Estos contenidos se han traducido de forma automática para su comodidad, pero Huawei Cloud no garantiza la exactitud de estos. Para consultar los contenidos originales, acceda a la versión en inglés.
Centro de ayuda/
ModelArts/
Implementación de inferencia/
Especificaciones de inferencia/
Ejemplos de scripts personalizados/
TensorFlow
Actualización más reciente 2024-09-25 GMT+08:00
TensorFlow
Hay dos tipos de API de TensorFlow, Keras y tf. Utilizan diferentes códigos para entrenar y guardar modelos, pero el mismo código para la inferencia.
Entrenamiento de un modelo (API de Keras)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from keras.models import Sequential model = Sequential() from keras.layers import Dense import tensorflow as tf # Import a training dataset. mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print(x_train.shape) from keras.layers import Dense from keras.models import Sequential import keras from keras.layers import Dense, Activation, Flatten, Dropout # Define a model network. model = Sequential() model.add(Flatten(input_shape=(28,28))) model.add(Dense(units=5120,activation='relu')) model.add(Dropout(0.2)) model.add(Dense(units=10, activation='softmax')) # Define an optimizer and loss functions. model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # Train the model. model.fit(x_train, y_train, epochs=2) # Evaluate the model. model.evaluate(x_test, y_test) |
Guardar un modelo (API de Keras)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from keras import backend as K # K.get_session().run(tf.global_variables_initializer()) # Define the inputs and outputs of the prediction API. # The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model. # The input and output definitions of the model must match the custom inference script. predict_signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={"images" : model.input}, outputs={"scores" : model.output} ) # Define a save path. builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/') builder.add_meta_graph_and_variables( sess = K.get_session(), # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment. tags=[tf.saved_model.tag_constants.SERVING], """ signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows: tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY """ signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature } ) builder.save() |
Entrenamiento de un modelo (API de tf)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from __future__ import print_function import gzip import os import urllib import numpy import tensorflow as tf from six.moves import urllib # Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/. SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size)) return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): """Class encompassing test, validation and training MNIST data set.""" def __init__(self, images, labels, fake_data=False, one_hot=False): """Construct a DataSet. one_hot arg is used only if fake_data is true.""" if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in range(batch_size)], [ fake_label for _ in range(batch_size) ] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False): """Return training, validation and testing data sets.""" class DataSets(object): pass data_sets = DataSets() if fake_data: data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot) return data_sets local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels) data_sets.validation = DataSet(validation_images, validation_labels) data_sets.test = DataSet(test_images, test_labels) return data_sets training_iteration = 1000 modelarts_example_path = './modelarts-mnist-train-save-deploy-example' export_path = modelarts_example_path + '/model/' data_path = './' print('Training model...') mnist = read_data_sets(data_path, one_hot=True) sess = tf.InteractiveSession() serialized_tf_example = tf.placeholder(tf.string, name='tf_example') feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), } tf_example = tf.parse_example(serialized_tf_example, feature_configs) x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name y_ = tf.placeholder('float', shape=[None, 10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x, w) + b, name='y') cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) values, indices = tf.nn.top_k(y, 10) table = tf.contrib.lookup.index_to_string_table_from_tensor( tf.constant([str(i) for i in range(10)])) prediction_classes = table.lookup(tf.to_int64(indices)) for _ in range(training_iteration): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) print('training accuracy %g' % sess.run( accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels })) print('Done training!') |
Saving a Model (tf API)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# Export the model. # The model needs to be saved using the saved_model API. print('Exporting trained model to', export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) tensor_info_x = tf.saved_model.utils.build_tensor_info(x) tensor_info_y = tf.saved_model.utils.build_tensor_info(y) # Define the inputs and outputs of the prediction API. # The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model. # The input and output definitions of the model must match the custom inference script. prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'images': tensor_info_x}, outputs={'scores': tensor_info_y}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( # Set tag to serve/tf.saved_model.tag_constants.SERVING. sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ 'predict_images': prediction_signature, }, legacy_init_op=legacy_init_op) builder.save() print('Done exporting!') |
Código de inferencia (API de Keras y tf)
En el archivo de código de inferencia de modelo customize_service.py, agregue una clase de modelo hijo que herede propiedades de su clase de modelo padre. Para obtener más información sobre las instrucciones de importación de diferentes tipos de clases de modelo padre, consulte Tabla 1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from PIL import Image import numpy as np from model_service.tfserving_model_service import TfServingBaseService class MnistService(TfServingBaseService): # Match the model input with the user's HTTPS API input during preprocessing. # The model input corresponding to the preceding training part is {"images":<array>}. def _preprocess(self, data): preprocessed_data = {} images = [] # Iterate the input data. for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((1,784)) images.append(image1) # Return the numpy array. images = np.array(images,dtype=np.float32) # Perform batch processing on multiple input samples and ensure that the shape is the same as that inputted during training. images.resize((len(data), 784)) preprocessed_data['images'] = images return preprocessed_data # Processing logic of the inference for invoking the parent class. # The output corresponding to model saving in the preceding training part is {"scores":<array>}. # Postprocess the HTTPS output. def _postprocess(self, data): infer_output = {"mnist_result": []} # Iterate the model output. for output_name, results in data.items(): for result in results: infer_output["mnist_result"].append(result.index(max(result))) return infer_output |
Tema principal: Ejemplos de scripts personalizados
Comentarios
¿Le pareció útil esta página?
Deje algún comentario
Muchas gracias por sus comentarios. Seguiremos trabajando para mejorar la documentación.
El sistema está ocupado. Vuelva a intentarlo más tarde.