Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Application Scenarios and Restrictions

Updated on 2022-08-16 GMT+08:00

Context

The SMP feature improves the performance through operator parallelism and occupies more system resources, including CPU, memory, network, and I/O. Actually, SMP is a method consuming resources to save time. It improves system performance in appropriate scenarios and when resources are sufficient, but may deteriorate performance otherwise. In addition, compared with the serial processing, SMP generates more candidate plans, which is more time-consuming and may deteriorate performance.

Applicable Scenarios

  • Operators supporting parallel processing are used.

    The execution plan contains the following operators:

    1. Scan: Row Storage common table and a line memory partition table sequential scanning, column-oriented storage ordinary table and column-oriented storage partition table sequential scanning, HDFS internal and external table sequence scanning. Surface scanning GDS data can be imported at the same time. All of the above does not support replication tables.
    2. Join: HashJoin, NestLoop
    3. Agg: HashAgg, SortAgg, PlainAgg, and WindowAgg, which supports only partition by, and does not support order by.
    4. Stream: Redistribute, Broadcast
    5. Other: Result, Subqueryscan, Unique, Material, Setop, Append, VectoRow, RowToVec
  • SMP-unique operators

    To execute queries in parallel, Stream operators are added for data exchange of the SMP feature. These new operators can be considered as the subtypes of Stream operators.

    1. Local Gather aggregates data of parallel threads within a DN
    2. Local Redistribute redistributes data based on the distributed key across threads within a DN
    3. Local Broadcast broadcasts data to each thread within a DN.
    4. Local RoundRobin distributes data in polling mode across threads within a DN.
    5. Split Redistribute redistributes data across parallel threads on different DNs.
    6. Split Broadcast broadcasts data to all parallel DN threads in the cluster.

    Among these operators, Local operators exchange data between parallel threads within a DN, and non-Local operators exchange data across DNs.

  • Example

    The TPCH Q1 parallel plan is used as an example.

    In this plan, implement the Hdfs Scan and HashAgg operator parallel, and adds the Local Gather and Split Redistribute data exchange operator.

    In this example, the sixth operator is Split Redistribute, and dop: 4/4 next to the operator indicates that the degree of parallelism of the sender and receiver is 4. 4 No operator is Local Gather, marked dop: 1/4 above, this operator sender thread parallel degree is 4, while the receiving end thread parallelism degree to 1, that is, lower-layer 5 number Hash Aggregate operators according to the 4 parallel degree, while the working mode of the port on the upper-layer 1 to 3 number operator according to the executed one by one, 4 number operator is used to achieve intra-DN concurrent threads data aggregation.

    You can view the parallelism situation of each operator in the dop information.

Non-applicable Scenarios

  1. Short query operations are performed, where the plan generation is time-consuming.
  2. Operators are processed on CNs.
  3. Statements that cannot be pushed down are executed.
  4. The subplan of a query and operators containing a subquery are executed.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback