Help Center/
ModelArts/
Model Inference/
Inference Specifications/
Examples of Custom Scripts/
PyTorch
Updated on 2022-12-16 GMT+08:00
PyTorch
Training a Model
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # Define a network structure. class Net(nn.Module): def __init__(self): super(Net, self).__init__() # The second dimension of the input must be 784. self.hidden1 = nn.Linear(784, 5120, bias=False) self.output = nn.Linear(5120, 10, bias=False) def forward(self, x): x = x.view(x.size()[0], -1) x = F.relu((self.hidden1(x))) x = F.dropout(x, 0.2) x = self.output(x) return F.log_softmax(x) def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test( model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) device = torch.device("cpu") batch_size=64 kwargs={} train_loader = torch.utils.data.DataLoader( datasets.MNIST('.', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('.', train=False, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=1000, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) optimizer = optim.Adam(model.parameters()) for epoch in range(1, 2 + 1): train(model, device, train_loader, optimizer, epoch) test(model, device, test_loader)
Saving a Model
# The model must be saved using state_dict and can be deployed remotely. torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")
Inference Code
In the model inference code file customize_service.py, add a child model class. This child model class inherits properties from its parent model class. For details about the import statements of different types of parent model classes, see Table 1.
from PIL import Image import log from model_service.pytorch_model_service import PTServingBaseService import torch.nn.functional as F import torch.nn as nn import torch import json import numpy as np logger = log.getLogger(__name__) import torchvision.transforms as transforms # Define model preprocessing. infer_transformation = transforms.Compose([ transforms.Resize((28,28)), # Transform to a PyTorch tensor. transforms.ToTensor() ]) import os class PTVisionService(PTServingBaseService): def __init__(self, model_name, model_path): # Call the constructor of the parent class. super(PTVisionService, self).__init__(model_name, model_path) # Call the customized function to load the model. self.model = Mnist(model_path) # Load tags. self.label = [0,1,2,3,4,5,6,7,8,9] # Labels can also be loaded by label file. # Store the label.json file in the model directory. The following information is read: dir_path = os.path.dirname(os.path.realpath(self.model_path)) with open(os.path.join(dir_path, 'label.json')) as f: self.label = json.load(f) def _preprocess(self, data): preprocessed_data = {} for k, v in data.items(): input_batch = [] for file_name, file_content in v.items(): with Image.open(file_content) as image1: # Gray processing image1 = image1.convert("L") if torch.cuda.is_available(): input_batch.append(infer_transformation(image1).cuda()) else: input_batch.append(infer_transformation(image1)) input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True) print(input_batch_var.shape) preprocessed_data[k] = input_batch_var return preprocessed_data def _postprocess(self, data): results = [] for k, v in data.items(): result = torch.argmax(v[0]) result = {k: self.label[result]} results.append(result) return results def _inference(self, data): result = {} for k, v in data.items(): result[k] = self.model(v) return result class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.hidden1 = nn.Linear(784, 5120, bias=False) self.output = nn.Linear(5120, 10, bias=False) def forward(self, x): x = x.view(x.size()[0], -1) x = F.relu((self.hidden1(x))) x = F.dropout(x, 0.2) x = self.output(x) return F.log_softmax(x) def Mnist(model_path, **kwargs): # Generate a network. model = Net() # Load the model. if torch.cuda.is_available(): device = torch.device('cuda') model.load_state_dict(torch.load(model_path, map_location="cuda:0")) else: device = torch.device('cpu') model.load_state_dict(torch.load(model_path, map_location=device)) # CPU or GPU mapping model.to(device) # Declare an inference mode. model.eval() return model
Parent topic: Examples of Custom Scripts
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
The system is busy. Please try again later.
For any further questions, feel free to contact us through the chatbot.
Chatbot