Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page
Help Center/ TaurusDB/ Kernel/ Common Kernel Functions/ Parallel Query/ Testing Parallel Query Performance

Testing Parallel Query Performance

Updated on 2025-01-24 GMT+08:00

This section describes how to use the TPC-H test tool to test the performance of 22 parallel queries.

The test instance information is as follows:

  • Instance specifications: 32 vCPUs | 256 GB
  • Kernel version: 2.0.26.1
  • Concurrent threads: 16
  • Data volume: 100 GB

Procedure

  1. Generate test data.

    1. Download the shared source code in the TPC-H test from https://github.com/electrum/tpch-dbgen.
    2. Find the makefile.suite file, modify its contents as follows, and save the modifications:
      CC      = gcc
      # Current values for DATABASE are: INFORMIX, DB2, TDAT (Teradata)
      #                                  SQLSERVER, SYBASE, ORACLE
      # Current values for MACHINE are:  ATT, DOS, HP, IBM, ICL, MVS,
      #                                  SGI, SUN, U2200, VMS, LINUX, WIN32
      # Current values for WORKLOAD are:  TPCH
      DATABASE= SQLSERVER
      MACHINE = LINUX
      WORKLOAD = TPCH
    3. In the root directory of the source code, run the following command to compile and generate the data tool dbgen:

      make -f makefile.suite

    4. Run the following command to generate 100 GB data:

      ./dbgen -s 100

  2. Log in to a TaurusDB instance, create a database, and run the following command to create a table:

    CREATE TABLE nation  ( N_NATIONKEY  INTEGER NOT NULL,
                           N_NAME       CHAR(25) NOT NULL,
                           N_REGIONKEY  INTEGER NOT NULL,
                           N_COMMENT    VARCHAR(152));
    CREATE TABLE region  ( R_REGIONKEY  INTEGER NOT NULL,
                           R_NAME       CHAR(25) NOT NULL,
                           R_COMMENT    VARCHAR(152));
    CREATE TABLE part    ( P_PARTKEY     INTEGER NOT NULL,
                           P_NAME        VARCHAR(55) NOT NULL,
                           P_MFGR        CHAR(25) NOT NULL,
                           P_BRAND       CHAR(10) NOT NULL,
                           P_TYPE        VARCHAR(25) NOT NULL,
                           P_SIZE        INTEGER NOT NULL,
                           P_CONTAINER   CHAR(10) NOT NULL,
                           P_RETAILPRICE DECIMAL(15,2) NOT NULL,
                           P_COMMENT     VARCHAR(23) NOT NULL );
    CREATE TABLE supplier  ( S_SUPPKEY     INTEGER NOT NULL,
                             S_NAME        CHAR(25) NOT NULL,
                             S_ADDRESS     VARCHAR(40) NOT NULL,
                             S_NATIONKEY   INTEGER NOT NULL,
                             S_PHONE       CHAR(15) NOT NULL,
                             S_ACCTBAL     DECIMAL(15,2) NOT NULL,
                             S_COMMENT     VARCHAR(101) NOT NULL);
    CREATE TABLE partsupp  ( PS_PARTKEY     INTEGER NOT NULL,
                             PS_SUPPKEY     INTEGER NOT NULL,
                             PS_AVAILQTY    INTEGER NOT NULL,
                             PS_SUPPLYCOST  DECIMAL(15,2)  NOT NULL,
                             PS_COMMENT     VARCHAR(199) NOT NULL );
    CREATE TABLE customer  ( C_CUSTKEY     INTEGER NOT NULL,
                             C_NAME        VARCHAR(25) NOT NULL,
                             C_ADDRESS     VARCHAR(40) NOT NULL,
                             C_NATIONKEY   INTEGER NOT NULL,
                             C_PHONE       CHAR(15) NOT NULL,
                             C_ACCTBAL     DECIMAL(15,2)   NOT NULL,
                             C_MKTSEGMENT  CHAR(10) NOT NULL,
                             C_COMMENT     VARCHAR(117) NOT NULL);
    CREATE TABLE orders  ( O_ORDERKEY       INTEGER NOT NULL,
                           O_CUSTKEY        INTEGER NOT NULL,
                           O_ORDERSTATUS    CHAR(1) NOT NULL,
                           O_TOTALPRICE     DECIMAL(15,2) NOT NULL,
                           O_ORDERDATE      DATE NOT NULL,
                           O_ORDERPRIORITY  CHAR(15) NOT NULL,
                           O_CLERK          CHAR(15) NOT NULL,
                           O_SHIPPRIORITY   INTEGER NOT NULL,
                           O_COMMENT        VARCHAR(79) NOT NULL);
    CREATE TABLE lineitem ( L_ORDERKEY    INTEGER NOT NULL,
                            L_PARTKEY     INTEGER NOT NULL,
                            L_SUPPKEY     INTEGER NOT NULL,
                            L_LINENUMBER  INTEGER NOT NULL,
                            L_QUANTITY    DECIMAL(15,2) NOT NULL,
                            L_EXTENDEDPRICE  DECIMAL(15,2) NOT NULL,
                            L_DISCOUNT    DECIMAL(15,2) NOT NULL,
                            L_TAX         DECIMAL(15,2) NOT NULL,
                            L_RETURNFLAG  CHAR(1) NOT NULL,
                            L_LINESTATUS  CHAR(1) NOT NULL,
                            L_SHIPDATE    DATE NOT NULL,
                            L_COMMITDATE  DATE NOT NULL,
                            L_RECEIPTDATE DATE NOT NULL,
                            L_SHIPINSTRUCT CHAR(25) NOT NULL,
                            L_SHIPMODE     CHAR(10) NOT NULL,
                            L_COMMENT      VARCHAR(44) NOT NULL);

  3. Run the following command to import the generated data to the table:

    load data INFILE '/path/customer.tbl' INTO TABLE customer FIELDS TERMINATED BY '|';
    load data INFILE '/path/region.tbl' INTO TABLE region FIELDS TERMINATED BY '|';
    load data INFILE '/path/nation.tbl' INTO TABLE nation FIELDS TERMINATED BY '|';
    load data INFILE '/path/supplier.tbl' INTO TABLE supplier FIELDS TERMINATED BY '|';
    load data INFILE '/path/part.tbl' INTO TABLE part FIELDS TERMINATED BY '|';
    load data INFILE '/path/partsupp.tbl' INTO TABLE partsupp FIELDS TERMINATED BY '|';
    load data INFILE '/path/orders.tbl' INTO TABLE orders FIELDS TERMINATED BY '|';
    load data INFILE '/path/lineitem.tbl' INTO TABLE lineitem FIELDS TERMINATED BY '|';

  4. Create an index for the table.

    alter table region add primary key (r_regionkey);
    alter table nation add primary key (n_nationkey);
    alter table part add primary key (p_partkey);
    alter table supplier add primary key (s_suppkey);
    alter table partsupp add primary key (ps_partkey,ps_suppkey);
    alter table customer add primary key (c_custkey);
    alter table lineitem add primary key (l_orderkey,l_linenumber);
    alter table orders add primary key (o_orderkey);

  5. Obtain 22 query statements from https://github.com/dragansah/tpch-dbgen/tree/master/tpch-queries and perform corresponding operations.

Test Results

Based on 16-thread parallel execution, the performance of 17 query statements is greatly improved. The query speed of all statements is improved by more than 10 times on average. The following figure shows the TPC-H performance test results.

Figure 1 Test results

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback