Estos contenidos se han traducido de forma automática para su comodidad, pero Huawei Cloud no garantiza la exactitud de estos. Para consultar los contenidos originales, acceda a la versión en inglés.
Cómputo
Elastic Cloud Server
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Redes
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Gestión y gobernanza
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
Cloud Operations Center
Resource Governance Center
Migración
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Análisis
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
IoT
IoT Device Access
Otros
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Seguridad y cumplimiento
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Blockchain
Blockchain Service
Servicios multimedia
Media Processing Center
Video On Demand
Live
SparkRTC
Almacenamiento
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Contenedores
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Bases de datos
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Aplicaciones empresariales
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Data Lake Factory
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Distribución de contenido y cómputo de borde
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Soluciones
SAP Cloud
High Performance Computing
Servicios para desarrolladores
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
Cloud Application Engine
aPaaS MacroVerse
KooPhone
KooDrive
Centro de ayuda/ ModelArts/ Prácticas recomendadas/ Notebook/ Creación, migración y gestión de entornos virtuales de Conda basados en SFS

Creación, migración y gestión de entornos virtuales de Conda basados en SFS

Actualización más reciente 2024-09-20 GMT+08:00

En este tema se describe cómo migrar el entorno de Conda de una instancia de notebook a un disco de SFS. De esta manera, el entorno de Conda no se perderá después de reiniciar la instancia de notebook.

El procedimiento es el siguiente:

  1. Crear un entorno virtual y guardarlo en el directorio de SFS
  2. Clonación de los entornos virtuales existentes en el disco de SFS
  3. Reinicio de la imagen para activar el entorno virtual en el disco de SFS
  4. Guardar y compartir el entorno virtual

Requisitos previos

Ha creado una instancia de notebook configurando Resource Type en Dedicated resource pool y Storage en SFS y abierto el terminal.

Crear un entorno virtual y guardarlo en el directorio de SFS

Crear un entorno virtual de conda.

# shell
conda create --prefix /home/ma-user/work/envs/user_conda/sfs-new-env python=3.7.10 -y

Consulte los entornos virtuales de conda existentes. El nombre del entorno virtual recién creado puede estar vacío en la salida.

# shell
conda env list
# conda environments:
#
base                     /home/ma-user/anaconda3
PyTorch-1.8              /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10         *  /home/ma-user/anaconda3/envs/python-3.7.10
                         /home/ma-user/work/envs/user_conda/sfs-new-env

Agregue el nuevo entorno virtual a conda envs.

# shell
conda config --append envs_dirs /home/ma-user/work/envs/user_conda/

Consulte los entornos virtuales de conda existentes. El nuevo entorno virtual se muestra correctamente y puede cambiar a él por su nombre.

# shell
conda env list
conda activate sfs-new-env
# conda environments:
#
base                     /home/ma-user/anaconda3
PyTorch-1.8              /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10         *  /home/ma-user/anaconda3/envs/python-3.7.10
sfs-new-env              /home/ma-user/work/envs/user_conda/sfs-new-env

(Opcional) Registre el nuevo entorno virtual con JupyterLab kernel para poder utilizarlo directamente en JupyterLab.

# shell
pip install ipykernel
ipython kernel install --user --name=sfs-new-env
rm -rf /home/ma-user/.local/share/jupyter/kernels/sfs-new-env/logo-*

Nota: .local/share/jupyter/kernels/sfs-new-env se utiliza solo como ejemplo. Hágalo con la ruta de instalación real.

Actualice la página de JupyterLab. Se muestra el nuevo kernel.

NOTA:

Una vez reiniciada la instancia de notebook, es necesario volver a registrar el kernel.

Clonación de los entornos virtuales existentes en el disco de SFS

# shell
conda create --prefix /home/ma-user/work/envs/user_conda/sfs-clone-env --clone PyTorch-1.8 -y
Source:      /home/ma-user/anaconda3/envs/PyTorch-1.8
Destination: /home/ma-user/work/envs/user_conda/sfs-clone-env
Packages: 20
Files: 39687
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate /home/ma-user/work/envs/user_conda/sfs-clone-env
#
# To deactivate an active environment, use
#
#     $ conda deactivate

Consulte los entornos virtuales clonados. Si el nombre del entorno virtual recién creado está vacío, maneje el problema según Agregue el nuevo entorno virtual al conda envs.

# shell
conda env list
# conda environments:
#
base                     /home/ma-user/anaconda3
PyTorch-1.8              /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10            /home/ma-user/anaconda3/envs/python-3.7.10
sfs-clone-env            /home/ma-user/work/envs/user_conda/sfs-clone-env
sfs-new-env           *  /home/ma-user/work/envs/user_conda/sfs-new-env

(Opcional) Registre el nuevo entorno virtual con JupyterLab kernel para poder utilizarlo directamente en JupyterLab.

# shell
pip install ipykernel
ipython kernel install --user --name=sfs-clone-env
rm -rf /home/ma-user/.local/share/jupyter/kernels/sfs-clone-env/logo-*

Note: .local/share/jupyter/kernels/sfs-clone-env is used as an example only. Replace it with the actual installation path.

Actualice la página de JupyterLab. Se muestra el nuevo kernel.

Reinicio de la imagen para activar el entorno virtual en el disco de SFS

Método 1: Utilice la ruta completa de conda env.

# shell
conda activate /home/ma-user/work/envs/user_conda/sfs-new-env

Método 2: Agregue el entorno virtual a conda envs y actívelo con su nombre.

# shell
conda config --append envs_dirs /home/ma-user/work/envs/user_conda/
conda activate sfs-new-env

Método 3: Utilice Python o pip en el entorno virtual.

# shell
/home/ma-user/work/envs/user_conda/sfs-new-env/bin/pip list
/home/ma-user/work/envs/user_conda/sfs-new-env/bin/python -V

Guardar y compartir el entorno virtual

Empaquetar el entorno virtual que se va a migrar.

# shell
pip install conda-pack
conda pack -n sfs-clone-env -o sfs-clone-env.tar.gz --ignore-editable-packages
Collecting packages...
Packing environment at '/home/ma-user/work/envs/user_conda/sfs-clone-env' to 'sfs-clone-env.tar.gz'
[########################################] | 100% Completed |  3min 33.9s

Descomprima el paquete en el directorio de SFS.

# shell

mkdir /home/ma-user/work/envs/user_conda/sfs-tar-env
tar -zxvf sfs-clone-env.tar.gz -C /home/ma-user/work/envs/user_conda/sfs-tar-env

Consulte los entornos virtuales de conda existentes.

# shell
conda env list
# conda environments:
#
base                     /home/ma-user/anaconda3
PyTorch-1.8           *  /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10            /home/ma-user/anaconda3/envs/python-3.7.10
sfs-clone-env            /home/ma-user/work/envs/user_conda/sfs-clone-env
sfs-new-env              /home/ma-user/work/envs/user_conda/sfs-new-env
sfs-tar-env              /home/ma-user/work/envs/user_conda/sfs-tar-env
test-env                 /home/ma-user/work/envs/user_conda/test-env

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Comentarios

Comentarios

Comentarios

0/500

Seleccionar contenido

Enviar el contenido seleccionado con los comentarios