Este conteúdo foi traduzido por máquina para sua conveniência e a Huawei Cloud não pode garantir que o conteúdo foi traduzido com precisão. Para exibir o conteúdo original, use o link no canto superior direito para mudar para a página em inglês.
Central de ajuda/ ModelArts/ DevEnviron/ JupyterLab/ Uso do SDK do ModelArts
Atualizado em 2024-09-14 GMT+08:00

Uso do SDK do ModelArts

As instâncias do notebook permitem usar o SDK do ModelArts para gerenciar OBS, trabalhos de treinamento, modelos e serviços em tempo real.

Suas instâncias de notebook obtiveram automaticamente sua AK/SK para autenticação e a região. Portanto, as sessões do SDK são autenticadas automaticamente.

Exemplo de código

  • Crie um trabalho de treinamento.
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    from modelarts.session import Session
    from modelarts.estimator import Estimator
    session = Session()
    estimator = Estimator(
                          modelarts_session=session,
                          framework_type='PyTorch',                                     # AI engine name
                          framework_version='PyTorch-1.0.0-python3.6',                  # AI engine version
                          code_dir='/obs-bucket-name/src/',                             # Training script directory
                          boot_file='/obs-bucket-name/src/pytorch_sentiment.py',        # Training boot script directory
                          log_url='/obs-bucket-name/log/',                              # Training log directory
                          hyperparameters=[
                                           {"label":"classes",
                                            "value": "10"},    
                                           {"label":"lr",
                                            "value": "0.001"}
                                           ],
                          output_path='/obs-bucket-name/output/',                         # Training output directory
                          train_instance_type='modelarts.vm.gpu.p100',                  # Training environment specifications
                          train_instance_count=1,                                       # Number of training nodes
                          job_description='pytorch-sentiment with ModelArts SDK')       # Training job description
    job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False, job_name='my_training_job')
    
  • Obtenha uma lista de modelos.
    1
    2
    3
    4
    from modelarts.session import Session 
    from modelarts.model import Model
    session = Session() 
    model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit", order="desc")
    
  • Obtenha detalhes do serviço.
    1
    2
    3
    4
    5
    from modelarts.session import Session
    from modelarts.model import Predictor
    session = Session()
    predictor_instance = Predictor(session, service_id="input your service_id")
    predictor_info_resp = predictor_instance.get_service_info()