Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Prerequisites

Updated on 2024-12-28 GMT+08:00

This section provides an example for running Caffe on CCE to classify an image. For more information, see https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb.

Pre-configuring OBS Storage Data

Create an OBS bucket and ensure that the following folders have been created and required files have been uploaded to the specified paths using the OBS Browser.

The folder name can be in the format of File path in the bucket/File name. You can search for the file download addresses in the specified paths of the specified project in GitHub, as shown in 1 and 2.

  1. models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

    https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

  1. models/bvlc_reference_caffenet/deploy.prototxt

    https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

  2. python/caffe/imagenet/ilsvrc_2012_mean.npy

    https://github.com/BVLC/caffe/tree/master/python/caffe/imagenet

  3. outputimg/

    An empty folder outputimg is created to store output files.

  4. examples/images/cat.jpg

    https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb

    Save the picture of the cat in the link.

  5. data/ilsvrc12/*

    https://github.com/BVLC/caffe/tree/master/data/ilsvrc12

    Obtain and execute the get_ilsvrc_aux.sh script. The script downloads a compressed package and decompresses it. After the script is executed, upload all decompressed files to the directory.

  6. caffeEx00.py
    # set up Python environment: numpy for numerical routines, and matplotlib for plotting
    import numpy as np
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    # display plots in this notebook
    #%matplotlib inline
    
    # set display defaults
    plt.rcParams['figure.figsize'] = (10, 10)        # large images
    plt.rcParams['image.interpolation'] = 'nearest'  # don't interpolate: show square pixels
    plt.rcParams['image.cmap'] = 'gray'  # use grayscale output rather than a (potentially misleading) color heatmap
    
    # The caffe module needs to be on the Python path;
    #  we'll add it here explicitly.
    import sys
    caffe_root = '/home/'  # this file should be run from {caffe_root}/examples (otherwise change this line)
    sys.path.insert(0, caffe_root + 'python')
    
    import caffe
    # If you get "No module named _caffe", either you have not built pycaffe or you have the wrong path.
    
    import os
    #if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
    #    print 'CaffeNet found.'
    #else:
    #    print 'Downloading pre-trained CaffeNet model...'
    #    !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet
    	
    caffe.set_mode_cpu()
    
    model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
    model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
    
    net = caffe.Net(model_def,      # defines the structure of the model
                    model_weights,  # contains the trained weights
                    caffe.TEST)     # use test mode (e.g., don't perform dropout)
    
    # load the mean ImageNet image (as distributed with Caffe) for subtraction
    mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
    mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel values
    print 'mean-subtracted values:', zip('BGR', mu)
    
    # create transformer for the input called 'data'
    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    
    transformer.set_transpose('data', (2,0,1))  # move image channels to outermost dimension
    transformer.set_mean('data', mu)            # subtract the dataset-mean value in each channel
    transformer.set_raw_scale('data', 255)      # rescale from [0, 1] to [0, 255]
    transformer.set_channel_swap('data', (2,1,0))  # swap channels from RGB to BGR
    
    # set the size of the input (we can skip this if we're happy
    #  with the default; we can also change it later, e.g., for different batch sizes)
    net.blobs['data'].reshape(50,        # batch size
                              3,         # 3-channel (BGR) images
                              227, 227)  # image size is 227x227
    						
    image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
    transformed_image = transformer.preprocess('data', image)
    plt.imshow(image)
    plt.savefig(caffe_root + 'outputimg/img1.png')
    
    # copy the image data into the memory allocated for the net
    net.blobs['data'].data[...] = transformed_image
    
    ### perform classification
    output = net.forward()
    
    output_prob = output['prob'][0]  # the output probability vector for the first image in the batch
    
    print 'predicted class is:', output_prob.argmax()
    
    # load ImageNet labels
    labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
    #if not os.path.exists(labels_file):
    #    !../data/ilsvrc12/get_ilsvrc_aux.sh
    
    labels = np.loadtxt(labels_file, str, delimiter='\t')
    
    print 'output label:', labels[output_prob.argmax()]
    
    # sort top five predictions from softmax output
    top_inds = output_prob.argsort()[::-1][:5]  # reverse sort and take five largest items
    
    print 'probabilities and labels:'
    zip(output_prob[top_inds], labels[top_inds])

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback