El contenido no se encuentra disponible en el idioma seleccionado. Estamos trabajando continuamente para agregar más idiomas. Gracias por su apoyo.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Dimension Table

Updated on 2024-04-19 GMT+08:00

Function

Create an HBase dimension table to connect to the source streams for wide table generation.

Prerequisites

  • An enhanced datasource connection has been created for DLI to connect to HBase, so that jobs can run on the dedicated queue of DLI and you can set the security group rules as required.
  • If MRS HBase is used, IP addresses of all hosts in the MRS cluster have been added to host information of the enhanced datasource connection.

    For details, see Modifying Host Information.

Caveats

  • When you create a Flink OpenSource SQL job, set Flink Version to 1.15 in the Running Parameters tab. Select Save Job Log, and specify the OBS bucket for saving job logs.
  • Storing authentication credentials such as usernames and passwords in code or plaintext poses significant security risks. It is recommended using DEW to manage credentials instead. Storing encrypted credentials in configuration files or environment variables and decrypting them when needed ensures security. For details, see Flink OpenSource SQL Jobs Using DEW to Manage Access Credentials.
  • All the column families in HBase table must be declared as ROW type, the field name maps to the column family name, and the nested field names map to the column qualifier names. There is no need to declare all the families and qualifiers in the schema, users can declare what is used in the query. Except the ROW type fields, the single atomic type field (for example, STRING, BIGINT) will be recognized as HBase rowkey. The rowkey field can be an arbitrary name, but should be quoted using backticks if it is a reserved keyword.

Syntax

create table hbaseSource (
  attr_name attr_type 
  (',' attr_name attr_type)* 
 )
with (
  'connector' = 'hbase-2.2',
  'table-name' = '',
  'zookeeper.quorum' = ''
);

Parameters

Table 1 Parameter description

Parameter

Mandatory

Default Value

Type

Description

connector

Yes

None

String

Connector type. Set this parameter to hbase-2.2.

table-name

Yes

None

String

Name of the HBase table

zookeeper.quorum

Yes

None

String

HBase Zookeeper quorum. The format is ZookeeperAddress:ZookeeperPort.

The following describes how to obtain the ZooKeeper IP address and port number:

  • On the MRS Manager console, choose Cluster > Name of the desired cluster > Service > ZooKeeper > Instance. On the displayed page, obtain the IP address of the ZooKeeper instance.
  • On the MRS Manager console, choose Cluster > Name of the desired cluster > Service > ZooKeeper > Configuration, and click All Configurations. Search for the clientPort parameter, and obtain the ZooKeeper port number.

zookeeper.znode.parent

No

/hbase

String

Root directory in ZooKeeper for the HBase cluster.

lookup.async

No

false

Boolean

Whether async lookup is enabled.

lookup.cache.max-rows

No

-1

Long

Maximum number of cached rows in a dimension table. When the rows exceed this value, the first item added to the cache will be marked as expired.

Lookup cache is disabled by default.

lookup.cache.ttl

No

-1

Long

Maximum time to live (TTL) for each row in lookup cache. Caches exceeding the TTL will be expired. The format is {length value}{time unit label}, for example, 123ms, 321s. The supported time units include d, h, min, s, and ms (default unit).

Lookup cache is disabled by default.

lookup.max-retries

No

3

Integer

Maximum retry times if lookup database failed.

krb_auth_name

No

None

String

Name of datasource authentication of the Kerberos type created on DLI.

Creating a Datasource Authentication

Data Type Mapping

HBase stores all data as byte arrays. The data needs to be serialized and deserialized during read and write operations.

When serializing and de-serializing, Flink HBase connector uses utility class org.apache.hadoop.hbase.util.Bytes provided by HBase (Hadoop) to convert Flink data types to and from byte arrays.

Flink HBase connector encodes null values to empty bytes, and decodes empty bytes to null values for all data types except the string type. For string type, the null literal is determined by the null-string-literal option.

Table 2 Data type mapping

Flink SQL Type

HBase Conversion

CHAR/VARCHAR/STRING

byte[] toBytes(String s)

String toString(byte[] b)

BOOLEAN

byte[] toBytes(boolean b)

boolean toBoolean(byte[] b)

BINARY/VARBINARY

Returns byte[] as is.

DECIMAL

byte[] toBytes(BigDecimal v)

BigDecimal toBigDecimal(byte[] b)

TINYINT

new byte[] { val }

bytes[0] // returns first and only byte from bytes

SMALLINT

byte[] toBytes(short val)

short toShort(byte[] bytes)

INT

byte[] toBytes(int val)

int toInt(byte[] bytes)

BIGINT

byte[] toBytes(long val)

long toLong(byte[] bytes)

FLOAT

byte[] toBytes(float val)

float toFloat(byte[] bytes)

DOUBLE

byte[] toBytes(double val)

double toDouble(byte[] bytes)

DATE

Number of days since 1970-01-01 00:00:00 UTC. The value is an integer.

TIME

Number of milliseconds since 1970-01-01 00:00:00 UTC. The value is an integer.

TIMESTAMP

Number of milliseconds since 1970-01-01 00:00:00 UTC. The value is of the long type.

ARRAY

Not supported

MAP / MULTISET

Not supported

ROW

Not supported

Example

In this example, data is read from a DMS Kafka data source, an HBase table is used as a dimension table to generate a wide table, and the result is written to a Kafka result table. The procedure is as follows (the HBase version in this example is 2.2.3):

  1. Create an enhanced datasource connection in the VPC and subnet where HBase and Kafka locate, and bind the connection to the required Flink elastic resource pool. For details, see Enhanced Datasource Connections. Add MRS host information for the enhanced datasource connection. For details, see Modifying Host Information.
  2. Set HBase and Kafka security groups and add inbound rules to allow access from the Flink queue. Test the connectivity using the HBase and Kafka addresses by referring to Testing Address Connectivity. If the connection is successful, the datasource is bound to the queue. Otherwise, the binding fails.
  3. Create an HBase table and name it area_info using the HBase shell. The table has only one column family detail. For details, see Using HBase from Scratch. The creation statement is as follows:
    create 'area_info', {NAME => 'detail'}
  4. Run the following statement in the HBase shell to insert dimension table data:
    put 'area_info', '330106', 'detail:area_province_name', 'a1'
    put 'area_info', '330106', 'detail:area_city_name', 'b1'
    put 'area_info', '330106', 'detail:area_county_name', 'c2'
    put 'area_info', '330106', 'detail:area_street_name', 'd2'
    put 'area_info', '330106', 'detail:region_name', 'e1'
    
    put 'area_info', '330110', 'detail:area_province_name', 'a1'
    put 'area_info', '330110', 'detail:area_city_name', 'b1'
    put 'area_info', '330110', 'detail:area_county_name', 'c4'
    put 'area_info', '330110', 'detail:area_street_name', 'd4'
    put 'area_info', '330110', 'detail:region_name', 'e1'
  5. Create a Flink OpenSource SQL job. Enter the following job script and submit the job. The job script uses Kafka as the data source and an HBase table as the dimension table. Data is output to a Kafka result table.
    When you create a job, set Flink Version to 1.15 in the Running Parameters tab. Select Save Job Log, and specify the OBS bucket for saving job logs. Set the values of the parameters in bold in the following script as needed.
    CREATE TABLE orders (
      order_id string,
      order_channel string,
      order_time string,
      pay_amount double,
      real_pay double,
      pay_time string,
      user_id string,
      user_name string,
      area_id string,
      proctime as Proctime()
    ) WITH (
      'connector' = 'kafka',
      'topic' = 'KafkaSourceTopic',
      'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
      'properties.group.id' = 'GroupId',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'json'
    );
    
    -- Create an address dimension table
    create table area_info (
      area_id string,   
      detail row(
        area_province_name string, 
        area_city_name string, 
        area_county_name string, 
        area_street_name string, 
        region_name string) 
    ) WITH (
      'connector' = 'hbase-2.2',
      'table-name' = 'area_info',
      'zookeeper.quorum' = 'ZookeeperAddress:ZookeeperPort',
      'lookup.async' = 'true',
      'lookup.cache.max-rows' = '10000',
      'lookup.cache.ttl' = '2h'
    );
    
    -- Generate a wide table based on the address dimension table containing detailed order information.
    create table order_detail(
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,
        area_id string,
        area_province_name string,
        area_city_name string,
        area_county_name string,
        area_street_name string,
        region_name string
    ) with (
      'connector' = 'kafka',
      'topic' = '<yourSinkTopic>',
      'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
      'format' = 'json'
    );
    
    insert into order_detail
        select orders.order_id, orders.order_channel, orders.order_time, orders.pay_amount, orders.real_pay, orders.pay_time, orders.user_id, orders.user_name,
               area.area_id, area.area_province_name, area.area_city_name, area.area_county_name,
               area.area_street_name, area.region_name  from orders
        left join area_info for system_time as of orders.proctime as area on orders.area_id = area.area_id;
  6. Connect to the Kafka cluster and insert the following test data into the source topic in Kafka:
    {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
    
    {"order_id":"202103241606060001", "order_channel":"appShop", "order_time":"2021-03-24 16:06:06", "pay_amount":"200.00", "real_pay":"180.00", "pay_time":"2021-03-24 16:10:06", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
    
    {"order_id":"202103251202020001", "order_channel":"miniAppShop", "order_time":"2021-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2021-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
  7. Connect to the Kafka cluster and read data from the sink topic of Kafka. The result data is as follows:
    {"order_id":"202103241000000001","order_channel":"webShop","order_time":"2021-03-24 10:00:00","pay_amount":100.0,"real_pay":100.0,"pay_time":"2021-03-24 10:02:03","user_id":"0001","user_name":"Alice","area_id":"330106","area_province_name":"a1","area_city_name":"b1","area_county_name":"c2","area_street_name":"d2","region_name":"e1"}
    
    {"order_id":"202103241606060001","order_channel":"appShop","order_time":"2021-03-24 16:06:06","pay_amount":200.0,"real_pay":180.0,"pay_time":"2021-03-24 16:10:06","user_id":"0001","user_name":"Alice","area_id":"330106","area_province_name":"a1","area_city_name":"b1","area_county_name":"c2","area_street_name":"d2","region_name":"e1"}
    
    {"order_id":"202103251202020001","order_channel":"miniAppShop","order_time":"2021-03-25 12:02:02","pay_amount":60.0,"real_pay":60.0,"pay_time":"2021-03-25 12:03:00","user_id":"0002","user_name":"Bob","area_id":"330110","area_province_name":"a1","area_city_name":"b1","area_county_name":"c4","area_street_name":"d4","region_name":"e1"}

FAQs

Q: What should I do if Flink job logs contain the following error information?

org.apache.zookeeper.ClientCnxn$SessionTimeoutException: Client session timed out, have not heard from server in 90069ms for connection id 0x0

A: The datasource connection is not bound or the binding fails. Configure the datasource connection by referring to Enhanced Datasource Connection or configure the security group of the Kafka cluster to allow access from the DLI queue.

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback