Only one canary ingress can be defined for the same service so that the

backend service supports a maximum of two versions.
● Even if the traffic is completely switched to the canary ingress, the old version

service must still exist. Otherwise, an error is reported.

● Header-based rules
In the following example, only the request whose header contains Region set
to bj or gz can be forwarded to the service of the new version.

a. Create a canary ingress, set the backend service to the one of the new
versions, and add annotations.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-by-header: "Region"
 nginx.ingress.kubernetes.io/canary-by-header-pattern: "bj|gz" # Requests whose header
contains Region with the value bj or gz are forwarded to the canary ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ curl -H "Host: www.example.com" -H "Region: bj" http://<EXTERNAL_IP>
New Nginx
$ curl -H "Host: www.example.com" -H "Region: sh" http://<EXTERNAL_IP>
Old Nginx
$ curl -H "Host: www.example.com" -H "Region: gz" http://<EXTERNAL_IP>
New Nginx
$ curl -H "Host: www.example.com" http://<EXTERNAL_IP>
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
Only requests whose header contains Region with the value bj or gz are
responded by the service of the new version.

● Cookie-based rules
In the following example, only the request whose cookie contains
user_from_bj can be forwarded to the service of the new version.

a. Create a canary ingress, set the backend service to the one of the new
versions, and add annotations.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 574

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-by-cookie: "user_from_bj" # Requests whose cookie
contains user_from_bj are forwarded to the canary ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ curl -s -H "Host: www.example.com" --cookie "user_from_bj=always" http://
<EXTERNAL_IP>
New Nginx
$ curl -s -H "Host: www.example.com" --cookie "user_from_gz=always" http://
<EXTERNAL_IP>
Old Nginx
$ curl -s -H "Host: www.example.com" http://<EXTERNAL_IP>
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
Only requests whose cookie contains user_from_bj with the value always
are responded by the service of the new version.

● Service weight-based rules
Example 1: Only 20% of the traffic is allowed to be forwarded to the service
of the new version to implement grayscale release.

a. Create a canary ingress and add annotations to import 20% of the traffic
to the backend service of the new version.

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-weight: "20" # Forward 20% of the traffic to the canary
ingress.
 kubernetes.io/elb.port: '80'

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 575

spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ for i in {1..20}; do curl -H "Host: www.example.com" http://<EXTERNAL_IP>; done;
Old Nginx
Old Nginx
Old Nginx
New Nginx
Old Nginx
New Nginx
Old Nginx
New Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
New Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
It can be seen that there is a 4/20 probability that the service of the new
version responds, which complies with the setting of the service weight of
20%.

NO TE

After traffic is divided based on the weight (20%), the probability of accessing
the new version is close to 20%. The traffic ratio may fluctuate within a small
range, which is normal.

Example 2: Allow all traffic to be forwarded to the service of the new version
to implement blue-green deployment.

a. Create a canary ingress and add annotations to import 100% of the
traffic to the backend service of the new version.

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 576

 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-weight: "100" # All traffic is forwarded to the canary
ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ for i in {1..10}; do curl -H "Host: www.example.com" http://<EXTERNAL_IP>; done;
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
All access requests are responded by the service of the new version, and
the blue-green deployment is successfully implemented.

Cloud Container Engine
Best Practices 14 Release

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 577

15 Batch Computing

15.1 Deploying and Using Kubeflow in a CCE Cluster

15.1.1 Deploying Kubeflow

Background

Building an end-to-end AI computing platform based on Kubernetes is complex.
More than a dozen of phases is required. Apart from the familiar model training
phase, the process also includes data collection, preprocessing, resource
management, feature extraction, data verification, model management, model
release, and monitoring. If AI algorithm engineers want to run a model training
task, they have to build an entire AI computing platform first. Imagine how time-
and labor-consuming that is and how much knowledge and experience it requires.

Figure 15-1 Phrases for training a model

Kubeflow was released in 2017, which is built on containers and Kubernetes. It
aims to provide data scientists, machine learning engineers, and system O&M
personnel with a platform for agile deployment, development, training, release,
and management of machine learning services. It leverages the advantages of
cloud native technologies to enable users to quickly and easily deploy, use, and
manage the most popular machine learning software.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 578

Kubeflow 1.0 is now available, providing capabilities in development, building,
training, and deployment that cover the entire process of machine learning and
deep learning for enterprise users.

The following shows an example.

With Kubeflow 1.0, you first develop a model using Jupyter, and then set up
containers using tools such as Fairing (SDK). Next, you create Kubernetes
resources to train the model. After the training is complete, you create and deploy
servers for inference using KFServing. This is how you use Kubeflow to establish an
end-to-end agile process of a machine learning task. This process can be fully
automated using pipelines, which help achieve DevOps in the AI field.

Prerequisites
● A cluster named clusterA has been created on CCE. The cluster has an

available GPU node that has two or more GPUs.

● EIPs have been bound to the nodes, and the kubectl command line tool has
been configured. For details, see Connecting to a Cluster Using kubectl.

Installing Kustomize

Kustomize is an open-source tool used to manage the configuration of
applications running in Kubernetes clusters. It allows you to modify application
configuration. Starting with Kubeflow 1.3, all components should be deployed only
using Kustomize.

Step 1 Install Kustomize. Kubeflow is incompatible with earlier versions of Kustomize.
Therefore, only Kustomize 5 and later versions are supported. In this example,
Kubeflow 5.1.0 is used.
curl -o install_kustomize.sh "https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/
install_kustomize.sh"
sh install_kustomize.sh 5.1.0 .

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 579

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://github.com/kubernetes-sigs/kustomize

The installation may take 3 to 5 minutes, and the information similar to the
following will be displayed:
v5.1.0
kustomize installed to /root/kubeflow/./kustomize

Step 2 Move kustomize to the /bin directory so that the kustomize command can be
used globally.
cp kustomize /bin/

----End

Installing Kubeflow
Perform the steps in this section to install all official Kubeflow components. After
the installation, you can access the Kubeflow central dashboard. For details, see
Connecting to Kubeflow.

Step 1 Install Kubeflow 1.7.0.
wget https://github.com/kubeflow/manifests/archive/refs/tags/v1.7.0.zip
unzip v1.7.0.zip

Step 2 Use Kustomize to create a YAML file for deploying Kubeflow.
cd ./manifests-1.7.0/
kustomize build example -o example.yaml

Step 3 Configure storage resources required by Kubeflow.
● katib-mysql
● mysql-pv-claim
● minio-pv-claim
● authservice-pvc

Some storage resources need to be configured during the installation. The storage
configuration in the official example cannot take effect in CCE. This may result in
the preceding PVC fail to be created. Therefore, create a PVC with the same name
in the cluster in advance. In this example, the EVS disk is used. You can change the
storage type as required.

Create the pvc.yaml file. The following is an example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: katib-mysql
 namespace: kubeflow
 annotations:
 everest.io/disk-volume-type: SAS # EVS disk type
 labels:
 failure-domain.beta.kubernetes.io/region: <your_region> # Region of the node where the application is
to be deployed
 failure-domain.beta.kubernetes.io/zone: <your_zone> # AZ of the node where the application is to be
deployed
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk

apiVersion: v1
kind: PersistentVolumeClaim

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 580

https://github.com/kubeflow/manifests#connect-to-your-kubeflow-cluster

metadata:
 name: mysql-pv-claim
 namespace: kubeflow
 annotations:
 everest.io/disk-volume-type: SAS # EVS disk type
 labels:
 failure-domain.beta.kubernetes.io/region: <your_region> # Region of the node where the application is
to be deployed
 failure-domain.beta.kubernetes.io/zone: <your_zone> # AZ of the node where the application is to be
deployed
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi
 storageClassName: csi-disk

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: minio-pvc
 namespace: kubeflow
 annotations:
 everest.io/disk-volume-type: SAS # EVS disk type
 labels:
 failure-domain.beta.kubernetes.io/region: <your_region> # Region of the node where the application is
to be deployed
 failure-domain.beta.kubernetes.io/zone: <your_zone> # AZ of the node where the application is to be
deployed
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi
 storageClassName: csi-disk

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: authservice-pvc
 namespace: istio-system
 annotations:
 everest.io/disk-volume-type: SAS # EVS disk type
 labels:
 failure-domain.beta.kubernetes.io/region: <your_region> # Region of the node where the application is
to be deployed
 failure-domain.beta.kubernetes.io/zone: <your_zone> # AZ of the node where the application is to be
deployed
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk

Create a PVC.

kubectl apply -f pvc.yaml

Step 4 Create related resources.
kubectl apply -f example.yaml

NO TE

Official images may fail to be pulled due to network problems, and the ImagePullBackOff
or FailedPullImage error may occur in the workload. In this case, add a proper image proxy.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 581

Step 5 Check whether pods in all namespaces are running.
kubectl get pod -A

If an unexpected problem occurs during resource creation, rectify it by referring to
Common Issues.

----End

Common Issues
● In some scenarios where CRD resources do not exist, the following

information is displayed:
error: resource mapping not found for name: "<RESOURCE_NAME>" namespace:
"<SOME_NAMESPACE>" from "STDIN": no matches for kind "<CRD_NAME>" in version
"<CRD_FULL_NAME>"
ensure CRDs are installed first

Solution:
This is because kustomization creates CRs ahead of CRDs. If you encounter
this error message, create the resource again.

● When a workload is created, an error message is displayed, indicating that
there are too many pods on the node. The error message is displayed as
follows:
0/x nodes are available: x Too many pods.

Solution:
This message indicates that the number of schedulable pods on the node
exceeds the node's upper limit. To solve this problem, increase the number of
nodes.

● The training-operator workload cannot run properly. The error message in
the log is displayed as follows:
Waited for 1.039518449s due to client-side throttling, not priority and fairness, request: GET:https://
10.247.0.1:443/apis/xxx/xx?timeout=32s

Solution:
Run the following command to check the statuses of the unavailable
APIServices in the cluster:
kubectl get apiservice

If there is no APIService in the FALSE state, the training-operator workload
will run 1 to 2 minutes later.

15.1.2 Training a TensorFlow Model
After Kubeflow is deployed, it is easy to use the ps-worker mode to train
TensorFlow models. This section describes an official TensorFlow training example
provided by Kubeflow. For details, see TensorFlow Training (TFJob).

Running the Mnist Example

Step 1 Deploy the TFJob resource to start training.

Create the tf-mnist.yaml file. The following is an example:
apiVersion: "kubeflow.org/v1"
kind: TFJob
metadata:
 name: tfjob-simple
 namespace: kubeflow
spec:

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 582

https://www.kubeflow.org/docs/guides/components/tftraining/

 tfReplicaSpecs:
 Worker:
 replicas: 2
 restartPolicy: OnFailure
 template:
 spec:
 containers:
 - name: tensorflow
 image: kubeflow/tf-mnist-with-summaries:latest
 command:
 - "python"
 - "/var/tf_mnist/mnist_with_summaries.py"

Step 2 Create the TFJob.
kubectl apply -f tf-mnist.yaml

Step 3 View the logs after the worker running is complete.
kubectl -n kubeflow logs tfjob-simple-worker-0

Information similar to the following is displayed:

...
Accuracy at step 900: 0.964
Accuracy at step 910: 0.9653
Accuracy at step 920: 0.9665
Accuracy at step 930: 0.9681
Accuracy at step 940: 0.9664
Accuracy at step 950: 0.9667
Accuracy at step 960: 0.9694
Accuracy at step 970: 0.9683
Accuracy at step 980: 0.9687
Accuracy at step 990: 0.966
Adding run metadata for 999

Step 4 Delete the TFJob.
kubectl delete -f tf-mnist.yaml

----End

Using a GPU
The training can be performed in the GPU scenario. In this scenario, the cluster
must contain GPU nodes and proper drivers must be installed.

Step 1 Specify the GPU resources in the TFJob.

Create the tf-gpu.yaml file. The following is an example:

This example runs in the TensorFlow distributed architecture. The ResNet50 model
in the convolutional neural network (CNN) is used to train randomly generated
images. A total of 32 (batch_size) images are trained each time, and the images
are trained 100 times in total. Additionally, the performance (image/sec) of each
training is recorded.

apiVersion: "kubeflow.org/v1"
kind: "TFJob"
metadata:
 name: "tf-smoke-gpu"
spec:
 tfReplicaSpecs:
 PS:
 replicas: 1
 template:
 metadata:
 creationTimestamp: null

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 583

 spec:
 containers:
 - args:
 - python
 - tf_cnn_benchmarks.py
 - --batch_size=32
 - --model=resnet50
 - --variable_update=parameter_server
 - --flush_stdout=true
 - --num_gpus=1
 - --local_parameter_device=cpu
 - --device=cpu
 - --data_format=NHWC
 image: docker.io/kubeflow/tf-benchmarks-cpu:v20171202-bdab599-dirty-284af3
 name: tensorflow
 ports:
 - containerPort: 2222
 name: tfjob-port
 resources:
 limits:
 cpu: "1"
 workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks
 restartPolicy: OnFailure
 Worker:
 replicas: 1
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - args:
 - python
 - tf_cnn_benchmarks.py
 - --batch_size=32
 - --model=resnet50
 - --variable_update=parameter_server
 - --flush_stdout=true
 - --num_gpus=1
 - --local_parameter_device=cpu
 - --device=gpu
 - --data_format=NHWC
 image: docker.io/kubeflow/tf-benchmarks-gpu:v20171202-bdab599-dirty-284af3
 name: tensorflow
 ports:
 - containerPort: 2222
 name: tfjob-port
 resources:
 limits:
 nvidia.com/gpu: 1 # Number of GPUs
 workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks
 restartPolicy: OnFailure

Step 2 Create the TFJob.
kubectl apply -f tf-gpu.yaml

Step 3 After the worker runs the job (about 5 minutes if a GPU is used), run the
following command to view the result.
kubectl logs tf-smoke-gpu-worker-0

Information similar to the following is displayed:

...
INFO|2023-09-02T12:04:25|/opt/launcher.py|27| Running warm up
INFO|2023-09-02T12:08:55|/opt/launcher.py|27| Done warm up
INFO|2023-09-02T12:08:55|/opt/launcher.py|27| Step Img/sec loss
INFO|2023-09-02T12:08:56|/opt/launcher.py|27| 1 images/sec: 68.8 +/- 0.0 (jitter = 0.0) 8.777
INFO|2023-09-02T12:09:00|/opt/launcher.py|27| 10 images/sec: 70.4 +/- 0.4 (jitter = 1.8) 8.557
INFO|2023-09-02T12:09:04|/opt/launcher.py|27| 20 images/sec: 70.5 +/- 0.3 (jitter = 1.5) 8.090
INFO|2023-09-02T12:09:09|/opt/launcher.py|27| 30 images/sec: 70.3 +/- 0.3 (jitter = 1.6) 8.041

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 584

INFO|2023-09-02T12:09:13|/opt/launcher.py|27| 40 images/sec: 70.1 +/- 0.2 (jitter = 1.7) 9.464
INFO|2023-09-02T12:09:18|/opt/launcher.py|27| 50 images/sec: 70.1 +/- 0.2 (jitter = 1.6) 7.797
INFO|2023-09-02T12:09:23|/opt/launcher.py|27| 60 images/sec: 70.1 +/- 0.2 (jitter = 1.6) 8.595
INFO|2023-09-02T12:09:27|/opt/launcher.py|27| 70 images/sec: 70.0 +/- 0.2 (jitter = 1.7) 7.853
INFO|2023-09-02T12:09:32|/opt/launcher.py|27| 80 images/sec: 69.9 +/- 0.2 (jitter = 1.7) 7.849
INFO|2023-09-02T12:09:36|/opt/launcher.py|27| 90 images/sec: 69.8 +/- 0.2 (jitter = 1.7) 7.911
INFO|2023-09-02T12:09:41|/opt/launcher.py|27| 100 images/sec: 69.7 +/- 0.1 (jitter = 1.7) 7.853
INFO|2023-09-02T12:09:41|/opt/launcher.py|27| --
INFO|2023-09-02T12:09:41|/opt/launcher.py|27| total images/sec: 69.68
INFO|2023-09-02T12:09:41|/opt/launcher.py|27| --
INFO|2023-09-02T12:09:42|/opt/launcher.py|80| Finished: python tf_cnn_benchmarks.py --batch_size=32 --
model=resnet50 --variable_update=parameter_server --flush_stdout=true --num_gpus=1 --
local_parameter_device=cpu --device=gpu --data_format=NHWC --job_name=worker --ps_hosts=tf-smoke-
gpu-ps-0.default.svc:2222 --worker_hosts=tf-smoke-gpu-worker-0.default.svc:2222 --task_index=0
INFO|2023-09-02T12:09:42|/opt/launcher.py|84| Command ran successfully sleep for ever.

The training performance of a single GPU is 69.68 images per second.

----End

15.1.3 Using Kubeflow and Volcano to Train an AI Model
Kubernetes has become the de facto standard for cloud native application
orchestration and management. An increasing number of applications are
migrated to Kubernetes. AI and machine learning inherently involve a large
number of computing-intensive tasks. Kubernetes is a preferential tool for
developers building AI platforms because of its excellent capabilities in resource
management, application orchestration, and O&M monitoring.

Kubernetes Pain Points
Kubeflow uses the default scheduler of Kubernetes, which was initially designed
for long-term running services. Its scheduling capability is inadequate for tasks
that involve batch computing and elastic scheduling in AI and big data scenarios.
The main constraints are as follows:

Resource preemption

A TensorFlow job involves two roles: parameter server (ps) and worker. Only when
pods of these two roles run properly at the same time can a TensorFlow job be
executed normally. However, the default scheduler is insensitive to the roles of
pods in a TensorFlow job. Pods are treated identically and scheduled one by one.
This causes problems when there are multiple jobs to schedule and cluster
resources are scarce. Each job could end up being allocated with only part of the
resources it needs to finish the execution. That is, resources are used up while no
job can be successfully executed. To better illustrate this dilemma, assume that
you want to run two TensorFlow jobs, namely, TFJob1 and TFJob2. Each of these
jobs has four workers, which means each job requires four GPUs to run. However,
your cluster only has four available GPUs in total. In this case, with the default
scheduler, TFJob1 and TFJob2 could end up being allocated two GPUs each. They
are waiting each other to finish and release the resources. However, this will not
happen until you manually intervene. The deadlock created in this situation cause
resource wastes and low efficiency in job execution.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 585

Lack of affinity-based scheduling

In distributed training, data is frequently exchanged between parameter servers
and workers. To ensure higher efficiency, parameter servers and workers of the
same job should be scheduled to the same node for faster transmission using local
networks. However, the default scheduler is insensitive to the affinity between
parameter servers and workers of the same job. Pods are randomly scheduled
instead. As shown in the following figure, assume that you want to run two
TensorFlow jobs with each having one ps and two workers. With the default
scheduler, the scheduling results could be any of the following three situations.
However, only result (c) can deliver the highest efficiency. In (c), the ps and the
workers can use the local network to communicate more efficiently and shorten
the training time.

Volcano, a Perfect Batch Scheduling System for Accelerating AI Computing

Volcano is an enhanced batch scheduling system for high-performance computing
workloads running on Kubernetes. It complements Kubernetes in machine
learning, deep learning, HPC, and big data computing scenarios, providing
capabilities such as gang scheduling, computing task queue management, task-
topology, and GPU affinity scheduling. In addition, Volcano enhances batch task

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 586

creation and lifecycle management, fair-share, binpack, and other Kubernetes-
native capabilities. It fully addresses the constraints of Kubeflow in distributed
training mentioned above.

For more information about Volcano, visit https://github.com/volcano-sh/
volcano.

Using Volcano in Huawei Cloud
The convergence of Kubeflow and Volcano, two open-source projects, greatly
simplifies and accelerates AI computing workloads running on Kubernetes. The
two projects have been recognized by an increasing number of players in the field
and applied in production environments. Volcano is used in Huawei Cloud CCE,
CCI, and Kubernetes-Native Batch Computing Solution. Volcano will continue to
iterate with optimized algorithms, enhanced capabilities such as intelligent
scheduling, and new inference features such as GPU Share, to further improve the
efficiency of Kubeflow batch training and inference.

Implementing Typical Distributed AI Training Jobs
This section describes how to perform distributed training of a digital image
classification model using the MNIST dataset based on Kubeflow and Volcano.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 Deploy volcano on the cluster.

In the navigation pane, choose Add-ons. Click Install under the volcano add-on.
In the window that slides out from the right, configure the specifications and click
Install.

Step 3 Deploy the MNIST dataset.

1. Download kubeflow/examples to the local host and select an operation
guide based on the environment.
yum install git
git clone https://github.com/kubeflow/examples.git

2. Install python3.
wget https://www.python.org/ftp/python/3.6.8/Python-3.6.8.tgz
tar -zxvf Python-3.6.8.tgz

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 587

https://github.com/volcano-sh/volcano
https://github.com/volcano-sh/volcano

cd Python-3.6.8 ./configure
make make install

After the installation, run the following commands to check whether the
installation is successful:
python3 -V
pip3 -V

3. Install and start Jupyter Notebook.
pip3 install jupyter notebook
jupyter notebook --allow-root

4. Configure an SSH tunnel on PuTTY and remotely connect to the notebook.
5. After the connection is successful, enter localhost:8000 in the address box of

a browser to log in to the notebook.

6. Create a distributed training job as prompted by Jupyter. Set the value of
schedulerName to volcano to enable volcano.
kind: TFJob
metadata:
 name: {train_name}
spec:
 schedulerName: volcano
 tfReplicaSpecs:
 Ps:
 replicas: {num_ps}
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 serviceAccount: default-editor
 containers:
 - name: tensorflow
 command:
 ...
 env:
 ...
 image: {image}
 workingDir: /opt
 restartPolicy: OnFailure
 Worker:
 replicas: 1
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 588

 spec:
 serviceAccount: default-editor
 containers:
 - name: tensorflow
 command:
 ...
 env:
 ...
 image: {image}
 workingDir: /opt
 restartPolicy: OnFailure

Step 4 Submit the job and start the training.
kubectl apply -f mnist.yaml

After the training job is complete, you can query the training results on the
Kubeflow UI. This is how you run a simple distributed training job using Kubeflow
and Volcano. Kubeflow simplifies TensorFlow job configuration. Volcano, with
simply one more line of configuration, saves you significant time and effort in
large-scale distributed training by providing capabilities such as gang scheduling
and task topology to eliminate deadlocks and achieve affinity scheduling.

----End

15.2 Deploying and Using Caffe in a CCE Cluster

15.2.1 Prerequisites
This section provides an example for running Caffe on CCE to classify an image.
For more information, see https://github.com/BVLC/caffe/blob/master/
examples/00-classification.ipynb.

Pre-configuring OBS Storage Data

Create an OBS bucket and ensure that the following folders have been created
and required files have been uploaded to the specified paths using the OBS
Browser.

The folder name can be in the format of File path in the bucket/File name. You
can search for the file download addresses in the specified paths of the specified
project in GitHub, as shown in 1 and 2.

1. models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
https://github.com/BVLC/caffe/tree/master/models/
bvlc_reference_caffenet

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 589

https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

2. models/bvlc_reference_caffenet/deploy.prototxt
https://github.com/BVLC/caffe/tree/master/models/
bvlc_reference_caffenet

3. python/caffe/imagenet/ilsvrc_2012_mean.npy
https://github.com/BVLC/caffe/tree/master/python/caffe/imagenet

4. outputimg/
An empty folder outputimg is created to store output files.

5. examples/images/cat.jpg
https://github.com/BVLC/caffe/blob/master/examples/00-
classification.ipynb
Save the picture of the cat in the link.

6. data/ilsvrc12/*
https://github.com/BVLC/caffe/tree/master/data/ilsvrc12
Obtain and execute the get_ilsvrc_aux.sh script. The script downloads a
compressed package and decompresses it. After the script is executed, upload
all decompressed files to the directory.

7. caffeEx00.py
set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
display plots in this notebook
#%matplotlib inline

set display defaults
plt.rcParams['figure.figsize'] = (10, 10) # large images
plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels
plt.rcParams['image.cmap'] = 'gray' # use grayscale output rather than a (potentially misleading)
color heatmap

The caffe module needs to be on the Python path;
we'll add it here explicitly.
import sys
caffe_root = '/home/' # this file should be run from {caffe_root}/examples (otherwise change this
line)
sys.path.insert(0, caffe_root + 'python')

import caffe
If you get "No module named _caffe", either you have not built pycaffe or you have the wrong path.

import os

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 590

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/python/caffe/imagenet
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
https://github.com/BVLC/caffe/tree/master/data/ilsvrc12

#if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
print 'CaffeNet found.'
#else:
print 'Downloading pre-trained CaffeNet model...'
!../scripts/download_model_binary.py ../models/bvlc_reference_caffenet

caffe.set_mode_cpu()

model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'

net = caffe.Net(model_def, # defines the structure of the model
 model_weights, # contains the trained weights
 caffe.TEST) # use test mode (e.g., don't perform dropout)

load the mean ImageNet image (as distributed with Caffe) for subtraction
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu)

create transformer for the input called 'data'
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})

transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR

set the size of the input (we can skip this if we're happy
with the default; we can also change it later, e.g., for different batch sizes)
net.blobs['data'].reshape(50, # batch size
 3, # 3-channel (BGR) images
 227, 227) # image size is 227x227

image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)
plt.savefig(caffe_root + 'outputimg/img1.png')

copy the image data into the memory allocated for the net
net.blobs['data'].data[...] = transformed_image

perform classification
output = net.forward()

output_prob = output['prob'][0] # the output probability vector for the first image in the batch

print 'predicted class is:', output_prob.argmax()

load ImageNet labels
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
#if not os.path.exists(labels_file):
!../data/ilsvrc12/get_ilsvrc_aux.sh

labels = np.loadtxt(labels_file, str, delimiter='\t')

print 'output label:', labels[output_prob.argmax()]

sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items

print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds])

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 591

15.2.2 Preparing Resources

Adding a GPU Node to a Cluster

Step 1 Log in to the CCE console and click the name of the target cluster to access the
cluster console.

Step 2 Install the GPU add-on.

1. In the navigation pane, choose Add-ons. Locate gpu-beta (or gpu-device-
plugin) and click Install.

2. In the window that slides out from the right, configure the key parameters.
– NVIDIA Driver: Enter the download link of the NVIDIA driver. Select a

driver based on the graphics card model of the GPU node.
Retain the default values for other parameters. For details, see gpu-beta.

3. Click Install.

Step 3 Create a GPU node.

1. In the navigation pane, choose Nodes. Click Create Node in the upper right
corner and configure the parameters.

2. Select GPU-accelerated for node specifications and configure other
parameters as required. For details, see Creating a Node.

3. After the configuration, click Next: Confirm. On the page displayed, confirm
the configuration and click Submit.

Step 4 View its status in the node list.

----End

Importing an OBS Volume
Go to the storage management page and import the OBS volume created in Pre-
configuring OBS Storage Data.

15.2.3 Caffe Classification Example
This section uses the official Caffe classification example at https://github.com/
BVLC/caffe/blob/master/examples/00-classification.ipynb to illustrate how to
run Caffe jobs on CCE.

Using CPUs
Create a job using the third-party image bvlc/caffe:cpu. Set the container
specifications.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 592

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0141.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb

Add the startup command python /home/caffeEx00.py.

Mount the imported OBS volume.

Click Create. After the job execution is complete, go to the outputimg directory of
the OBS volume to view the image used for inference.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 593

Log in to the node added in Adding a GPU Node to a Cluster and run the docker
logs {Container ID} command to view the classification result. The result is
displayed as tabby cat.

Using GPUs

Create a job using the third-party bvlc/caffe:gpu. Set the container specifications.

Add the startup command python /home/caffeEx00_GPU.py.

Mount the imported OBS volume.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 594

Click Create. After the job execution is complete, go to the outputimg directory of
the OBS volume to view the image used for inference.

Log in to the node added in Adding a GPU Node to a Cluster and run the docker
logs {Container ID} command to view the classification result. The result is
displayed as tabby cat.

15.3 Deploying and Using TensorFlow in a CCE Cluster

Preparing Resources
● Create a CCE cluster and GPU nodes, and use the gpu-beta add-on to install

the graphics card driver.
● Add an object storage volume to the cluster.

Pre-configuring Data
Download data from https://github.com/zalandoresearch/fashion-mnist.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 595

https://github.com/zalandoresearch/fashion-mnist

Obtain the TensorFlow machine learning (ML) example and modify it based on
your requirements.

basicClass.py
TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

Helper libraries
import numpy as np
import gzip
from tensorflow.python.keras.utils import get_file
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

print(tf.__version__)

#fashion_mnist = keras.datasets.fashion_mnist
#(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

def load_data():
 base = "file:////home/data/"
 files = [
 'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
 't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
]

 paths = []
 for fname in files:
 paths.append(get_file(fname, origin=base + fname))

 with gzip.open(paths[0], 'rb') as lbpath:
 y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

 with gzip.open(paths[1], 'rb') as imgpath:
 x_train = np.frombuffer(
 imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

 with gzip.open(paths[2], 'rb') as lbpath:
 y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

 with gzip.open(paths[3], 'rb') as imgpath:
 x_test = np.frombuffer(
 imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

 return (x_train, y_train), (x_test, y_test)

(train_images, train_labels), (test_images, test_labels) = load_data()

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 596

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.savefig('/home/img/basicimg1.png')

train_images = train_images / 255.0

test_images = test_images / 255.0

plt.figure(figsize=(10,10))
for i in range(25):
 plt.subplot(5,5,i+1)
 plt.xticks([])
 plt.yticks([])
 plt.grid(False)
 plt.imshow(train_images[i], cmap=plt.cm.binary)
 plt.xlabel(class_names[train_labels[i]])
plt.savefig('/home/img/basicimg2.png')

model = keras.Sequential([
 keras.layers.Flatten(input_shape=(28, 28)),
 keras.layers.Dense(128, activation=tf.nn.relu),
 keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer=tf.train.AdamOptimizer(),
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print('Test accuracy:', test_acc)

predictions = model.predict(test_images)

def plot_image(i, predictions_array, true_label, img):
 predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
 plt.grid(False)
 plt.xticks([])
 plt.yticks([])

 plt.imshow(img, cmap=plt.cm.binary)

 predicted_label = np.argmax(predictions_array)
 if predicted_label == true_label:
 color = 'blue'
 else:
 color = 'red'

 plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
 100*np.max(predictions_array),
 class_names[true_label]),
 color=color)

def plot_value_array(i, predictions_array, true_label):
 predictions_array, true_label = predictions_array[i], true_label[i]
 plt.grid(False)
 plt.xticks([])
 plt.yticks([])
 thisplot = plt.bar(range(10), predictions_array, color="#777777")
 plt.ylim([0, 1])
 predicted_label = np.argmax(predictions_array)

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 597

 thisplot[predicted_label].set_color('red')
 thisplot[true_label].set_color('blue')

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.savefig('/home/img/basicimg3.png')

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.savefig('/home/img/basicimg4.png')

Plot the first X test images, their predicted label, and the true label
Color correct predictions in blue, incorrect predictions in red
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
 plt.subplot(num_rows, 2*num_cols, 2*i+1)
 plot_image(i, predictions, test_labels, test_images)
 plt.subplot(num_rows, 2*num_cols, 2*i+2)
 plot_value_array(i, predictions, test_labels)
plt.savefig('/home/img/basicimg5.png')

Go to the OBS bucket page, create the data and img folders, and upload
basicClass.py.

Go to the data folder and upload the four .gz files downloaded from GitHub.

ML Example
In this section, the ML example from the TensorFlow official website is used. For
details, see https://www.tensorflow.org/tutorials/keras/classification?hl=en-us.

Create a job using the third-party tensorflow/tensorflow:1.15.5-gpu. Set the
container specifications.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 598

https://www.tensorflow.org/tutorials/keras/classification?hl=en-us

Add pip install matplotlib;python /home/basicClass.py in the Start Command
area.

Mount the created OBS volume.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 599

Click Create. Wait until the job execution is complete. On the OBS page, you can
view the execution results that are shown as images.

If you want to use kubectl, you can use the following example YAML:

kind: Job
apiVersion: batch/v1
metadata:
 name: testjob
 namespace: default
spec:
 parallelism: 1
 completions: 1
 backoffLimit: 6
 template:
 metadata:
 name: testjob
 spec:
 volumes:
 - name: cce-obs-tensorflow
 persistentVolumeClaim:

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 600

 claimName: cce-obs-tensorflow
 containers:
 - name: container-0
 image: 'tensorflow/tensorflow:1.15.5-gpu'
 restartPolicy: OnFailure
 command:
 - /bin/bash
 args:
 - '-c'
 - pip install matplotlib;python /home/basicClass.py
 resources:
 limits:
 cpu: '2'
 memory: 4Gi
 nvidia.com/gpu: '1'
 requests:
 cpu: '2'
 memory: 4Gi
 nvidia.com/gpu: '1'
 volumeMounts:
 - name: cce-obs-tensorflow
 mountPath: /home
 imagePullPolicy: IfNotPresent
 imagePullSecrets:
 - name: default-secret

15.4 Deploying and Using Flink in a CCE Cluster
Apache Flink is a framework and distributed processing engine for stateful
computations over unbounded (streams) and bounded (batches) data streams. It
can process data streams in real time with low latency and high throughput and
process complex events. Deploying Flink in CCE clusters enables you to build a
high-performance, reliable, and flexible data processing system for a wide range
of applications in big data environments while ensuring optimal resource usage.
This section describes how to deploy Flink in a CCE cluster and how to run a Flink
WordCount job in the CCE cluster. In this example, the Flink cluster is deployed
standalone. For details about the deployment process, see the Kubernetes |
Apache Flink.

Prerequisites
● There is a cluster with certain nodes available for use. For details, see Buying

a CCE Standard/Turbo Cluster.
● An EIP has been assigned to nodes in the cluster, and the kubectl has been

configured. For details, see Binding an EIP to an Instance and Connecting to
a Cluster Using kubectl.

Step 1: Deploy a Flink Cluster
Three key components are required for deploying a Flink cluster. The Flink official
website provides a resource definition file for each component. For details, see
Table 15-1. In addition, you need to use the flink-configuration-configmap.yaml
configuration file on the Flink official website to configure the Flink cluster.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 601

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/deployment/resource-providers/standalone/kubernetes/
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/deployment/resource-providers/standalone/kubernetes/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-eip/eip_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

Table 15-1 Key components of the Flink cluster

Key Component Resource Definition
File

Description

Deployment for
running
JobManager

jobmanager-session-
deployment-non-
ha.yaml

JobManager serves as the central
coordinator in a Flink cluster. It
coordinates Flink jobs, including
task distribution, job scheduling,
resource allocation, and fault
tolerance.

Deployment for
running
TaskManager

taskmanager-
session-
deployment.yaml

TaskManager is a worker node in a
Flink cluster and is responsible for
executing data processing tasks.
Each TaskManager runs one or
more task slots, which are isolated
units of execution.

Service exposing
the JobManager's
REST and UI ports

jobmanager-
service.yaml

The REST and Web UI ports of
Flink JobManager are exposed so
that users can access the REST API
and Web UI of JobManager
through the Service.

Step 1 Configure basic information about the Flink cluster.

1. Create a YAML file named flink-configuration-configmap.yaml.
vim flink-configuration-configmap.yaml

Check that the file contains comments and the content is as follows:
apiVersion: v1
kind: ConfigMap
metadata:
 name: flink-config
 labels:
 app: flink
data defines the data stored in ConfigMap. In the example, data contains two configuration files:
config.yaml and log4j-console.properties.
data:
 config.yaml: |+
RPC address of Flink JobManager. It is usually the JobManager name. In this example, the RPC
address is flink-jobmanager.
 jobmanager.rpc.address: flink-jobmanager
Number of task slots in each TaskManager. Set the value to 2, indicating that each TaskManager
can process two tasks concurrently.
 taskmanager.numberOfTaskSlots: 2
Port of the Flink BLOB service. It is used to transfer large objects, such as job code or large files.
 blob.server.port: 6124
 jobmanager.rpc.port: 6123 # RPC port of JobManager
 taskmanager.rpc.port: 6122 # RPC port of TaskManager
 jobmanager.memory.process.size: 1600m # Total memory of JobManager
 taskmanager.memory.process.size: 1728m # Total memory of TaskManager
 parallelism.default: 2 # The default degree of parallelism is 2 for Flink jobs.
 log4j-console.properties: |+
 # The following configuration affects the logging for user code and Flink logs.
 rootLogger.level = INFO # Log messages of level INFO and above.
 rootLogger.appenderRef.console.ref = ConsoleAppender # Send the logs to the console.
 rootLogger.appenderRef.rolling.ref = RollingFileAppender # Export the logs to a rolling file.
 # If you only want to change the logging in Flink, delete the comments in the following lines:
 #logger.flink.name = org.apache.flink

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 602

 #logger.flink.level = INFO

 # The following eight lines keep the log level of the public libraries or connectors at INFO.
 # The configuration of the root logger does not overwrite the configuration here.
 # You need to manually change the log level.
 logger.pekko.name = org.apache.pekko
 logger.pekko.level = INFO
 logger.kafka.name= org.apache.kafka
 logger.kafka.level = INFO
 logger.hadoop.name = org.apache.hadoop
 logger.hadoop.level = INFO
 logger.zookeeper.name = org.apache.zookeeper
 logger.zookeeper.level = INFO

 # Send all logs of the INFO level to the console.
 appender.console.name = ConsoleAppender
 appender.console.type = CONSOLE
 appender.console.layout.type = PatternLayout
 appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n

 # Export all logs of the INFO level to a specified scrolling file.
 appender.rolling.name = RollingFileAppender
 appender.rolling.type = RollingFile
 appender.rolling.append = false
 appender.rolling.fileName = ${sys:log.file}
 appender.rolling.filePattern = ${sys:log.file}.%i
 appender.rolling.layout.type = PatternLayout
 appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
 appender.rolling.policies.type = Policies
 appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
 appender.rolling.policies.size.size=100MB
 appender.rolling.strategy.type = DefaultRolloverStrategy
 appender.rolling.strategy.max = 10

 # Disable false alarms in the Netty channel handler.
 logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline
 logger.netty.level = OFF

2. Use flink-configuration-configmap.yaml to configure basic information
about the Flink cluster.
kubectl create -f flink-configuration-configmap.yaml

3. Check whether the ConfigMap named flink-config is successfully created.
kubectl get configmap

If the following information is displayed, the ConfigMap was created
successfully.
NAME DATA AGE
flink-config 2 59s
kube-root-ca.crt 1 16d

Step 2 Create a Service that exposes the REST and UI ports of JobManager.

1. Create a YAML file named jobmanager-service.yaml.
vim jobmanager-service.yaml

Check that the file contains comments and the content is as follows:
apiVersion: v1
kind: Service
metadata:
 name: flink-jobmanager
spec:
 type: ClusterIP # The Service is used for internal communication within the cluster.
 ports: # Define the list of ports to be exposed by Service.
 - name: rpc
 port: 6123
 - name: blob-server
 port: 6124
 - name: webui
 port: 8081

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 603

 selector: # Define the Service's label selector, which is used to determine the pods to which the
Service routes traffic.
 app: flink
 component: jobmanager

2. Use jobmanager-service.yaml to create a Service named flink-jobmanager.
kubectl create -f jobmanager-service.yaml

3. Check whether the Service is created successfully.
kubectl get service flink-jobmanager

If the following information is displayed, the Service was successfully created.
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
flink-jobmanager ClusterIP 10.247.199.212 <none> 6123/TCP,6124/TCP,8081/TCP 115s

Step 3 Create a Deployment for running JobManager.
1. Create a YAML file named jobmanager-session-deployment-non-ha.yaml.

vim jobmanager-session-deployment-non-ha.yaml

Check that the file contains comments and the content is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: flink-jobmanager
spec:
 replicas: 1 # Set the number of JobManager replicas to 1.
 selector:
 matchLabels: # Define labels.
 app: flink
 component: jobmanager
 template:
 metadata:
 labels:
 app: flink
 component: jobmanager
 spec:
 containers:
 - name: jobmanager # Set the container name to jobmanager.
 image: apache/flink:1.20.0-scala_2.12 # Use the Flink image of v1.20.0 and the Scala of v2.12.
 args: ["jobmanager"] # Designate the container to run as JobManager.
 ports: # Expose ports in the container.
 - containerPort: 6123 # Used for communication between TaskManager and JobManager.
 name: rpc
 - containerPort: 6124 # Used to transfer binary objects.
 name: blob-server
 - containerPort: 8081 # Used to access the Flink web management page.
 name: webui
 livenessProbe:
 tcpSocket:
 port: 6123 # Use TCP to check the health status of RPC port 6123.
 initialDelaySeconds: 30
 periodSeconds: 60
 volumeMounts: # Mount a storage volume.
 - name: flink-config-volume
 mountPath: /opt/flink/conf
 securityContext:
 runAsUser: 9999 # For details, see the _flink_User in the official Flink image. You can
change the username if necessary.
 volumes: # Define storage volumes to store configuration files.
 - name: flink-config-volume
 configMap:
 name: flink-config
 items:
 - key: config.yaml # Mount the config.yaml file in the ConfigMap to the specified path of the
container.
 path: config.yaml # The path in the container is /opt/flink/conf/config.yaml.
 - key: log4j-console.properties # Mount the log4j-console.properties file in the ConfigMap
to the specified path of the container.
 path: log4j-console.properties # The path in the container is /opt/flink/conf/log4j-
console.properties.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 604

2. Use jobmanager-session-deployment-non-ha.yaml to create a Deployment
named flink-jobmanager.
kubectl create -f jobmanager-session-deployment-non-ha.yaml

3. Check whether the Deployment flink-jobmanager is successfully created.
kubectl get pod

The Deployment was successfully created if the following information is
displayed:
NAME READY STATUS RESTARTS AGE
flink-jobmanager-789c8777-vhqbv 1/1 Running 0 97s

Step 4 Create a Deployment for running TaskManager.

1. Create a YAML file named taskmanager-session-deployment.yaml.
vim taskmanager-session-deployment.yaml

Check that the file contains comments and the content is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: flink-taskmanager
spec:
 replicas: 2 # Set the number of TaskManager replicas to 2.
 selector:
 matchLabels: # Define labels.
 app: flink
 component: taskmanager
 template:
 metadata:
 labels:
 app: flink
 component: taskmanager
 spec:
 containers:
 - name: taskmanager # Set the container name to taskmanager.
 image: apache/flink:1.20.0-scala_2.12 # Use the Flink image of v1.20.0 and the Scala of v2.12.
 args: ["taskmanager"] # Designate the container to run as TaskManager.
 ports: # Expose ports in the container.
 - containerPort: 6122 # Used for communication between TaskManager and JobManager.
 name: rpc
 livenessProbe:
 tcpSocket:
 port: 6122 # Use TCP to check the health status of RPC port 6122.
 initialDelaySeconds: 30
 periodSeconds: 60
 volumeMounts: # Mount a storage volume.
 - name: flink-config-volume
 mountPath: /opt/flink/conf/
 securityContext:
 runAsUser: 9999 # For details, see the _flink_User in the official Flink image. You can
change the username if necessary.
 volumes: # Define storage volumes to store configuration files.
 - name: flink-config-volume
 configMap:
 name: flink-config
 items:
 - key: config.yaml
 path: config.yaml
 - key: log4j-console.properties
 path: log4j-console.properties

2. Use taskmanager-session-deployment.yaml to create a Deployment named
flink-taskmanager.
kubectl create -f taskmanager-session-deployment.yaml

3. Check whether the Deployment flink-taskmanager is successfully created.
kubectl get pod

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 605

The Deployment was successfully created if the following information is
displayed:
NAME READY STATUS RESTARTS AGE
flink-jobmanager-789c8777-vhqbv 1/1 Running 0 13m
flink-taskmanager-579f47cf9f-prrff 1/1 Running 0 23s
flink-taskmanager-579f47cf9f-wgt66 1/1 Running 0 23s

----End

Step 2: Publish the Service

Create a NodePort Service for flink-jobmanager to allow external networks to
access flink-jobmanager through the public IP address and automatically
allocated external port number. The Service will forward external requests to the
corresponding container.

Step 1 Log in to the CCE console. Choose Workloads > Deployments, click flink-
jobmanager, the Access Mode tab, and then Create Service.

Step 2 On the Create Service page, set Service Type to NodePort. In the Ports area, set
both Container Port and Service Port to 8081, and click OK. The Service
automatically generates a port for accessing the node. The port is displayed in
Figure 15-3. In this example, the port is 30327. You can access the workload using
the EIP and the port of any node in the cluster.

Figure 15-2 Creating a NodePort Service

Figure 15-3 NodePort

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 606

Step 3 Check whether the Service can be accessed. Choose Nodes, click the Nodes tab,
select a node, and copy its EIP.

In the address box of a browser, enter EIP of the node:Port for accessing the
node. If the Flink dashboard page is displayed, the access is successful. If the
access failed, check whether the source IP address for the node port is set to
0.0.0.0/0 or All in the inbound rule of the cluster security group. For details, see
Configuring Security Group Rules.

Figure 15-4 Flink Dashboard

----End

Step 3: Run the Flink Job
Use the official WordCount.jar file to demonstrate how to execute Flink jobs in a
CCE cluster. The WordCount task is to calculate the number of occurrences of each
word in the text.

Step 1 Download and decompress the flink-1.20.0-bin-scala_2.12.tgz file. The file can be
obtained at https://archive.apache.org/dist/flink/flink-1.20.0/flink-1.20.0-bin-
scala_2.12.tgz. Check whether the WordCount.jar package exists in the
flink-1.20.0-bin-scala_2.12\flink-1.20.0\examples\streamin directory.

Step 2 Add a .jar package on the Dashboard page. Open the Apache Flink Dashboard
page, choose Submit New Job from the navigation tree, click Add New in the
upper right corner, and select WordCount.jar in the flink-1.20.0-bin-
scala_2.12\flink-1.20.0\examples\streamin directory. Click the WordCount.jar
file and specify the output file path, for example, --output /opt/flink/output in
the Program Arguments text box.

Figure 15-5 Uploading a WordCount job

Step 3 Click the blue box on the lower right of Overview and click Taskmanager to
check the endpoint of the job.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 607

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0030878383.html
https://archive.apache.org/dist/flink/flink-1.20.0/flink-1.20.0-bin-scala_2.12.tgz
https://archive.apache.org/dist/flink/flink-1.20.0/flink-1.20.0-bin-scala_2.12.tgz

Figure 15-6 Checking an endpoint

Step 4 Use the endpoint to obtain the TaskManager pod. Run the following command to
query the IP address of the Flink pod:
kubectl get pod -o wide | grep flink

flink-taskmanager-579f47cf9f-prrff is the TaskManager pod if the following
information is displayed:

flink-jobmanager-789c8777-vhqbv 1/1 Running 1 (28m ago) 40h 192.168.0.139
192.168.0.53 <none> <none>
flink-taskmanager-579f47cf9f-prrff 1/1 Running 1 (28m ago) 40h 192.168.0.92
192.168.0.53 <none> <none>
flink-taskmanager-579f47cf9f-wgt66 1/1 Running 1 (28m ago) 40h 192.168.0.194
192.168.0.212 <none> <none>

Step 5 After the job is complete, go to flink-taskmanager-579f47cf9f-prrff to check
whether the number of occurrences of each word is correctly displayed.
kubectl exec -it flink-taskmanager-579f47cf9f-prrff bash

Run the ls command to query the output path.

ls /opt/flink/output/

Information similar to the following is displayed:

2024-09-02--01

Check the content of the 2024-09-02--01 folder.

ls /opt/flink/output/2024-09-02--01

Information similar to the following is displayed:

part-bd89ad8b-a0dd-4b4d-b771-4c88eaed61e4-0

Check the number of occurrences of each word.

cat /opt/flink/output/2024-09-02--01/part-bd89ad8b-a0dd-4b4d-b771-4c88eaed61e4-0

Information similar to the following is displayed:

(to,1)
(be,1)
(or,1)
(not,1)
(to,2)
(be,2)
(that,1)
...

----End

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 608

Step 4: Clear the Cluster

Step 1 Delete the Deployment that runs the JobManager.
kubectl delete -f jobmanager-session-deployment-non-ha.yaml

Information similar to the following is displayed:

deployment.apps "flink-jobmanager" deleted

Step 2 Delete the Deployment that runs the TaskManager.
kubectl delete -f taskmanager-session-deployment.yaml

Information similar to the following is displayed:

deployment.apps "flink-taskmanager" deleted

Step 3 Delete the ConfigMap.
kubectl delete -f flink-configuration-configmap.yaml

Information similar to the following is displayed:

configmap "flink-config" deleted

Step 4 Delete the Service.
kubectl delete -f jobmanager-service.yaml

Information similar to the following is displayed:

service "flink-jobmanager" delete

----End

15.5 Deploying and Using ClickHouse in a CCE Cluster
ClickHouse is a columnar database management system for online analytical
processing (OLAP). It is suitable for real-time query and analysis of large-scale
datasets. There are four ways to deploy ClickHouse on containers. For details, see
Table 15-2. ClickHouse Operator is a tool for deploying and managing ClickHouse
in Kubernetes clusters. It can replicate clusters and manage users, configuration
files, and persistent volumes. These functions simplify application configuration,
management, and monitoring.

Table 15-2 ClickHouse deployment on containers

Deployment Method Difficulty in
Deployment

Difficulty in
Management

Native Kubectl Difficult Difficult

Kubectl and Operator Medium Medium

Helm Easy Difficult

Helm and Operator Easy Easy

The following describes how to deploy ClickHouse in a CCE cluster using Kubectl
and Operator. For details, see https://github.com/Altinity/clickhouse-operator.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 609

https://github.com/Altinity/clickhouse-operator

Prerequisites
● There is a cluster with certain nodes available for use. For details, see Buying

a CCE Standard/Turbo Cluster.
● An EIP has been assigned to nodes in the cluster, and the kubectl has been

configured. For details, see Binding an EIP to an Instance and Connecting to
a Cluster Using kubectl.

Procedure for Deploying ClickHouse

The following describes how to deploy ClickHouse in a CCE Turbo cluster of v1.29.
For details about the cluster parameters, see Table 15-3.

Table 15-3 Cluster parameters

Parameter Value

Type CCE Turbo Cluster

Cluster Version 1.29

Region AP-Singapore

Container Engine Containerd

Network Model Cloud Native Network 2.0

Request Forwarding iptables

Step 1 Create a ClickHouse Operator.

1. Download the YAML file clickhouse-operator-install-bundle.yaml from
https://github.com/Altinity/clickhouse-operator/blob/master/deploy/
operator/clickhouse-operator-install-bundle.yaml.

NO TE

clickhouse-operator-install-bundle.yaml is used to deploy the ClickHouse Operator
in the kube-system namespace to monitor the resources in all Kubernetes
namespaces. If the ClickHouse Operator is deployed in another namespace, only
resources in that namespace are monitored.

kubectl apply -f clickhouse-operator-install-bundle.yaml

Information similar to the following is displayed:
customresourcedefinition.apiextensions.k8s.io/clickhouseinstallations.clickhouse.altinity.comcreated
customresourcedefinition.apiextensions.k8s.io/clickhouseinstallationtemplates.clickhouse.altinity.com
created
customresourcedefinition.apiextensions.k8s.io/clickhouseoperatorconfigurations.clickhouse.altinity.com
created
...

2. Check whether the ClickHouse Operator is successfully created.
kubectl get pod -n kube-system | grep clickhouse

If the pod status is Running, the ClickHouse Operator was successfully
created.
clickhouse-operator-656d67bd4d-k64gm 2/2 Running 4 (15m ago) 3d23h

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 610

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-eip/eip_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://github.com/Altinity/clickhouse-operator/blob/master/deploy/operator/clickhouse-operator-install-bundle.yaml
https://github.com/Altinity/clickhouse-operator/blob/master/deploy/operator/clickhouse-operator-install-bundle.yaml

3. Check all CRD resources related to ClickHouse in the cluster.
kubectl get crd | grep clickhouse

Information similar to the following is displayed:
clickhouseinstallations.clickhouse.altinity.com 2024-08-20T09:30:30Z
clickhouseinstallationtemplates.clickhouse.altinity.com 2024-08-20T09:30:30Z
clickhousekeeperinstallations.clickhouse-keeper.altinity.com 2024-08-20T09:30:30Z
clickhouseoperatorconfigurations.clickhouse.altinity.com 2024-08-20T09:30:30Z

Step 2 Create namespace test-clickhouse-operator. To facilitate the verification, the
subsequent operations are all performed in test-clickhouse-operator.
kubectl create namespace test-clickhouse-operator

Step 3 Create a ClickHouse cluster.

1. Create a YAML file named simple-01.yaml. You can obtain simple-01.yaml
from https://raw.githubusercontent.com/Altinity/clickhouse-operator/
master/docs/chi-examples/01-simple-layout-01-1shard-1repl.yaml.
vim simple-01.yaml

NO TE

ClickHouseInstallation is a custom resource object (CR) defined when a ClickHouse
Operator is used in a Kubernetes cluster. After ClickHouseInstallation resources are
created or updated, the ClickHouse Operator automatically creates and manages
Kubernetes resources, such as StatefulSets, Services, and PersistentVolumeClaims, to
ensure that the ClickHouse cluster runs as expected.

The file content is as follows:
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "simple-01"
spec:
 configuration:
 users:
 # printf 'test_password' | sha256sum
 test_user/password_sha256_hex:
10a6e6cc8311a3e2bcc09bf6c199adecd5dd59408c343e926b129c4914f3cb01
 test_user/password: test_password
 # to allow access outside from kubernetes
 test_user/networks/ip:
 - 0.0.0.0/0
 clusters:
 - name: "simple"

Use the preceding file to create a ClickHouse cluster.
kubectl apply -n test-clickhouse-operator -f simple-01.yaml

Step 4 Check whether ClickHouse resources are successfully created.

1. Check the pods of the test-clickhouse-operator namespace. If all pods are in
the Running state, the pods were successfully created.
kubectl get pod -n test-clickhouse-operator

Information similar to the following is displayed:
NAME READY STATUS RESTARTS AGE
chi-simple-01-simple-0-0-0 2/2 Running 0 3d7h

2. Check the other service resources.
kubectl get service -n test-clickhouse-operator

Information similar to the following is displayed:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
chi-simple-01-simple-0-0 ClusterIP None <none> 9000/TCP,8123/TCP,9009/TCP 3d7h
clickhouse-simple-01 ClusterIP None <none> 9000/TCP,8123/TCP 3d8h

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 611

https://raw.githubusercontent.com/Altinity/clickhouse-operator/master/docs/chi-examples/01-simple-layout-01-1shard-1repl.yaml
https://raw.githubusercontent.com/Altinity/clickhouse-operator/master/docs/chi-examples/01-simple-layout-01-1shard-1repl.yaml

Step 5 Connect to the ClickHouse database.
kubectl -n test-clickhouse-operator exec -ti chi-simple-01-simple-0-0-0 -- clickhouse-client

If the following information is displayed, the connection is successful: Enter exit
and press Enter to exit the ClickHouse database.

ClickHouse client version 24.8.2.3 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 24.8.2.

Warnings:
 * Linux transparent hugepages are set to "always". Check /sys/kernel/mm/transparent_hugepage/enabled

chi-simple-01-simple-0-0-0.chi-simple-01-simple-0-0.test-clickhouse-operator.svc.cluster.local :)

Step 6 Clear ClickHouse cluster resources.

Run the following command to delete the ClickHouse cluster:

kubectl delete -f simple-01.yaml -n test-clickhouse-operator

Information similar to the following is displayed:

clickhouseinstallation.clickhouse.altinity.com "simple-01" deleted

----End

Example 1: Creating a ClickHouse Cluster with a PV Provisioned Dynamically

The following example describes how to create a ClickHouse cluster with a PV
dynamically provisioned. The EVS is used as an example to describe how to
dynamically provision a PV for a ClickHouse cluster.

NO TICE

The VolumeClaimTemplate can only be used to provision EVS disks and local PVs
to StatefulSets.

Step 1 Create a StorageClass.

1. Create a YAML file named csi-disk-ssd.yaml.
vim csi-disk-ssd.yaml

By default, CCE supports SAS disks. If you want to use another type of disk,
you need to create the corresponding StorageClass. For details about
StorageClass parameters, see Table 15-4.
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-ssd
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SSD
 everest.io/passthrough: "true"
reclaimPolicy: Delete
volumeBindingMode: Immediate

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 612

Table 15-4 StorageClass parameters

Parameter Description

provisioner Specifies the storage resource provider, which is the Everest
add-on for CCE. Set this parameter to everest-csi-
provisioner.

parameters Specifies the storage parameters, which vary with storage
types.
NOTICE

everest.io/disk-volume-type indicates the cloud disk type, which
can be any of the following:
– SAS: high I/O
– SSD: ultra-high I/O
– GPSSD: general purpose SSD
– ESSD: extreme SSD
– GPSSD2: general purpose SSD v2, which is supported when the

Everest version is 2.4.4 or later and the everest.io/disk-iops and
everest.io/disk-throughput annotations are configured.

– ESSD2: extreme SSD v2, which is supported when the Everest
version is 2.4.4 or later and the everest.io/disk-iops annotation
is configured.

Default: SAS

reclaimPolicy Specifies the value of persistentVolumeReclaimPolicy for
creating a PV. The value can be Delete or Retain. If
reclaimPolicy is not specified when a StorageClass object is
created, the value defaults to Delete.
– Delete: indicates that a dynamically provisioned PV will

be automatically deleted when the PVC is deleted.
– Retain: indicates that a dynamically provisioned PV will

be retained when the PVC is deleted.

volumeBindi
ngMode

Specifies when a PV is dynamically provisioned. The value
can be Immediate or WaitForFirstConsumer.
– Immediate: The PV is dynamically provisioned when a

PVC is created.
– WaitForFirstConsumer: The PV is dynamically

provisioned when the PVC is used by the workload.

2. Use csi-disk-ssd.yaml to create a StorageClass named csi-disk-ssd.

kubectl create -f csi-disk-ssd.yaml

Step 2 Create a ClickHouse cluster with a PV dynamically provisioned.

1. Create a YAML file named pv-simple.yaml.
vim pv-simple.yaml

For details about the file content, see https://github.com/Altinity/
clickhouse-operator/blob/master/docs/chi-examples/03-persistent-
volume-01-default-volume.yaml.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 613

https://github.com/Altinity/clickhouse-operator/blob/master/docs/chi-examples/03-persistent-volume-01-default-volume.yaml
https://github.com/Altinity/clickhouse-operator/blob/master/docs/chi-examples/03-persistent-volume-01-default-volume.yaml
https://github.com/Altinity/clickhouse-operator/blob/master/docs/chi-examples/03-persistent-volume-01-default-volume.yaml

NO TICE

EVS disks can be mounted as read-write by a single node, so accessModes
must be set to ReadWriteOnce.

apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "pv-simple"
 namespace: test-clickhouse-operator
spec:
 defaults:
 templates:
 dataVolumeClaimTemplate: data-volume-template
 logVolumeClaimTemplate: log-volume-template
 configuration:
 clusters:
 - name: "simple"
 layout:
 shardsCount: 1
 replicasCount: 1
 templates:
 volumeClaimTemplates: # Dynamic provisioning
 - name: data-volume-template # Template for defining a data storage volume
 spec:
 accessModes:
 - ReadWriteOnce # EVS disks can be mounted as read-write by a single node, so
accessModes must be set to ReadWriteOnce.
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-ssd # Specify the newly created csi-disk-ssd as the StorageClass.
 - name: log-volume-template # Template for defining the log storage volume
 spec:
 accessModes:
 - ReadWriteOnce # EVS disks can be mounted as read-write by a single node, so
accessModes must be set to ReadWriteOnce.
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-ssd # Specify the newly created csi-disk-ssd as the StorageClass.

2. Use pv-simple.yaml to create a ClickHouse cluster.
kubectl -n test-clickhouse-operator create -f pv-simple.yaml

Step 3 Check whether the ClickHouse cluster is successfully created and whether the PV is
successfully provisioned.

1. Check the pods of the test-clickhouse-operator namespace. If all pods are in
the Running state, the pods were successfully created.
kubectl get pod -n test-clickhouse-operator

If the following information is displayed, the pods are successfully created.
NAME READY STATUS RESTARTS AGE
chi-pv-simple-simple-0-0-0 2/2 Running 0 5m2s
chi-simple-01-simple-0-0-0 1/1 Running 0 3d7h

2. Check whether the PVCs named data-volume-template and log-volume-
template are successfully created.
kubectl get pvc -n test-clickhouse-operator

If STATUS is Bound, the PVC is bound successfully.
NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE
data-volume-template-chi-pv-simple-simple-0-0-0 Bound pvc-981b1d73-a13e-41d5-aade-
ea8c6b1199d7 10Gi RWO csi-disk-ssd <unset> 28s

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 614

log-volume-template-chi-pv-simple-simple-0-0-0 Bound pvc-fcf70a2e-131d-4da1-a9c2-
eddd89887b45 10Gi RWO csi-disk-ssd <unset> 28s

3. Check whether the PV is mounted to the cluster.
Go to the CLI of the chi-pv-simple-simple-0-0-0 container.
kubectl -n test-clickhouse-operator exec -ti chi-pv-simple-simple-0-0-0 -c clickhouse bash

Check whether the PV is mounted to the container:
df -h

The command output shows that the PV has been mounted to the container.
You can press Ctrl+D to exit the CLI.
Filesystem Size Used Avail Use% Mounted on
overlay 99G 5.1G 89G 6% /
tmpfs 64M 0 64M 0% /dev
tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup
/dev/mapper/vgpaas-share 99G 5.1G 89G 6% /etc/hosts
shm 64M 0 64M 0% /dev/shm
/dev/sdb 9.8G 66M 9.8G 1% /var/lib/clickhouse
/dev/sda 9.8G 37M 9.8G 1% /var/log/clickhouse-server
tmpfs 6.3G 12K 6.3G 1% /run/secrets/kubernetes.io/serviceaccount
tmpfs 3.9G 0 3.9G 0% /proc/acpi
tmpfs 3.9G 0 3.9G 0% /proc/scsi
tmpfs 3.9G 0 3.9G 0% /sys/firmware

Step 4 Connect to the ClickHouse database.
kubectl -n test-clickhouse-operator exec -ti chi-pv-simple-simple-0-0-0 -- clickhouse-client

If the following information is displayed, you have successfully connected to the
ClickHouse database: Enter exit and press Enter to exit the ClickHouse database.

Defaulted container "clickhouse" out of: clickhouse, clickhouse-log
ClickHouse client version 24.8.2.3 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 24.8.2.

Warnings:
 * Linux transparent hugepages are set to "always". Check /sys/kernel/mm/transparent_hugepage/enabled

chi-pv-simple-simple-0-0-0.chi-pv-simple-simple-0-0.test-clickhouse-operator.svc.cluster.local :)

Step 5 Clear ClickHouse cluster resources.

Run the following command to delete the ClickHouse cluster with a PV
provisioned dynamically:

kubectl delete -f pv-simple.yaml -n test-clickhouse-operator

Information similar to the following is displayed:

clickhouseinstallation.clickhouse.altinity.com "pv-simple" deleted

----End

Example 2: Creating a ClickHouse Cluster with a LoadBalancer Service
The following example describes how to create a ClickHouse cluster with a
LoadBalancer Service. The LoadBalancer Service allows you to access the
ClickHouse cluster from the Internet.

Step 1 Create a ClickHouse cluster with a LoadBalancer Service so that you can access
the ClickHouse cluster from the Internet.

1. Create a YAML file named elb.yaml.
vim elb.yaml

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 615

For details about parameters in kubernetes.io/elb.autocreate, see Table
15-5.
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "ck-elb"
 namespace: test-clickhouse-operator
spec:
 defaults:
 templates:
 dataVolumeClaimTemplate: data-volume-nas
 serviceTemplate: chi-service-elb
 configuration:
 clusters:
 - name: "ck-elb"
 templates:
 podTemplate: pod-template-with-nas
 layout:
 shardsCount: 1
 replicasCount: 1
 templates:
 podTemplates:
 - name: pod-template-with-nas
 spec:
 containers:
 - name: clickhouse
 image: clickhouse/clickhouse-server:23.8
 volumeMounts:
 - name: data-volume-nas
 mountPath: /var/lib/clickhouse
 volumeClaimTemplates: # Specify the storage access mode, requested storage size, and
StorageClass.
 - name: data-volume-nas
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi
 storageClassName: csi-disk-ssd
 serviceTemplates: # Service template
 - name: chi-service-elb
 metadata:
 annotations:
 # Load balancer type. union (default value) indicates shared load balancers, and
performance indicates dedicated load balancers.
 kubernetes.io/elb.class: union
 # Automatically create a load balancer associated with the ingress and define load balancer
parameters.
 kubernetes.io/elb.autocreate: >-
 {"type":"public","bandwidth_name":"cce-bandwidth-
ck","bandwidth_chargemode":"bandwidth","bandwidth_size":5,"bandwidth_sharetype":"PER","ei
p_type":"5_bgp"}
 spec:
 ports:
 - name: http
 port: 8123
 - name: client
 port: 9000
 type: LoadBalancer # Set the Service type to LoadBalancer.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 616

Table 15-5 Parameters in the kubernetes.io/elb.autocreate file

Paramete
r

Mandat
ory

Type Description

type No Strin
g

Network type of the load balancer.
– public: public network load balancer
– inner: private network load balancer
Default: inner

bandwidth
_name

Yes for
public
network
load
balancer
s

Strin
g

Bandwidth name. The default value is cce-
bandwidth-******.
The value can contain 1 to 64 characters.
Only letters, digits, underscores (_), hyphens
(-), and periods (.) are allowed.

bandwidth
_chargem
ode

No Strin
g

Bandwidth billing mode.
– bandwidth: billed by bandwidth
– traffic: billed by traffic
Default: bandwidth

bandwidth
_size

Yes for
public
network
load
balancer
s

Inte
ger

Bandwidth size. The default value is 1 to
2000 Mbit/s. Configure this parameter based
on the bandwidth range allowed in your
region.
The minimum increment for bandwidth
adjustment varies depending on the
bandwidth range.
– If the allowed bandwidth does not

exceed 300 Mbit/s, the minimum
increment is 1 Mbit/s.

– If the allowed bandwidth is greater than
300 Mbit/s but less than or equal to 1000
Mbit/s, the minimum increment is 50
Mbit/s.

– If the allowed bandwidth exceeds 1000
Mbit/s, the minimum increment is 500
Mbit/s.

bandwidth
_sharetype

Yes for
public
network
load
balancer
s

Strin
g

Specifies the bandwidth sharing mode. PER
indicates that the bandwidth is dedicated.

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 617

Paramete
r

Mandat
ory

Type Description

eip_type Yes for
public
network
load
balancer
s

Strin
g

EIP type.
– 5_bgp: Dynamic BGP
– 5_sbgp: Static BGP
The types vary by region. For details, see the
EIP console.

2. Use elb.yaml to create a ClickHouse cluster.

kubectl create -f elb.yaml -n test-clickhouse-operator

Step 2 Check whether the ClickHouse cluster is successfully created and associated with a
LoadBalancer Service.

1. Check the pods of the test-clickhouse-operator namespace. If all pods are in
the Running state, the pods were successfully created.
kubectl get pod -n test-clickhouse-operator

If the following information is displayed, the ClickHouse cluster is successfully
created:
NAME READY STATUS RESTARTS AGE
chi-ck-elb-ck-elb-0-0-0 1/1 Running 0 3m4s
chi-pv-simple-simple-0-0-0 2/2 Running 0 33m
chi-simple-01-simple-0-0-0 1/1 Running 0 3d7h

2. Check whether the LoadBalancer Service is successfully created:
kubectl get svc -n test-clickhouse-operator

If the following information is displayed, the LoadBalancer Service is
successfully created:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
chi-ck-elb-ck-elb-0-0 ClusterIP None <none> 9000/TCP,8123/TCP,9009/TCP 2s
chi-pv-simple-simple-0-0 ClusterIP None <none> 9000/TCP,8123/TCP,9009/TCP
35m
chi-simple-01-simple-0-0 ClusterIP None <none> 9000/TCP,8123/TCP,9009/TCP
38m
clickhouse-pv-simple ClusterIP None <none> 8123/TCP,9000/TCP 35m
clickhouse-simple-01 ClusterIP None <none> 8123/TCP,9000/TCP 3d7h

Step 3 Connect to the ClickHouse database.
kubectl -n test-clickhouse-operator exec -ti chi-ck-elb-ck-elb-0-0-0 -- clickhouse-client

If the following information is displayed, you have successfully connected to the
ClickHouse database: Enter exit and press Enter to exit the ClickHouse database.

ClickHouse client version 23.8.16.16 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 23.8.16 revision 54465.

Warnings:
 * Linux transparent hugepages are set to "always". Check /sys/kernel/mm/transparent_hugepage/enabled

chi-ck-elb-ck-elb-0-0-0.chi-ck-elb-ck-elb-0-0.test-clickhouse-operator.svc.cluster.local :)

Step 4 Clear ClickHouse cluster resources.

Delete the ClickHouse cluster (the one that is associated with the LoadBalancer
Service).

kubectl delete -f elb.yaml -n test-clickhouse-operator

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 618

Information similar to the following is displayed:

clickhouseinstallation.clickhouse.altinity.com "ck-elb1" deleted

----End

Follow-up Procedure: Clearing Other ClickHouse Resources
1. Delete the test-clickhouse-operator namespace.

kubectl delete namespace test-clickhouse-operator

Information similar to the following is displayed:
namespace "test-clickhouse-operator" deleted

2. Delete the ClickHouse Operator:
kubectl delete -f clickhouse-operator-install-bundle.yaml

Information similar to the following is displayed:
customresourcedefinition.apiextensions.k8s.io "clickhouseinstallations.clickhouse.altinity.com" deleted
customresourcedefinition.apiextensions.k8s.io "clickhouseinstallationtemplates.clickhouse.altinity.com"
deleted
customresourcedefinition.apiextensions.k8s.io
"clickhouseoperatorconfigurations.clickhouse.altinity.com" deleted
customresourcedefinition.apiextensions.k8s.io "clickhousekeeperinstallations.clickhouse-
keeper.altinity.com" deleted
...

15.6 Deploying and Using Spark in a CCE Cluster

15.6.1 Installing Spark

Prerequisites
A Linux server that can access the public network is available. The recommended
node specifications are 4 vCPUs and 8 GiB memory or higher.

Configuring the JDK
This section uses CentOS as an example to describe how to install JDK 1.8.

Step 1 Obtain the available version.
yum -y list java*

Step 2 Install JDK 1.8.
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel

Step 3 Check the version after the installation.
java -version
openjdk version "1.8.0_382"
OpenJDK Runtime Environment (build 1.8.0_382-b05)
OpenJDK 64-Bit Server VM (build 25.382-b05, mixed mode)

Step 4 Add environment variables.

1. Linux environment variables are configured in the /etc/profile file.
vim /etc/profile

2. In the editing mode, add the following content to the end of the file:
JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.382.b05-1.el7_9.x86_64
PATH=$PATH:$JAVA_HOME/bin

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 619

CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export JAVA_HOME PATH CLASSPATH

3. Save and close the profile file. Run the following command for the
modification to take effect:
source /etc/profile

4. Check the JDK environment variables.
echo $JAVA_HOME
echo $PATH
echo $CLASSPATH

----End

Obtaining the Spark Package
OBS matches Hadoop 2.8.3 and 3.1.1. Hadoop 3.1.1 is used in this example.

Step 1 Download Spark v3.1.1. If Git is not installed, run yum install git to install it.
git clone -b v3.1.1 https://github.com/apache/spark.git

Step 2 Modify the /dev/make-distribution.sh file and specify the Spark version so that
the check can be skipped during compilation.

1. Search for the line where VERSION resides and check the number of the line
where the version number is located.
cat ./spark/dev/make-distribution.sh |grep -n '^VERSION=' -A18

2. Comment out the content displayed from lines 129 to 147 and specify the
version.
sed -i '129,147s/^/#/g' ./spark/dev/make-distribution.sh
sed -i '148a
VERSION=3.1.3\nSCALA_VERSION=2.12\nSPARK_HADOOP_VERSION=3.1.1\nSPARK_HIVE=1' ./
spark/dev/make-distribution.sh

Step 3 Download the dependency.
wget https://archive.apache.org/dist//maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-bin.tar.gz
tar -zxvf apache-maven-3.6.3-bin.tar.gz && mv apache-maven-3.6.3 ./spark/build

Step 4 Run the following command to perform compilation:
./spark/dev/make-distribution.sh --name hadoop3.1 --tgz -Pkubernetes -Pyarn -Dhadoop.version=3.1.1

Step 5 Wait for the compilation to complete. After the compilation, the software package
is named spark-3.1.3-bin-hadoop3.1.tgz.

----End

Configuring the Runtime Environment for Spark
To simplify the operation, use the root user to place the compiled package
spark-3.1.3-bin-hadoop3.1.tgz in the /root directory on the operation node.

Step 1 Move the software package to the /root directory.
mv ./spark/spark-3.1.3-bin-hadoop3.1.tgz /root

Step 2 Run the following command to install Spark:
tar -zxvf spark-3.1.3-bin-hadoop3.1.tgz
mv spark-3.1.3-bin-hadoop3.1 spark-obs
cat >> ~/.bashrc <<EOF
PATH=/root/spark-obs/bin:\$PATH
PATH=/root/spark-obs/sbin:\$PATH
export SPARK_HOME=/root/spark-obs
EOF

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 620

source ~/.bashrc

Step 3 Run the following command where binary spark-submit is used to check the
Spark version:
spark-submit --version

----End

Interconnecting Spark with OBS

Step 1 Obtain Huawei Cloud OBS JAR. The hadoop-huaweicloud-3.1.1-hw-45.jar
package is used, which can be obtained from https://github.com/huaweicloud/
obsa-hdfs/tree/master/release.
wget https://github.com/huaweicloud/obsa-hdfs/releases/download/v45/hadoop-huaweicloud-3.1.1-
hw-45.jar

Step 2 Copy the package to the corresponding directory.
cp hadoop-huaweicloud-3.1.1-hw-45.jar /root/spark-obs/jars/

Step 3 Modify Spark configuration items. To interconnect Spark with OBS, add
ConfigMaps for Spark as follows:

1. Obtain the AK/SK. For details, see Access Keys.
2. Change the values of AK_OF_YOUR_ACCOUNT, SK_OF_YOUR_ACCOUNT,

and OBS_ENDPOINT to the actual values.
– AK_OF_YOUR_ACCOUNT: indicates the AK obtained in the previous step.
– SK_OF_YOUR_ACCOUNT: indicates the SK obtained in the previous step.
– OBS_ENDPOINT: indicates the OBS endpoint. It can be obtained in

Regions and Endpoints.
cp ~/spark-obs/conf/spark-defaults.conf.template ~/spark-obs/conf/spark-defaults.conf

cat >> ~/spark-obs/conf/spark-defaults.conf <<EOF
spark.hadoop.fs.obs.readahead.inputstream.enabled=true
spark.hadoop.fs.obs.buffer.max.range=6291456
spark.hadoop.fs.obs.buffer.part.size=2097152
spark.hadoop.fs.obs.threads.read.core=500
spark.hadoop.fs.obs.threads.read.max=1000
spark.hadoop.fs.obs.write.buffer.size=8192
spark.hadoop.fs.obs.read.buffer.size=8192
spark.hadoop.fs.obs.connection.maximum=1000
spark.hadoop.fs.obs.access.key=AK_OF_YOUR_ACCOUNT
spark.hadoop.fs.obs.secret.key=SK_OF_YOUR_ACCOUNT
spark.hadoop.fs.obs.endpoint=OBS_ENDPOINT
spark.hadoop.fs.obs.buffer.dir=/root/hadoop-obs/obs-cache
spark.hadoop.fs.obs.impl=org.apache.hadoop.fs.obs.OBSFileSystem
spark.hadoop.fs.obs.connection.ssl.enabled=false
spark.hadoop.fs.obs.fast.upload=true
spark.hadoop.fs.obs.socket.send.buffer=65536
spark.hadoop.fs.obs.socket.recv.buffer=65536
spark.hadoop.fs.obs.max.total.tasks=20
spark.hadoop.fs.obs.threads.max=20
spark.kubernetes.container.image.pullSecrets=default-secret
EOF

----End

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 621

https://github.com/huaweicloud/obsa-hdfs/tree/master/release
https://github.com/huaweicloud/obsa-hdfs/tree/master/release
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS

Pushing an Image to SWR

To run Spark tasks in Kubernetes, build a Spark container image of the same
version and upload it to SWR. A Dockerfile file has been generated during
compilation. Use this file to create an image and push it to SWR.

Step 1 Create an image.
cd ~/spark-obs
docker build -t spark:3.1.3-obs --build-arg spark_uid=0 -f kubernetes/dockerfiles/spark/Dockerfile .

Step 2 Upload the image.

1. (Optional) Log in to the SWR console, choose Organizations in the
navigation pane, and click Create Organization in the upper right corner of
the page.
Skip this step if you already have an organization.

2. Choose My Images in the navigation pane and click Upload Through Client.
On the page displayed, click Generate a temporary login command and

click to copy the command.
3. Run the login command copied in the previous step on the node. If the login

is successful, the message "Login Succeeded" will display.
4. Log in to the node where the image is created and run the login command.

Docker tag [{ Image name }:{Version name }] swr. ap-southeast-1.myhuaweicloud.com/{ Organization
name }/{Image name }:{version name }
docker push swr.ap-southeast-1.myhuaweicloud.com/{Organization name }/{Image name }:{Version
name }

Record the image access address for later use.
For example, record the IP address as swr.ap-
southeast-1.myhuaweicloud.com/dev-container/spark:3.1.3-obs.

----End

Configuring Spark History Server

Step 1 Modify the ~/spark-obs/conf/spark-defaults.conf file, enable Spark event
logging, and configure the OBS bucket name and directory.
cat >> ~/spark-obs/conf/spark-defaults.conf <<EOF
spark.eventLog.enabled=true
spark.eventLog.dir=obs://{bucket-name}/{log-dir}/
EOF

● spark.eventLog.enabled: indicates that Spark event logging is enabled if it is
set to true.

● spark.eventLog.dir: indicates the OBS bucket name and path. The bucket is
named in the format of obs://{bucket-name}/{log-dir}/, for example, obs://
spark-sh1/history-obs/. Ensure that the OBS bucket name and directory are
correct.

Step 2 Modify the ~/spark-obs/conf/spark-env.sh file. If the file does not exist, run the
command to copy the template as a file:
cp ~/spark-obs/conf/spark-env.sh.template ~/spark-obs/conf/spark-env.sh

cat >> ~/spark-obs/conf/spark-env.sh <<EOF
SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=obs://{bucket-name}/{log-dir}/"
EOF

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 622

The OBS address must be the same as that in spark-default.conf in the previous
step.

Step 3 Start Spark History Server.
start-history-server.sh

Information similar to the following is displayed:

starting org.apache.spark.deploy.history.HistoryServer, logging to /root/spark-obs/logs/spark-root-
org.apache.spark.deploy.history.HistoryServer-1-spark-sh1.out

Step 4 Access the server through port 18080 on the node.

To stop the server, run the following command:

stop-history-server.sh

----End

15.6.2 Using Spark
You can use Spark's Kubernetes scheduler spark-submit to submit Spark
applications to Kubernetes clusters. For details, see Running Spark on
Kubernetes. The submission mechanism works as follows:

● Create a pod to run the Spark driver.
● The driver creates pods for executing the programs and establishes a

connection with these pods.
● After the application is complete, the pods that execute the programs are

terminated and cleaned up, but the driver pod exists and remains in the
completed state until the garbage is collected or it is manually cleaned up. In
the completed state, the driver pod does not use any computing or memory
resources.

Figure 15-7 Submission mechanism

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 623

https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html

Running SparkPi on CCE
Step 1 Install kubectl on the node where Spark is running. For details, see Connecting to

a Cluster Using kubectl.

Step 2 Run the following command to grant the cluster-level permissions:
Create a service account.
kubectl create serviceaccount spark
Bind the ClusterRole spark-role to the service account created in the previous step, specify the default
namespace, and grant the ClusterRole permission to edit resources.
kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=default:spark --
namespace=default

Step 3 Submit a SparkPi job to CCE. The following shows an example:
spark-submit \
 --master k8s://https://**.**.**.**:5443 \
 --deploy-mode cluster \
 --name spark-pi \
 --class org.apache.spark.examples.SparkPi \
 --conf spark.executor.instances=2 \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
 --conf spark.kubernetes.container.image=swr.ap-southeast-1.myhuaweicloud.com/dev-container/
spark:3.1.3-obs \
 local:///root/spark-obs/examples/jars/spark-examples_2.12-3.1.1.jar

Parameters:

● --master: indicates the API Server of the cluster. https://**.**.**.**:5443 is the
address of the master node used in ~/.kube/config. It can be obtained from
kubectl cluster-info.

● --deploy-mode:
– cluster: a mode in which the driver is deployed on the worker nodes.
– client: (default value) a mode in which the driver is deployed locally as

an external client.
● --name: indicates the name of a job. It is used to name the pods in the

cluster.
● --class: indicates the applications, for example,

org.apache.spark.examples.SparkPi.
● --conf: indicates the Spark's configuration parameters. It is in the key-value

pair format. All parameters that can be specified using --conf are read from
the ~/spark-obs/conf/spark-defaults.conf file by default. Therefore, the
general configuration can be written to be the default settings, the same way
as Interconnecting Spark with OBS.
– spark.executor.instances: indicates the number of pods for executing

programs.
– spark.kubernetes.authenticate.driver.serviceAccountName: indicates

the driver's cluster-level permissions. Select the service account created in
Step 2.

– spark.kubernetes.container.image: indicates the image path of the
image pushed to SWR in Pushing an Image to SWR.

● local: indicates the path to the JAR packages stored in the local files. In this
example, a local file is used to store the JAR packages. The value of this
parameter can be file, http, or local. For details, see the Official
Documentation.

----End

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 624

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://spark.apache.org/docs/latest/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/latest/submitting-applications.html#advanced-dependency-management

Accessing OBS
Use spark-submit to deliver an HDFS job. Change the value of obs://bucket-
name/filename at the end of the script to the actual file name of the tenant.

spark-submit \
 --master k8s://https://**.**.**.**:5443 \
 --deploy-mode cluster \
 --name spark-hdfs-test \
 --class org.apache.spark.examples.HdfsTest \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
 --conf spark.kubernetes.container.image=swr.ap-southeast-1.myhuaweicloud.com/dev-container/
spark:3.1.3-obs \
 local:///root/spark-obs/examples/jars/spark-examples_2.12-3.1.1.jar obs://bucket-name/filename

Support for Spark Shell Commands to Interact with Spark-Scala
spark-shell \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
 --conf spark.kubernetes.container.image=swr.ap-southeast-1.myhuaweicloud.com/dev-container/
spark:3.1.3-obs \
 --master k8s://https://**.**.**.**:5443

Run the following commands to define the algorithms of Spark computing jobs
linecount and wordcount:

def linecount(input:org.apache.spark.sql.Dataset[String]):Long=input.filter(line => line.length()>0).count()
def wordcount(input:org.apache.spark.sql.Dataset[String]):Long=input.flatMap(value => value.split("\\s
+")).groupByKey(value => value).count().count()

Run the following commands to define data sources:

var alluxio = spark.read.textFile("alluxio://alluxio-master:19998/sample-1g")
var obs = spark.read.textFile("obs://gene-container-gtest/sample-1g")
var hdfs = spark.read.textFile("hdfs://192.168.1.184:9000/user/hadoop/books/sample-1g")

Run the following command to start computing jobs:

spark.time(wordcount(obs))
spark.time(linecount(obs))

Cloud Container Engine
Best Practices 15 Batch Computing

Issue 01 (2025-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 625

	Contents
	1 Checklist for Deploying Containerized Applications in the Cloud
	2 Containerization
	2.1 Containerizing an Enterprise Application (ERP)
	2.1.1 Solution Overview
	2.1.2 Resource and Cost Planning
	2.1.3 Procedure
	2.1.3.1 Containerizing an Entire Application
	2.1.3.2 Containerization Process
	2.1.3.3 Analyzing the Application
	2.1.3.4 Preparing the Application Runtime
	2.1.3.5 Compiling a Startup Script
	2.1.3.6 Compiling the Dockerfile
	2.1.3.7 Building and Uploading an Image
	2.1.3.8 Creating a Container Workload

	3 Migration
	3.1 Migrating Container Images
	3.1.1 Solution Overview
	3.1.2 Migrating Images to SWR Using Docker Commands
	3.1.3 Migrating Images to SWR Using image-migrator
	3.1.4 Synchronizing Images Across Clouds from Harbor to SWR

	3.2 Migrating Kubernetes Clusters to CCE
	3.2.1 Solution Overview
	3.2.2 Planning Resources for the Target Cluster
	3.2.3 Procedure
	3.2.3.1 Migrating Resources Outside a Cluster
	3.2.3.2 Installing the Migration Tool
	3.2.3.3 Migrating Resources in a Cluster (Velero)
	3.2.3.4 Updating Resources Accordingly
	3.2.3.5 Performing Additional Tasks
	3.2.3.6 Troubleshooting

	4 DevOps
	4.1 Installing and Deploying Jenkins on CCE
	4.1.1 Solution Overview
	4.1.2 Resource and Cost Planning
	4.1.3 Procedure
	4.1.3.1 Installing and Deploying Jenkins Master
	4.1.3.2 Configuring Jenkins Agent
	4.1.3.3 Using Jenkins to Build a Pipeline
	4.1.3.4 Interconnecting Jenkins with RBAC of Kubernetes Clusters (Example)

	4.2 Interconnecting GitLab with SWR and CCE for CI/CD
	4.3 Continuous Delivery Using Argo CD
	4.4 Implementing Separate DevOps Processes for Multiple Clusters Using Jenkins and GitLab
	4.4.1 Solution Overview
	4.4.2 Resource Planning
	4.4.3 Procedure
	4.4.3.1 Setting Up the Jenkins and GitLab Environments
	4.4.3.2 Configuring Cluster Environments
	4.4.3.3 Configuring a GitLab Project
	4.4.3.4 Implementing Continuous Integration and Deployment

	5 Disaster Recovery
	5.1 Recommended Configurations for HA CCE Clusters
	5.2 Implementing High Availability for Applications in CCE
	5.3 Implementing High Availability for Add-ons in CCE

	6 Security
	6.1 Overview
	6.2 Configuration Suggestions on CCE Cluster Security
	6.3 Configuration Suggestions on CCE Node Security
	6.4 Configuration Suggestions on CCE Container Runtime Security
	6.5 Configuration Suggestions on CCE Container Security
	6.6 Configuration Suggestions on CCE Container Image Security
	6.7 Configuration Suggestions on CCE Secret Security
	6.8 Configuration Suggestions on CCE Workload Identity Security

	7 Auto Scaling
	7.1 Using HPA and CA for Auto Scaling of Workloads and Nodes
	7.2 Elastic Scaling of CCE Pods to CCI
	7.3 Auto Scaling Based on Prometheus Metrics
	7.4 Auto Scaling Based on ELB Monitoring Metrics
	7.5 Auto Scaling of Multiple Applications Using Nginx Ingresses

	8 Monitoring
	8.1 Monitoring Multiple Clusters Using Prometheus
	8.2 Monitoring GPU Metrics Using dcgm-exporter
	8.3 Reporting Prometheus Monitoring Data to a Third-Party Monitoring Platform
	8.4 Obtaining Prometheus Data Using PromQL Statements

	9 Cluster
	9.1 Suggestions on CCE Cluster Selection
	9.2 Creating an IPv4/IPv6 Dual-Stack Cluster in CCE
	9.3 Creating a Custom CCE Node Image
	9.4 Executing the Pre- or Post-installation Commands During Node Creation
	9.5 Using OBS Buckets to Implement Custom Script Injection During Node Creation
	9.6 Connecting to Multiple Clusters Using kubectl
	9.7 Selecting a Data Disk for the Node
	9.8 Implementing Cost Visualization for a CCE Cluster
	9.9 Creating a CCE Turbo Cluster Using a Shared VPC
	9.10 Protecting a CCE Cluster Against Overload
	9.11 Managing Costs for a Cluster

	10 Networking
	10.1 Planning CIDR Blocks for a Cluster
	10.2 Selecting a Network Model
	10.3 Enabling Cross-VPC Network Communications Between CCE Clusters
	10.4 Implementing Network Communications Between Containers and IDCs Using VPC and Direct Connect
	10.5 Enabling a CCE Cluster to Resolve Domain Names on Both On-Premises IDCs and HUAWEI CLOUD
	10.5.1 Solution Overview
	10.5.2 Solution 1: Using a DNS Endpoint for Cascading Resolution
	10.5.3 Solution 2: Changing the CoreDNS Configurations

	10.6 Implementing Sticky Session Through Load Balancing
	10.7 Obtaining the Client Source IP Address for a Container
	10.8 Increasing the Listening Queue Length by Configuring Container Kernel Parameters
	10.9 Configuring Passthrough Networking for a LoadBalancer Service
	10.10 Accessing an External Network from a Pod
	10.10.1 Accessing the Internet from a Pod
	10.10.2 Accessing Cloud Services from a Pod in the Same VPC
	10.10.3 Accessing Cloud Services from a Pod in a Different VPC

	10.11 Deploying Nginx Ingress Controllers Using a Chart
	10.11.1 Deploying NGINX Ingress Controller in Custom Mode
	10.11.2 Advanced Configuration of Nginx Ingress Controller

	10.12 CoreDNS Configuration Optimization
	10.12.1 CoreDNS Optimization Overview
	10.12.2 Client
	10.12.2.1 Optimizing Domain Name Resolution Requests
	10.12.2.2 Selecting a Proper Image
	10.12.2.3 Avoiding Occasional DNS Resolution Timeout Caused by IPVS Defects
	10.12.2.4 Using NodeLocal DNSCache
	10.12.2.5 Upgrading the CoreDNS in the Cluster Timely
	10.12.2.6 Adjusting the DNS Configuration of the VPC and VM

	10.12.3 Server
	10.12.3.1 Monitoring the coredns Add-on
	10.12.3.2 Adjusting the CoreDNS Deployment Status
	10.12.3.3 Configuring CoreDNS

	10.13 Pre-Binding Container ENI for CCE Turbo Clusters
	10.14 Connecting a Cluster to the Peer VPC Through an Enterprise Router
	10.15 Accessing an IP Address Outside a Cluster That Uses a VPC Network Using Source Pod IP Addresses in the Cluster

	11 Storage
	11.1 Expanding the Storage Space
	11.2 Mounting Object Storage Across Accounts
	11.3 Dynamically Creating an SFS Turbo Subdirectory Using StorageClass
	11.4 Changing the Storage Class Used by a Cluster of v1.15 from FlexVolume to CSI Everest
	11.5 Using Custom Storage Classes
	11.6 Scheduling EVS Disks Across AZs Using csi-disk-topology
	11.7 Automatically Collecting JVM Dump Files That Exit Unexpectedly Using SFS 3.0
	11.8 Deploying Storage Volumes in Multiple AZs

	12 Container
	12.1 Recommended Configurations for Workloads
	12.2 Properly Allocating Container Computing Resources
	12.3 Upgrading Pods Without Interrupting Services
	12.4 Modifying Kernel Parameters Using a Privileged Container
	12.5 Using Init Containers to Initialize an Application
	12.6 Setting Time Zone Synchronization
	12.7 Configuration Suggestions on Container Network Bandwidth Limit
	12.8 Configuring the /etc/hosts File of a Pod Using hostAliases
	12.9 Configuring Domain Name Resolution for CCE Containers
	12.10 Using Dual-Architecture Images (x86 and Arm) in CCE
	12.11 Locating Container Faults Using the Core Dump File
	12.12 Configuring Parameters to Delay the Pod Startup in a CCE Turbo Cluster
	12.13 Automatically Updating a Workload Version Using SWR Triggers

	13 Permission
	13.1 Configuring kubeconfig for Fine-Grained Management on Cluster Resources
	13.2 Configuring Namespace-level Permissions for an IAM User
	13.3 Performing RBAC Authentication on a Namespace Using kubectl Commands

	14 Release
	14.1 Overview
	14.2 Using Services to Implement Simple Grayscale Release and Blue-Green Deployment
	14.3 Using Nginx Ingress to Implement Grayscale Release and Blue-Green Deployment

	15 Batch Computing
	15.1 Deploying and Using Kubeflow in a CCE Cluster
	15.1.1 Deploying Kubeflow
	15.1.2 Training a TensorFlow Model
	15.1.3 Using Kubeflow and Volcano to Train an AI Model

	15.2 Deploying and Using Caffe in a CCE Cluster
	15.2.1 Prerequisites
	15.2.2 Preparing Resources
	15.2.3 Caffe Classification Example

	15.3 Deploying and Using TensorFlow in a CCE Cluster
	15.4 Deploying and Using Flink in a CCE Cluster
	15.5 Deploying and Using ClickHouse in a CCE Cluster
	15.6 Deploying and Using Spark in a CCE Cluster
	15.6.1 Installing Spark
	15.6.2 Using Spark

