Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Overview

Updated on 2024-01-26 GMT+08:00

Auto scaling is a service that automatically and economically adjusts service resources based on your service requirements and configured policies.

Context

More and more applications are developed based on Kubernetes. It becomes increasingly important to quickly scale out applications on Kubernetes to cope with service peaks and to scale in applications during off-peak hours to save resources and reduce costs.

In a Kubernetes cluster, auto scaling involves pods and nodes. A pod is an application instance. Each pod contains one or more containers and runs on a node (VM or bare-metal server). If a cluster does not have sufficient nodes to run new pods, add nodes to the cluster to ensure service running.

In CCE, auto scaling is used for online services, large-scale computing and training, deep learning GPU or shared GPU training and inference, periodic load changes, and many other scenarios.

Auto Scaling in CCE

CCE supports auto scaling for workloads and nodes.

  • Workload scaling: Auto scaling at the scheduling layer to change the scheduling capacity of workloads. For example, you can use the HPA, a scaling component at the scheduling layer, to adjust the number of replicas of an application. Adjusting the number of replicas changes the scheduling capacity occupied by the current workload, thereby enabling scaling at the scheduling layer.
  • Node scaling: Auto scaling at the resource layer. When the planned cluster nodes cannot allow workload scheduling, ECS resources are provided to support scheduling.

Components

Workload scaling components are described as follows:

Table 1 Workload scaling components

Type

Component Name

Component Description

Reference

HPA

Kubernetes Metrics Server

A built-in component of Kubernetes, which enables horizontal scaling of pods. It adds the application-level cooldown time window and scaling threshold functions based on the HPA.

HPA

Node scaling components are described as follows:

Table 2 Node scaling components

Component Name

Component Description

Application Scenario

Reference

CCE Cluster Autoscaler

An open source Kubernetes component for horizontal scaling of nodes, which is optimized in terms of scheduling and auto scaling capabilities.

Online services, deep learning, and large-scale computing with limited resource budgets

Creating a Node Scaling Policy

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback