หน้านี้ยังไม่พร้อมใช้งานในภาษาท้องถิ่นของคุณ เรากำลังพยายามอย่างหนักเพื่อเพิ่มเวอร์ชันภาษาอื่น ๆ เพิ่มเติม ขอบคุณสำหรับการสนับสนุนเสมอมา

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
Software Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Window Functions

Updated on 2022-07-29 GMT+08:00

Regular aggregate functions return a single value calculated from values in a row, or group all rows into a single output row. Window functions perform a calculation across a set of rows and return a value for each row.

  • A window function call represents the application of an aggregate-like function over some portion of the rows selected by a query. Therefore, aggregate functions (Aggregate Functions) can also be used as window functions. In addition, window functions are able to scan all the rows and divide the query rows into a partition by using the PARTITION BY clause.
  • Column-store tables support only the window functions rank (expression) and row_number (expression) and the aggregate functions sum, count, avg, min, and max. Row-store tables do not have such restrictions.
  • Invoking a window function requires special syntax using the OVER clause to specify a window. The OVER clause is used for grouping data and sorting the elements in a group. Window functions are used for generating sequence numbers for the values in the group.
  • order by in a window function must be followed by a column name. If it is followed by a number, the number is processed as a constant value and the target column is not ranked.

Syntax of a Window Function

function_name ([expression [, expression ... ]]) OVER ( window_definition ) function_name ([expression [, expression ... ]]) OVER window_namefunction_name ( * ) OVER ( window_definition ) function_name ( * ) OVER window_name

window_definition is defined as follows:

[ existing_window_name ] [ PARTITION BY expression [, ...] ] [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ] [ frame_clause ]

frame_clause is defined as follows:

[ RANGE | ROWS ] frame_start [ RANGE | ROWS ] BETWEEN frame_start AND frame_end

You can use RANGE and ROWS to specify the window frame. ROWS specifies the window in physical units (rows). RANGE specifies the window as a logical offset.

In RANGE and ROWS, you can use BETWEEN frame_start AND frame_end to specify the window's first and last rows. If frame_end is left blank, it defaults to CURRENT ROW.

The value options of BETWEEN frame_start AND frame_end are as follows:

  • CURRENT ROW: The current row is used as the window frame's start or end point.
  • N PRECEDING: The window frame starts from the nth row to the current row.
  • UNBOUNDED PRECEDING: The window frame starts at the first row of the partition.
  • N FOLLOWING: The window frame starts from the current row to the nth row.
  • UNBOUNDED FOLLOWING: The window frame ends with the last row of the partition.

frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and frame_end cannot be earlier than frame_start. For example, RANGE BETWEEN CURRENT ROW AND value PRECEDING is not allowed.

Window Functions

  • RANK()

    Description: The RANK function is used for generating non-consecutive sequence numbers for the values in each group. The same values have the same sequence number.

    Return type: bigint

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
       d_moy | d_fy_week_seq | rank 
    -------+---------------+------
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             5 |   29
         1 |             5 |   29
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
    (42 rows)
    
  • ROW_NUMBER()

    Description: The ROW_NUMBER function is used for generating consecutive sequence numbers for the values in each group. The same values have different sequence numbers.

    Return type: bigint

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, Row_number() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim  WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq | row_number 
    -------+---------------+------------
         1 |             1 |          1
         1 |             1 |          2
         1 |             1 |          3
         1 |             1 |          4
         1 |             1 |          5
         1 |             1 |          6
         1 |             1 |          7
         1 |             2 |          8
         1 |             2 |          9
         1 |             2 |         10
         1 |             2 |         11
         1 |             2 |         12
         1 |             2 |         13
         1 |             2 |         14
         1 |             3 |         15
         1 |             3 |         16
         1 |             3 |         17
         1 |             3 |         18
         1 |             3 |         19
         1 |             3 |         20
         1 |             3 |         21
         1 |             4 |         22
         1 |             4 |         23
         1 |             4 |         24
         1 |             4 |         25
         1 |             4 |         26
         1 |             4 |         27
         1 |             4 |         28
         1 |             5 |         29
         1 |             5 |         30
         2 |             5 |          1
         2 |             5 |          2
         2 |             5 |          3
         2 |             5 |          4
         2 |             5 |          5
         2 |             6 |          6
         2 |             6 |          7
         2 |             6 |          8
         2 |             6 |          9
         2 |             6 |         10
         2 |             6 |         11
         2 |             6 |         12
    (42 rows)
    
  • DENSE_RANK()

    Description: The DENSE_RANK function is used for generating consecutive sequence numbers for the values in each group. The same values have the same sequence number.

    Return type: bigint

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, dense_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq | dense_rank 
    -------+---------------+------------
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             2 |          2
         1 |             2 |          2
         1 |             2 |          2
         1 |             2 |          2
         1 |             2 |          2
         1 |             2 |          2
         1 |             2 |          2
         1 |             3 |          3
         1 |             3 |          3
         1 |             3 |          3
         1 |             3 |          3
         1 |             3 |          3
         1 |             3 |          3
         1 |             3 |          3
         1 |             4 |          4
         1 |             4 |          4
         1 |             4 |          4
         1 |             4 |          4
         1 |             4 |          4
         1 |             4 |          4
         1 |             4 |          4
         1 |             5 |          5
         1 |             5 |          5
         2 |             5 |          1
         2 |             5 |          1
         2 |             5 |          1
         2 |             5 |          1
         2 |             5 |          1
         2 |             6 |          2
         2 |             6 |          2
         2 |             6 |          2
         2 |             6 |          2
         2 |             6 |          2
         2 |             6 |          2
         2 |             6 |          2
    (42 rows)
    
  • PERCENT_RANK()

    Description: The PERCENT_RANK function is used for generating corresponding sequence numbers for the values in each group. That is, the function calculates the value according to the formula Sequence number = (Rank – 1)/(Total rows – 1). Rank is the corresponding sequence number generated based on the RANK function for the value and Total rows is the total number of elements in a group.

    Return type: double precision

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, percent_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq |   percent_rank   
    -------+---------------+------------------
         1 |             1 |                0
         1 |             1 |                0
         1 |             1 |                0
         1 |             1 |                0
         1 |             1 |                0
         1 |             1 |                0
         1 |             1 |                0
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             2 | .241379310344828
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             3 | .482758620689655
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             4 | .724137931034483
         1 |             5 |  .96551724137931
         1 |             5 |  .96551724137931
         2 |             5 |                0
         2 |             5 |                0
         2 |             5 |                0
         2 |             5 |                0
         2 |             5 |                0
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
         2 |             6 | .454545454545455
    (42 rows)
    
  • CUME_DIST()

    Description: The CUME_DIST function is used for generating accumulative distribution sequence numbers for the values in each group. That is, the function calculates the value according to the following formula: Sequence number = Number of rows preceding or peer with current row/Total rows.

    Return type: double precision

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, cume_dist() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim e_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq |    cume_dist     
    -------+---------------+------------------
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             1 | .233333333333333
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             2 | .466666666666667
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             3 |               .7
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             4 | .933333333333333
         1 |             5 |                1
         1 |             5 |                1
         2 |             5 | .416666666666667
         2 |             5 | .416666666666667
         2 |             5 | .416666666666667
         2 |             5 | .416666666666667
         2 |             5 | .416666666666667
         2 |             6 |                1
         2 |             6 |                1
         2 |             6 |                1
         2 |             6 |                1
         2 |             6 |                1
         2 |             6 |                1
         2 |             6 |                1
    (42 rows)
    
  • NTILE(num_buckets integer)

    Description: The NTILE function is used for equally allocating sequential data sets to the buckets whose quantity is specified by num_buckets according to num_buckets integer and allocating the bucket number to each row. Divide the partition as equally as possible.

    Return type: integer

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, ntile(3) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq | ntile 
    -------+---------------+-------
         1 |             1 |     1
         1 |             1 |     1
         1 |             1 |     1
         1 |             1 |     1
         1 |             1 |     1
         1 |             1 |     1
         1 |             1 |     1
         1 |             2 |     1
         1 |             2 |     1
         1 |             2 |     1
         1 |             2 |     2
         1 |             2 |     2
         1 |             2 |     2
         1 |             2 |     2
         1 |             3 |     2
         1 |             3 |     2
         1 |             3 |     2
         1 |             3 |     2
         1 |             3 |     2
         1 |             3 |     2
         1 |             3 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             4 |     3
         1 |             5 |     3
         1 |             5 |     3
         2 |             5 |     1
         2 |             5 |     1
         2 |             5 |     1
         2 |             5 |     1
         2 |             5 |     2
         2 |             6 |     2
         2 |             6 |     2
         2 |             6 |     2
         2 |             6 |     3
         2 |             6 |     3
         2 |             6 |     3
         2 |             6 |     3
    (42 rows)
    
  • LAG(value any [, offset integer [, default any ]])

    Description: The LAG function is used for generating lag values for the corresponding values in each group. That is, the value of the row obtained by moving forward the row corresponding to the current value by offset (integer) is the sequence number. If the row does not exist after the moving, the result value is the default value. If omitted, offset defaults to 1 and default to null.

    Return type: same as the parameter type

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, lag(d_moy,3,null) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
     d_moy | d_fy_week_seq | lag 
    -------+---------------+-----
         1 |             1 |    
         1 |             1 |    
         1 |             1 |    
         1 |             1 |   1
         1 |             1 |   1
         1 |             1 |   1
         1 |             1 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             2 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             3 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             4 |   1
         1 |             5 |   1
         1 |             5 |   1
         2 |             5 |    
         2 |             5 |    
         2 |             5 |    
         2 |             5 |   2
         2 |             5 |   2
         2 |             6 |   2
         2 |             6 |   2
         2 |             6 |   2
         2 |             6 |   2
         2 |             6 |   2
         2 |             6 |   2
         2 |             6 |   2
    (42 rows)
    
  • LEAD(value any [, offset integer [, default any ]])

    Description: The LEAD function is used for generating leading values for the corresponding values in each group. That is, the value of the row obtained by moving backward the row corresponding to the current value by offset (integer) is the sequence number. If the number of rows after the moving exceeds the total number for the current group, the result value is the default value. If omitted, offset defaults to 1 and default to null.

    Return type: same as the parameter type

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    SELECT d_moy, d_fy_week_seq, lead(d_fy_week_seq,2) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM  tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;                 d_moy | d_fy_week_seq | lead 
    -------+---------------+------
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    2
         1 |             1 |    2
         1 |             2 |    2
         1 |             2 |    2
         1 |             2 |    2
         1 |             2 |    2
         1 |             2 |    2
         1 |             2 |    3
         1 |             2 |    3
         1 |             3 |    3
         1 |             3 |    3
         1 |             3 |    3
         1 |             3 |    3
         1 |             3 |    3
         1 |             3 |    4
         1 |             3 |    4
         1 |             4 |    4
         1 |             4 |    4
         1 |             4 |    4
         1 |             4 |    4
         1 |             4 |    4
         1 |             4 |    5
         1 |             4 |    5
         1 |             5 |     
         1 |             5 |     
         2 |             5 |    5
         2 |             5 |    5
         2 |             5 |    5
         2 |             5 |    6
         2 |             5 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |     
         2 |             6 |     
    (42 rows)
    
  • FIRST_VALUE(value any)

    Description: The FIRST_VALUE function is used for returning the first value of each group.

    Return type: same as the parameter type

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, first_value(d_fy_week_seq) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2; 
     d_moy | d_fy_week_seq | first_value 
    -------+---------------+-------------
         1 |             1 |           1
         1 |             1 |           1
         1 |             1 |           1
         1 |             1 |           1
         1 |             1 |           1
         1 |             1 |           1
         1 |             1 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             2 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             3 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             4 |           1
         1 |             5 |           1
         1 |             5 |           1
         2 |             5 |           5
         2 |             5 |           5
         2 |             5 |           5
         2 |             5 |           5
         2 |             5 |           5
         2 |             6 |           5
         2 |             6 |           5
         2 |             6 |           5
         2 |             6 |           5
         2 |             6 |           5
         2 |             6 |           5
         2 |             6 |           5
    (42 rows)
    
  • LAST_VALUE(value any)

    Description: Returns the last value of each group.

    Return type: same as the parameter type

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    SELECT d_moy, d_fy_week_seq, last_value(d_moy) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
      d_moy | d_fy_week_seq | last_value 
    -------+---------------+------------
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             1 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             2 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             3 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             4 |          1
         1 |             5 |          1
         1 |             5 |          1
         2 |             5 |          2
         2 |             5 |          2
         2 |             5 |          2
         2 |             5 |          2
         2 |             5 |          2
    (35 rows)
    
  • NTH_VALUE(value any, nth integer)

    Description: The nth row for a group is the returned value. If the row does not exist, NULL is returned by default.

    Return type: same as the parameter type

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    SELECT d_moy, d_fy_week_seq, nth_value(d_fy_week_seq,6) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
     d_moy | d_fy_week_seq | nth_value 
    -------+---------------+-----------
         1 |             1 |         1
         1 |             1 |         1
         1 |             1 |         1
         1 |             1 |         1
         1 |             1 |         1
         1 |             1 |         1
         1 |             1 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             2 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             3 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             4 |         1
         1 |             5 |         1
         1 |             5 |         1
         2 |             5 |          
         2 |             5 |          
         2 |             5 |          
         2 |             5 |          
         2 |             5 |          
    (35 rows)
    

เราใช้คุกกี้เพื่อปรับปรุงไซต์และประสบการณ์การใช้ของคุณ การเรียกดูเว็บไซต์ของเราต่อแสดงว่าคุณยอมรับนโยบายคุกกี้ของเรา เรียนรู้เพิ่มเติม

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback