Help Center/ GaussDB(DWS)/ Service Overview/ Data Warehouse Flavors
Updated on 2025-03-03 GMT+08:00

Data Warehouse Flavors

GaussDB(DWS) provides storage-compute coupled and decoupled data warehouses. Additionally, storage-compute coupled data warehouses can also be deployed in the standalone mode. For details about the differences between them, see Data Warehouse Types.

You are advised not to use clusters with low specifications, such as clusters with 16 GB memory and 4-core vCPUs, in the production environment. Otherwise, resource overload may occur.

Flavors for Storage-Compute Coupled Clusters

  • A storage-compute coupled data warehouse using cloud disks with a vCPU to memory ratio of 1:8 can be elastically scaled, providing unlimited computing and storage capacity. For details, see Table 1.
  • A storage-compute coupled data warehouse using cloud disks with a vCPU to memory ratio of 1:8 provides high-concurrency, high-performance, and low-latency transaction processing capabilities at low costs based on large-scale data query and analysis capabilities. This type of data warehouse is ideal for HTAP hybrid load scenarios. For details about the specifications, see Table 2.
  • Choosing storage-compute coupled (standalone) flavors limits deployment to a single node without HA services. This choice can reduce storage costs by 50%. In standalone mode, service availability is maintained through automatic ECS rebuilding, and data reliability is ensured through the EVS multi-copy mechanism. The standalone system is more cost-effective and recommended for lightweight services. When creating a cluster, you can choose the h1 node flavor. For details about the flavor, see Table 3.
  • A storage-compute coupled data warehouse using local disks cannot be scaled up. You can only increase capacity by adding more nodes. For details, see Table 4.

Step indicates the interval for increasing or decreasing the disk size during cluster configuration change. You need to select a value based on the storage step of the corresponding flavor.

Table 1 Cloud disk flavors with a vCPU to memory ratio of 1:8 for storage-compute clusters

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Default Storage

Step (GB)

Recommended Storage

Number of DNs

Scenario

dwsx2.xlarge.m7

x86

4

32

20 GB–2,000 GB

100

10

800

1

Suitable for GaussDB(DWS) starters. These flavors can be used for testing, learning environments, or small-scale analytics systems.

dwsk2.xlarge

Arm

4

32

20 GB–2,000 GB

100

10

800

1

dwsx2.xlarge.m7n

x86

4

32

20 GB–2,000 GB

100

10

800

1

dwsk2.xlarge.km2

Arm

4

32

20 GB–2,000 GB

100

10

800

1

dwsx2.2xlarge.m7

x86

8

64

100 GB–4,000 GB

200

100

1,600

1

Suitable for internal data warehousing and report analysis in small- and medium-sized enterprises (SMEs).

dwsk2.2xlarge

Arm

8

64

100 GB–4,000 GB

200

100

1,600

1

dwsx2.2xlarge.m7n

x86

8

64

100 GB–4,000 GB

200

100

1,600

1

dwsk2.2xlarge.km2

Arm

8

64

100 GB–4,000 GB

200

100

1,600

1

dwsx2.4xlarge.m7

x86

16

128

100 GB–8,000 GB

400

100

3,200

1

dwsk2.4xlarge

Arm

16

128

100 GB–8,000 GB

400

100

3,200

1

dwsk2.4xlarge.km2

Arm

16

128

100 GB–8,000 GB

400

100

3,200

1

dwsx2.8xlarge.m7

x86

32

256

100 GB–16,000 GB

800

100

6,400

2

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

dwsk2.8xlarge

Arm

32

256

100 GB–16,000 GB

800

100

6,400

2

dwsx2.8xlarge.m7n

x86

32

256

100 GB–16,000 GB

800

100

6,400

2

dwsk2.8xlarge.km2

Arm

32

256

100 GB–16,000 GB

800

100

6,400

2

dwsk2.12xlarge

Arm

48

384

100 GB–24,000 GB

1200

100

9,600

4

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dwsx2.16xlarge.m7

x86

64

512

100 GB–32,000 GB

1,600

100

12,800

4

dwsx2.16xlarge.m7n

x86

64

512

100 GB–32,000 GB

1,600

100

12,800

4

dwsx2.16xlarge.m7

x86

64

512

100 GB–32,000 GB

1,600

100

12,800

4

dwsk2.16xlarge

Arm

64

512

100 GB–32,000 GB

1,600

100

12,800

4

dwsx2.24xlarge.m7

x86

96

768

100 GB–48,000 GB

2,400

100

19,200

4

dwsk2.24xlarge

Arm

96

768

100 GB–48,000 GB

2,400

100

19,200

4

dwsx2.32xlarge.m7

x86

128

1,024

100 GB–48,000 GB

3,200

100

25,600

4

Table 2 Cloud disk flavors with a vCPU to memory ratio of 1:4 for storage-compute clusters

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Step (GB)

Number of DNs

Scenario

dwsx2.h.xlarge.4.c7

x86

4

16

20 GB–2,000 GB

20

1

Suitable for GaussDB(DWS) starters. These flavors can be used for testing, learning environments, or small-scale analytics systems.

dwsk2.h.xlarge.4.kc1

Arm

4

16

20 GB–2,000 GB

20

1

dwsk2.h.xlarge.kc2

Arm

4

16

20 GB–2,000 GB

20

1

dwsx2.h.xlarge.4.c7n

x86

4

16

20 GB–2,000 GB

20

1

dwsx2.h.2xlarge.4.c6

x86

8

32

100 GB–4,000 GB

100

1

Suitable for internal data warehousing and report analysis in small- and medium-sized enterprises (SMEs).

dwsx2.h.2xlarge.4.c7

x86

8

32

100 GB–4,000 GB

100

1

dwsk2.h.2xlarge.4.kc1

Arm

8

32

100 GB–4,000 GB

100

1

dwsk2.h.2xlarge.kc2

Arm

8

32

100 GB–4,000 GB

100

1

dwsx2.h.2xlarge.4.c7n

x86

8

32

100 GB–4,000 GB

100

1

dwsx2.h.4xlarge.4.c7

x86

16

64

100 GB–8,000 GB

100

1

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

dwsk2.h.4xlarge.4.kc1

Arm

16

64

100 GB–8,000 GB

100

1

dwsk2.h.4xlarge.kc2

Arm

16

64

100 GB–8,000 GB

100

1

dwsx2.h.4xlarge.4.c7

x86

16

64

100 GB–8,000 GB

100

1

dwsx2.h.8xlarge.4.c7

x86

32

128

100 GB–16,000 GB

100

2

dwsk2.h.8xlarge.4.kc1

Arm

32

128

100 GB–16,000 GB

100

2

dwsk2.h.8xlarge.kc2

Arm

32

128

100 GB–16,000 GB

100

2

dwsx2.h.8xlarge.4.c7n

x86

32

128

100 GB–16,000 GB

100

2

dwsk2.h.12xlarge.4.kc1

Arm

48

192

100 GB–24,000 GB

100

4

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dwsk2.h.12xlarge.kc2

Arm

48

192

100 GB–24,000 GB

100

4

dwsx2.h.16xlarge.4.c7

x86

64

256

100 GB–32,000 GB

100

4

dwsx2.h.16xlarge.4.c7n

x86

64

256

100 GB–32,000 GB

100

4

dwsk2.h.16xlarge

Arm

64

256

100 GB–32,000 GB

100

4

dwsk2.h.24xlarge

Arm

96

384

100 GB–48,000 GB

100

4

dwsk2.h.32xlarge

Arm

128

512

100 GB–64,000 GB

100

4

Table 3 Storage-compute coupled (standalone) cluster flavors

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Step (GB)

Number of DNs

Scenario

dwsx2.h1.xlarge.2.c7

x86

4

8

20 GB–2,000 GB

20

1

Suitable for GaussDB(DWS) starters. These flavors can be used for testing, learning environments, or small-scale analytics systems.

dwsk2.h1.xlarge.2.kc1

Arm

4

8

20 GB–2,000 GB

20

1

dwsx2.h1.xlarge.2.c7n

x86

4

8

20 GB–2,000 GB

20

1

dwsx2.h1.2xlarge.4.c7

x86

8

32

100 GB–4,000 GB

100

1

Suitable for internal data warehousing and report analysis in small- and medium-sized enterprises (SMEs).

dwsk2.h1.2xlarge.4.kc1

Arm

8

32

100 GB–4,000 GB

100

1

dwsx2.h1.2xlarge.4.c7n

x86

8

32

100 GB–4,000 GB

100

1

dwsx2.h1.4xlarge.4.c7

x86

16

64

100 GB–8,000 GB

100

1

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

dwsk2.h1.4xlarge.4.kc1

Arm

16

64

100 GB–8,000 GB

100

1

dwsx2.h1.4xlarge.4.c7n

x86

16

64

100 GB–8,000 GB

100

1

dwsx2.h1.8xlarge.4.c7

x86

32

128

100 GB–16,000 GB

100

2

dwsk2.h1.8xlarge.4.kc1

Arm

32

128

100 GB–16,000 GB

100

2

dwsx2.h1.8xlarge.4.c7n

x86

32

128

100 GB–16,000 GB

100

2

dwsk2.h1.12xlarge.4.kc1

Arm

48

192

100 GB–24,000 GB

100

4

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dwsx2.h1.16xlarge.4.c7

x86

64

256

100 GB–32,000 GB

100

4

dwsx2.h1.16xlarge.4.c7n

x86

64

256

100 GB–32,000 GB

100

4

Table 4 Local disk flavors for storage-compute coupled clusters

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Number of DNs

Scenario

dws2.olap.4xlarge.i3

x86

16

128

1,490 GB

1

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dws2.olap.4xlarge.ki1

Arm

16

64

2,980 GB

1

dws2.olap.8xlarge.i3

x86

32

256

2,980 GB

2

dws2.olap.8xlarge.ki1

Arm

32

128

5,960 GB

2

dws2.olap.16xlarge.i3

x86

64

512

5,960 GB

4

dws2.olap.16xlarge.ki1

Arm

64

228

11,921 GB

4

Flavors for Storage-Compute Decoupled Clusters

  • A storage-compute decoupled data warehouse using cloud disks can be elastically scaled, providing unlimited computing and storage capacity. For details, see Table 5.
  • A storage-compute decoupled data warehouse using local disks has a fixed storage capacity that cannot be expanded or modified. You can only increase capacity by adding more nodes. For details, see Table 6.

    When creating a storage-compute decoupled cluster, only the second half of the flavors (for example, 4U16G.4DPU) are shown. The prefixes (dwsx3/dwsax3/dwsk3) in the flavor list indicate the storage-compute decoupled CPU architecture.

Table 5 Storage-compute decoupled cloud disk flavors

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Step (GB)

Number of DNs

Scenario

dwsx3.4U16G.4DPU

x86

4

16

20 GB–2,000 GB

10

1

Suitable for GaussDB(DWS) starters. These flavors can be used for testing, learning environments, or small-scale analytics systems.

dwsk3.4U16G.4DPU

Arm

4

16

20 GB–2,000 GB

10

1

dwsax3.4U16G.4DPU

x86

4

16

20 GB–2,000 GB

10

1

dwsax3.4U32G.4DPU

x86

4

32

20 GB–2,000 GB

10

1

dwsx3.8U32G.8DPU

x86

8

32

100 GB–4,000 GB

100

1

Suitable for internal data warehousing and report analysis in small- and medium-sized enterprises (SMEs).

dwsk3.8U32G.8DPU

Arm

8

32

100 GB–4,000 GB

100

1

dwsax3.8U32G.8DPU

x86

8

32

100 GB–4,000 GB

100

1

dwsax3.8U64G.8DPU

x86

8

64

100 GB–4,000 GB

100

1

dwsx3.16U64G.16DPU

x86

16

64

100 GB–8,000 GB

100

1

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

dwsk3.16U64G.16DPU

Arm

16

64

100 GB–8,000 GB

100

1

dwsax3.16U64G.16DPU

x86

16

64

100 GB–8,000 GB

100

1

dwsax3.16U128G.16DPU

x86

16

128

100 GB–8,000 GB

100

1

dwsx3.32U128G.32DPU

x86

32

128

100 GB–16,000 GB

100

2

dwsk3.32U128G.32DPU

Arm

32

128

100 GB–16,000 GB

100

2

dwsax3.32U128G.32DPU

x86

32

128

100 GB–16,000 GB

100

2

dwsax3.32U256G.32DPU

x86

32

256

100 GB–16,000 GB

100

2

dwsk3.48U192G.48DPU

Arm

48

192

200 GB–24,000 GB

100

4

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dwsx3.64U256G.64DPU

x86

64

256

200 GB–32,000 GB

100

4

dwsk3.64U256G.64DPU

Arm

64

256

100 GB–32,000 GB

100

4

dwsax3.64U256G.64DPU

x86

64

256

100 GB–32,000 GB

100

4

dwsax3.64U512G.64DPU

x86

64

512

100 GB–32,000 GB

100

4

dwsx3.96U768G.96DPU

x86

96

768

100 GB–48,000 GB

100

4

dwsk3.96U384G.96DPU

Arm

96

384

100 GB–48,000 GB

100

4

dwsax3.96U384G.96DPU

x86

96

384

100 GB–48,000 GB

100

4

dwsax3.96U768G.96DPU

x86

96

768

100 GB–48,000 GB

100

4

dwsx3.128U1024G.128DPU

x86

128

1,024

100 GB–64,000 GB

100

4

dwsk3.128U512G.128DPU

Arm

128

512

100 GB–64,000 GB

100

4

dwsax3.128U512G.128DPU

x86

128

512

100 GB–64,000 GB

100

4

dwsax3.128U1024G.128DPU

x86

128

1,024

100 GB–64,000 GB

100

4

Table 6 Storage-compute decoupled local disk flavors

Flavor

CPU Architecture

vCPU

Memory (GB)

Storage Capacity Per Node

Number of DNs

Scenario

dws3.16U128G.i7.16DPU

x86

16

128

2,980 GB

1

Recommended for the production environment. These flavors are applicable to OLAP systems that have to deal with large data volumes, BI reports, and data visualizations on large screens for most companies.

These flavors can deliver excellent performance and are applicable to high-throughput data warehouse processing and high-concurrency online query.

dws3.16U64G.ki1.16DPU

Arm

16

64

5,960 GB

1

dws3.32U256G.i7.32DPU

x86

32

256

5,960 GB

2

dws3.32U128G.ki1.32DPU

Arm

32

128

11,920 GB

2

dws3.64U512G.i7.64DPU

x86

64

512

11,920 GB

4

dws3.64U228G.ki1.64DPU

Arm

64

228

23,840 GB

4