El contenido no se encuentra disponible en el idioma seleccionado. Estamos trabajando continuamente para agregar más idiomas. Gracias por su apoyo.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

GPU-accelerated ECSs

Updated on 2024-07-24 GMT+08:00

GPU-accelerated ECSs provide outstanding floating-point computing capabilities. They are suitable for applications that require real-time, highly concurrent massive computing.

GPU-accelerated ECS Types

Table 1 GPU-accelerated ECSs

Type

Series

GPU

CUDA Cores per GPU

Single-GPU Performance

Application

Computing-accelerated

P2s

NVIDIA V100

5,120

  • 14 TFLOPS of single-precision floating-point computing
  • 7 TFLOPS of double-precision floating-point computing
  • 112 TFLOPS tensor core for deep learning acceleration

AI deep learning training, scientific computing, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, and genomics.

Inference-accelerated

Pi2

NVIDIA T4 (GPU passthrough)

2,560

  • 8.1 TFLOPS of single-precision floating-point computing
  • 130 INT8 TOPS
  • 260 INT4 TOPS

Machine learning, deep learning, inference training, scientific computing, seismic analysis, computing finance, rendering, multimedia encoding and decoding

Inference-accelerated

Pi2nl

NVIDIA P4 (GPU passthrough)

2,560

  • 8.1 TFLOPS of single-precision floating-point computing
  • 130 INT8 TOPS
  • 260 INT4 TOPS

Machine learning, deep learning, inference training, scientific computing, seismic analysis, computing finance, rendering, multimedia encoding and decoding

Images Supported by GPU-accelerated ECSs

Table 2 Images supported by GPU-accelerated ECSs

Type

Series

Supported Image

Computing-accelerated

P2s

  • Windows Server 2016 Standard 64bit

Inference-accelerated

Pi2

  • CentOS 7.5 64bit
  • Windows Server 2019 Standard 64bit
  • Windows Server 2016 Standard 64bit

Inference-accelerated

Pi2nl

  • CentOS 7.5 64bit
  • Ubuntu 16.04 Server 64bit
  • Windows Server 2016 Standard 64bit

Computing-accelerated P2s

Overview

P2s ECSs use NVIDIA Tesla V100 GPUs to provide flexibility, high-performance computing, and cost-effectiveness. P2s ECSs provide outstanding general computing capabilities and have strengths in AI-based deep learning, scientific computing, Computational Fluid Dynamics (CFD), computing finance, seismic analysis, molecular modeling, and genomics.

Specifications

Table 3 P2s ECS specifications

Flavor

vCPUs

Memory

(GiB)

Max./Assured Bandwidth (Gbit/s)

Max. PPS (10,000)

Max. NIC Queues

Max. NICs

GPUs

GPU Connection

GPU Memory (GiB)

Virtualization

p2s.2xlarge.8

8

64

10/4

50

4

4

1 × V100

PCIe Gen3

1 × 32 GiB

KVM

p2s.4xlarge.8

16

128

15/8

100

8

8

2 × V100

PCIe Gen3

2 × 32 GiB

KVM

p2s.8xlarge.8

32

256

25/15

200

16

8

4 × V100

PCIe Gen3

4 × 32 GiB

KVM

p2s.16xlarge.8

64

512

30/30

400

32

8

8 × V100

PCIe Gen3

8 × 32 GiB

KVM

P2s ECS Features
  • CPU: 2nd Generation Intel® Xeon® Scalable 6278 processors (2.6 GHz of base frequency and 3.5 GHz of turbo frequency), or Intel® Xeon® Scalable 6151 processors (3.0 GHz of base frequency and 3.4 GHz of turbo frequency)
  • Up to eight NVIDIA Tesla V100 GPUs on an ECS
  • NVIDIA CUDA parallel computing and common deep learning frameworks, such as TensorFlow, Caffe, PyTorch, and MXNet
  • 14 TFLOPS of single-precision computing and 7 TFLOPS of double-precision computing
  • NVIDIA Tensor cores with 112 TFLOPS of single- and double-precision computing for deep learning
  • Up to 30 Gbit/s of network bandwidth on a single ECS
  • 32 GiB of HBM2 GPU memory with a bandwidth of 900 Gbit/s
  • Comprehensive basic capabilities
    • User-defined network with flexible subnet division and network access policy configuration
    • Mass storage, elastic expansion, and backup and restoration
    • Elastic scaling
  • Flexibility

    Similar to other types of ECSs, P2s ECSs can be provisioned in a few minutes.

  • Excellent supercomputing ecosystem

    The supercomputing ecosystem allows you to build up a flexible, high-performance, cost-effective computing platform. A large number of HPC applications and deep-learning frameworks can run on P2s ECSs.

Supported Common Software

P2s ECSs are used in computing acceleration scenarios, such as deep learning training, inference, scientific computing, molecular modeling, and seismic analysis. If the software is required to support GPU CUDA, use P2s ECSs. P2s ECSs support the following commonly used software:
  • Common deep learning frameworks, such as TensorFlow, Caffe, PyTorch, and MXNet
  • CUDA GPU rendering supported by RedShift for Autodesk 3dsMax and V-Ray for 3ds Max
  • Agisoft PhotoScan
  • MapD
Notes
  • After a P2s ECS is stopped, basic resources (including vCPUs, memory, image, and GPUs) are not billed, but its system disk is billed based on the disk capacity. If other products, such as EVS disks, EIP, and bandwidth are associated with the ECS, these products are billed separately.
    NOTE:

    Resources will be released after a P2s ECS is stopped. If resources are insufficient at the next start, the start may fail. If you want to use such an ECS for a long period of time, do not stop the ECS.

  • By default, P2s ECSs created using a public image have the Tesla driver installed.
  • If a P2s ECS is created using a private image, make sure that the Tesla driver was installed during the private image creation. If not, install the driver for computing acceleration after the ECS is created. For details, see Installing a Tesla Driver and CUDA Toolkit on a GPU-accelerated ECS.
  • GPU-accelerated ECSs differ greatly in general-purpose and heterogeneous computing power. Their specifications can only be changed to other specifications of the same instance type.

Inference-accelerated Pi2

Overview

Pi2 ECSs use NVIDIA Tesla T4 GPUs dedicated for real-time AI inference. These ECSs use the T4 INT8 calculator for up to 130 TOPS of INT8 computing. The Pi2 ECSs can also be used for light-load training.

Specifications

Table 4 Pi2 ECS specifications

Flavor

vCPUs

Memory

(GiB)

Max./Assured Bandwidth (Gbit/s)

Max. PPS

(10,000)

Max. NIC Queues

GPUs

GPU Memory

(GiB)

Local Disks

Virtualization

pi2.2xlarge.4

8

32

10/4

50

4

1 × T4

1 × 16

N/A

KVM

pi2.4xlarge.4

16

64

15/8

100

8

2 × T4

2 × 16

N/A

KVM

pi2.8xlarge.4

32

128

25/15

200

16

4 × T4

4 × 16

N/A

KVM

pi2.16xlarge.4

64

256

30/30

400

32

8 × T4

8 × 16

N/A

KVM

Pi2 ECS Features

  • CPU: 2nd Generation Intel® Xeon® Scalable 6278 processors (2.6 GHz of base frequency and 3.5 GHz of turbo frequency), or Intel® Xeon® Scalable 6151 processors (3.0 GHz of base frequency and 3.4 GHz of turbo frequency)
  • Up to four NVIDIA Tesla T4 GPUs on an ECS
  • GPU hardware passthrough
  • Up to 8.1 TFLOPS of single-precision computing on a single GPU
  • Up to 130 TOPS of INT8 computing on a single GPU
  • 16 GiB of GDDR6 GPU memory with a bandwidth of 320 GiB/s on a single GPU
  • One NVENC engine and two NVDEC engines embedded

Supported Common Software

Pi2 ECSs are used in GPU-based inference computing scenarios, such as image recognition, speech recognition, and natural language processing. The Pi2 ECSs can also be used for light-load training.

Pi2 ECSs support the following commonly used software:

  • Deep learning frameworks, such as TensorFlow, Caffe, PyTorch, and MXNet

Notes

  • After a Pi2 ECS is stopped, basic resources (including vCPUs, memory, image, and GPUs) are not billed, but its system disk is billed based on the disk capacity. If other products, such as EVS disks, EIP, and bandwidth are associated with the ECS, these products are billed separately.
    NOTE:

    Resources will be released after a Pi2 ECS is stopped. If resources are insufficient at the next start, the start may fail. If you want to use such an ECS for a long period of time, do not stop the ECS.

  • Pi2 ECSs support automatic recovery when the hosts accommodating such ECSs become faulty.
  • By default, Pi2 ECSs created using a public image have the Tesla driver installed.
  • If a Pi2 ECS is created using a private image, make sure that the Tesla driver was installed during the private image creation. If not, install the driver for computing acceleration after the ECS is created. For details, see Installing a Tesla Driver and CUDA Toolkit on a GPU-accelerated ECS.
  • GPU-accelerated ECSs differ greatly in general-purpose and heterogeneous computing power. Their specifications can only be changed to other specifications of the same instance type.

Inference-accelerated Pi2nl

Overview

Pi2nl ECSs use NVIDIA Tesla T4 GPUs dedicated for real-time AI inference. These ECSs use the T4 INT8 calculator for up to 130 TOPS of INT8 computing. The Pi2nl ECSs can also be used for light-workload training.

Specifications
Table 5 Pi2nl ECS specifications

Flavor

vCPUs

Memory

(GiB)

Max./Assured Bandwidth

(Gbit/s)

Max. PPS

(10,000)

Max. NIC Queues

GPUs

GPU Memory

(GiB)

Local Disks

Virtualization

pi2nl.2xlarge.4

8

32

10/4

50

4

1 × T4

1 × 16

N/A

KVM

pi2nl.4xlarge.4

16

64

15/8

100

8

2 × T4

2 × 16

N/A

KVM

pi2nl.8xlarge.4

32

128

25/15

200

16

4 × T4

4 × 16

N/A

KVM

pi2nl.16xlarge.4

64

256

30/30

400

32

8 × T4

8 × 16

N/A

KVM

Pi2nl ECS Features

  • CPU: 2nd Generation Intel® Xeon® Scalable 6278 processors (2.6 GHz of base frequency and 3.5 GHz of turbo frequency), or Intel® Xeon® Scalable 6151 processors (3.0 GHz of base frequency and 3.4 GHz of turbo frequency)
  • Up to four NVIDIA Tesla T4 GPUs on an ECS
  • GPU hardware passthrough
  • Up to 8.1 TFLOPS of single-precision computing on a single GPU
  • Up to 130 TOPS of INT8 computing on a single GPU
  • 16 GiB of GDDR6 GPU memory with a bandwidth of 320 GiB/s on a single GPU
  • One NVENC engine and two NVDEC engines embedded

Supported Common Software

Pi2nl ECSs are used in GPU-based inference computing scenarios, such as image recognition, speech recognition, and natural language processing. The Pi2nl ECSs can also be used for light-load training.

Pi2 ECSs support the following commonly used software:

  • Deep learning frameworks, such as TensorFlow, Caffe, PyTorch, and MXNet

Notes

  • After a Pi2nl ECS is stopped, basic resources (including vCPUs, memory, image, and GPUs) are not billed, but its system disk is billed based on the disk capacity. If other products, such as EVS disks, EIP, and bandwidth are associated with the ECS, these products are billed separately.
    NOTE:

    Resources will be released after a Pi2nl ECS is stopped. If resources are insufficient at the next start, the start may fail. If you want to use such an ECS for a long period of time, do not stop the ECS.

  • Pi2nl ECSs support automatic recovery when the hosts accommodating such ECSs become faulty.
  • By default, Pi2nl ECSs created using a public image have the Tesla driver installed.
  • If a Pi2nl ECS is created using a private image, make sure that the Tesla driver was installed during the private image creation. If the Tesla driver has not been installed, install the driver for computing acceleration after the ECS is created. For details, see Installing a Tesla Driver and CUDA Toolkit on a GPU-accelerated ECS.
  • GPU-accelerated ECSs differ greatly in general-purpose and heterogeneous computing power. Their specifications can only be changed to other specifications of the same instance type.

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback