Updated on 2024-09-25 GMT+08:00

From MySQL to MariaDB

Supported Source and Destination Databases

Table 1 Supported databases

Source DB

Destination DB

  • RDS for MySQL 5.6, 5.7, and 8.0
  • On-premises MariaDB 10.0, 10.1, 10.2, 10.3, 10.4 and 10.5
  • ECS-hosted MariaDB 10.0, 10.1, 10.2, 10.3, 10.4 and 10.5
  • Other cloud MariaDB 10.0, 10.1, 10.2, 10.3, 10.4 and 10.5
    NOTE:
    • If the source database version is MySQL 5.6, you are advised to select MariaDB 10.0, 10.1, or later as the destination database.
    • If the source database version is MySQL 5.7, you are advised to select MariaDB 10.2, 10.3, 10.4, or later as the destination database.
    • If the source database version is MySQL 8.0, you are advised to select MariaDB 10.5 as the destination database.

Database Account Permission Requirements

To start a synchronization task, the source and destination database users must meet the requirements in the following table. Different types of synchronization tasks require different permissions. For details, see Table 2. DRS automatically checks the database account permissions in the pre-check phase and provides handling suggestions.

Table 2 Database account permission

Type

Full Synchronization

Full+Incremental Synchronization and Incremental Synchronization

Source database user

The user must have the following minimum permissions:

SELECT, SHOW VIEW, and EVENT

The user must have the following minimum permissions:

SELECT, SHOW VIEW, EVENT, LOCK TABLES, REPLICATION SLAVE, and REPLICATION CLIENT

Destination database user

The user must have the following minimum permissions:

SELECT, CREATE, DROP, DELETE, INSERT, UPDATE, ALTER, CREATE VIEW, CREATE ROUTINE, and REFERENCES

  • You are advised to create an independent database account for DRS task connection to prevent task failures caused by database account password modification.
  • After changing the account passwords for the source and destination databases, modify the connection information of the DRS task by referring to Modifying Connection Information to prevent automatic retry after a task failure. Automatic retry will lock the database accounts.

Supported Synchronization Objects

Table 3 lists the objects that can be synchronized in different scenarios. DRS will automatically check the objects you selected before the synchronization.

Table 3 Supported synchronization objects

Type

Precautions

Synchronization objects

  • Tables, primary key indexes, unique indexes, common indexes, stored procedures, views, and functions can be synchronized.
  • Only MyISAM and InnoDB tables can be synchronized.
  • Table names cannot be mapped for tables on which views, stored procedures, and functions depend.
  • Events and triggers cannot be synchronized.
  • Full and incremental synchronizations do not support invisible columns. Invisible columns can be synchronized since MySQL 8.0.23. For example:
    CREATE TABLE `test11` (
      `id` int NOT NULL,
      `c1` int DEFAULT NULL /*!80023 INVISIBLE */,
      PRIMARY KEY (`id`));

Precautions

To ensure tasks can run normally, DRS provides automatic pre-check. Before starting a DRS task, DRS checks the configurations and conditions of the source and destination databases. For details about the main check items and handling suggestions, see Pre-check Items. In addition to the pre-check items, you need to pay attention to the items listed in Table 4.

Table 4 Precautions

Type

Restrictions

Restrictions on the source database

  • The source database names cannot contain non-ASCII characters, or the following characters: . > < / \ ' `"
  • The table names of the source database cannot contain non-ASCII characters, or the following special characters: > < / \
  • The source database does not support the reset master or reset master to command, which may cause DRS task failures or data inconsistency.
  • If the source MySQL database does not support TLS1.2, you need to submit an application to the O&M personnel before using SSL to test the connection.

Restrictions on usage

General

  • A real-time synchronization task may fail due to the change of the username and password of the source or destination database. If it happens, rectify the information and then retry the synchronization task on the DRS console. Generally, you are advised not to modify the preceding information during synchronization.
  • To ensure data consistency, do not perform operations (including but not limited to DDL and DML operations) on the destination database during the synchronization.
  • During data synchronization, do not upgrade the source MySQL database across major versions. Otherwise, data may become inconsistent or the synchronization task may fail (data, table structures, and keywords may cause compatibility changes after the cross-version upgrade). You are advised to create a synchronization task again if the source MySQL database is upgraded across major versions.

Full synchronization

  • When a DRS task is being started or in the full synchronization phase, do not perform DDL operations on the source database. Otherwise, the task may be abnormal.
  • Modifying MyISAM tables may cause data inconsistency.

Incremental synchronization

  • If the session variable character_set_client is set to binary, some data may include garbled characters.
  • Some DDL operations are supported.
    • In one-to-one synchronization, the following DDL operations are synchronized by default: CREATE_TABLE, RENAME_TABLE, ADD_COLUMN, MODIFY_COLUMN, CHANGE_COLUMN, DROP_COLUMN, DROP_INDEX, ADD_INDEX, CREATE_INDEX, RENAME_INDEX, DROP_TABLE, TRUNCATE_TABLE, DROP_PARTITION, RENAME_COLUMN, DROP_PRIMARY_KEY and ADD_PRIMARY_KEY. You can select the DDL operations to be synchronized on the object selection page as required.
    • Incremental synchronization supports table renaming. Ensure that both the source and destination tables are selected.
  • The DDL operation of renaming an unselected table is filtered out during the synchronization. As a result, the task may fail or data may be inconsistent.
    • If you rename table A to the name of table B and tables A and B are selected for synchronization, this RENAME statement will not be filtered out.
    • If you rename table A to the name of table B but table B is not synchronized, this RENAME statement will be filtered out.
    • You are not advised to perform the rename operation in the many-to-one synchronization scenario. Otherwise, the task may fail or data may be inconsistent.
  • During table-level synchronization, online DDL can be used for incremental synchronization. For details, see Does DRS Support Online DDL for Real-Time Synchronization?
  • You can add additional synchronization objects.

Troubleshooting

  • If any problem occurs during task creation, startup, full synchronization, incremental synchronization, or completion, rectify the fault by referring to Troubleshooting.

Other restrictions

  • If the enforce_storage_engine parameter of the destination MariaDB database is set to InnoDB, DRS cannot synchronize the table structure and data whose storage engine is MyISAM to the destination MariaDB database. To synchronize table data whose storage engine is MyISAM, create a table structure on the destination database. (The storage engine can only be set to InnoDB due to the value restriction of the enforce_storage_engine parameter.)
  • If the DCC does not support instances with 4 vCPUs and 8 GB of memory or higher instance specifications, the synchronization task cannot be created.
  • If the source and destination database versions are different, syntax compatibility issues may occur due to feature differences between the source and destination database versions. For details, see What Are Syntax Differences Between MySQL or MariaDB Versions?.
  • If a physically generated column in a table is generated based on a time type, the data in the column may be inconsistent.
  • If the source database contains any table without a primary key defined, the table-level many-to-one synchronization is not supported.
  • If the source database contains non-standard floating-point data and the data can be written in loose mode but cannot be written in strict mode, there may be data inconsistency during synchronization.
  • Before creating a DRS task, if concurrency control rules of SQL statements are configured for the source database, the DRS task may fail.
  • Resumable upload is supported, but data may be repeatedly inserted into a table that does not have a primary key.
  • The destination table can contain more columns than the source table. However, the following failures must be avoided:
    • Assume that extra columns on the destination database cannot be null or have default values. If newly inserted data records are synchronized from the source database to the destination database, the extra columns will become null, which does not meet the requirements of the destination database and will cause the task to fail.
    • Assume that extra columns on the destination database must be fixed at a default value and have a unique constraint. If newly inserted data records are synchronized from the source database to the destination database, the extra columns will contain multiple default values. That does not meet the unique constraint of the destination database and will cause the task to fail.
  • The source database does not support point-in-time recovery (PITR).
  • The destination database cannot be restored to a point in time when a full synchronization was being performed.
  • Cascade operations cannot be performed on tables with foreign keys. If the foreign key index of a table is a common index, the table structure may fail to be created. You are advised to use a unique index.
  • Binlogs cannot be forcibly deleted. Otherwise, the synchronization task fails.
  • The partitioned table does not support column mapping.
  • After a task is created, the destination database cannot be set to read-only.
  • During table-level synchronization, in the many-to-one scenario where an additional column is set as the source column on the data processing page, if there is a mapped table in the destination database, delete the table or clear data in the table in the destination database. Otherwise, the composite primary key will not be created by adding additional columns. This will cause data conflicts during data synchronization. If the data conflicts are ignored, there may be data inconsistencies.
  • If the source database version is MySQL 8.0, some collation character sets (such as utf8mb4_0900_as_ci, utf8mb4_0900_as_cs, utf8mb4_0900_bin and utf8mb4_cs_0900_ai_ci that support Unicode 9.0) are not supported by the destination database.
  • Due to engine and version differences, the following MySQL functions are not supported in MariaDB: MBRCOVEREDBY, ST_BUFFER_STRATEGY, ST_GeoHash, ST_IsValid, ST_LatFromGeoHash, ST_LongFromGeoHash, ST_PointFromGeoHash, ST_SIMPLIFY, ST_VALIDATE, (8.0)JSON_ARRAYAGG, JSON_OBJECTAGG, JSON_PRETTY, JSON_STORAGE_FREE, JSON_STORAGE_SIZE and JSON_TABLE.
  • The destination MariaDB database does not support VALIDATION during partition exchange. Do not use the verification syntax when executing partition exchange SQL statements in the source MySQL database. For example:
    ALTER TABLE t1 EXCHANGE PARTITION p0 WITH TABLE t2 WITH VALIDATION;
  • Do not write characters such as \n, \t, and \r to the JSON data of the source MySQL database during incremental synchronization. Otherwise, there may be data inconsistencies.
  • If index synchronization is required for a DRS task, the destination database table cannot contain indexes with the same name but different columns. In the full phase, DRS ignores the existing indexes with the same name. In the incremental phase, DDL operations on indexes based on the index name trigger misplacement.

Procedure

This section describes how to synchronize data out of the cloud from an RDS for MySQL database to a MariaDB database. To configure other storage engines, you can refer to the following procedures.

  1. On the Data Synchronization Management page, click Create Synchronization Task.
  2. On the Create Synchronization Instance page, select a region and project, specify the task name, description, and the synchronization instance details, and click Create Now.

    • Task information description
      Figure 1 Synchronization task information
      Table 5 Task information

      Parameter

      Description

      Region

      The region where the replication instance is deployed. You can change the region.

      Project

      The project corresponds to the current region and can be changed.

      Task Name

      The task name must start with a letter and consist of 4 to 50 characters. It can contain only letters, digits, hyphens (-), and underscores (_).

      Description

      The description consists of a maximum of 256 characters and cannot contain special characters !=<>'&"\

    • Synchronization instance information
      Figure 2 Synchronization instance information
      Table 6 Synchronization instance settings

      Parameter

      Description

      Data Flow

      Select Out of the cloud. The source database is a database on the current cloud.

      Source DB Engine

      Select MySQL.

      Destination DB Engine

      Select MariaDB.

      Network Type

      Public network is used as an example. Available options: Public network, VPC, VPN or Direct Connect

      • VPC is suitable for data synchronization between cloud databases of the same account in the same region and VPC.
      • Public network is suitable for data synchronization from on-premises or external cloud databases to the destination databases bound with an EIP.
      • VPN or Direct Connect is suitable for data synchronization from on-premises databases to cloud databases, between databases of different accounts in the same region on the cloud, or between databases across regions on the cloud using a VPN, Direct Connect, Cloud Connect, VPCEP, or a VPC peering connection.

      DRS Task Type

      Type of the DRS task. The value can be Single-AZ or Dual-AZ.

      • Dual-AZ: This architecture provides HA, improving the reliability of DRS tasks. After a dual-AZ task is created, DRS creates two subtasks, each running in the primary and standby AZs. If the subtask in the primary AZ fails, DRS automatically starts the subtask in the standby AZ to continue the synchronization. This deployment is for scenarios where there is a lot of service data, long-term synchronization is required, and there are strict limits on how much service downtime can be tolerated.
      • Single-AZ: Single-node deployment is used. The synchronization task will be created on only one node to save money. This deployment is for scenarios where there is a small amount of service data, short-term synchronization is required, and there is no requirement on service downtime.

      This option is available only in specific scenarios. For details, see Performing a Switchover for a Dual-AZ Task.

      Source DB Instance

      The RDS for MySQL instance you created.

      Synchronization Instance Subnet

      Select the subnet where the synchronization instance is located. You can also click View Subnets to go to the network console to view the subnet where the instance resides.

      By default, the DRS instance and the source DB instance are in the same subnet. You need to select the subnet where the DRS instance resides, and there are available IP addresses for the subnet. To ensure that the synchronization instance is successfully created, only subnets with DHCP enabled are displayed.

      Synchronization Mode

      The synchronization mode supported by a DRS task. Full+Incremental is used as an example. For details about the underlying working principles for full or incremental synchronization, see Product Architecture and Function Principles.

      • Full+Incremental

        This synchronization mode allows you to synchronize data in real time. After a full synchronization initializes the destination database, an incremental synchronization parses logs to ensure data consistency between the source and destination databases.

        NOTE:

        If you select Full+Incremental, data generated during the full synchronization will be continuously synchronized to the destination database, and the source remains accessible.

      • Full

        All objects and data in non-system databases are synchronized to the destination database at a time. This mode is applicable to scenarios where service interruption is acceptable.

      • Incremental

        Through log parsing, incremental data generated on the source database is synchronized to the destination database.

      Specify EIP

      This parameter is available when you select Public network for Network Type. Select an EIP to be bound to the DRS instance. DRS will automatically bind the specified EIP to the DRS instance and unbind the EIP after the task is complete.

      For details about the data transfer fee generated using a public network, see EIP Price Calculator.

    • AZ
      Figure 3 AZ
      Table 7 Task AZ

      Parameter

      Description

      AZ

      Select the AZ where you want to create the DRS task. Selecting the one housing the source or destination database can provide better performance.

      If DRS Task Type is set to Dual-AZ, you can specify Primary AZ and Standby AZ.

      Figure 4 AZ
    • Enterprise Project and Tags
      Figure 5 Enterprise projects and tags
      Table 8 Enterprise Project and Tags

      Parameter

      Description

      Enterprise Project

      An enterprise project you would like to use to centrally manage your cloud resources and members. Select an enterprise project from the drop-down list. The default project is default.

      For more information about enterprise project, see Enterprise Management User Guide.

      To customize an enterprise project, click Enterprise in the upper right corner of the console. The Enterprise Project Management Service page is displayed. For details, see Creating an Enterprise Project in Enterprise Management User Guide.

      Tags

      • Tags a task. This configuration is optional. Adding tags helps you better identify and manage your tasks. Each task can have up to 20 tags.
      • If your organization has configured tag policies for DRS, add tags to tasks based on the policies. If a tag does not comply with the policies, task creation may fail. Contact your organization administrator to learn more about tag policies.
      • After a task is created, you can view its tag details on the Tags tab. For details, see Tag Management.

    If a task fails to be created, DRS retains the task for three days by default. After three days, the task automatically stops.

  3. After the synchronization instance is created, on the Configure Source and Destination Databases page, specify source and destination database information. Then, click Test Connection for both the source and destination databases to check whether they have been connected to the synchronization instance. After the connection tests are successful, select the check box before the agreement and click Next.

    • Source database information
      Figure 6 Source database information
      Table 9 Source database information

      Parameter

      Description

      DB Instance Name

      The RDS for MySQL instance selected during synchronization task creation. This parameter cannot be changed.

      Database Username

      The username for accessing the source database.

      Database Password

      The password for the database username.

      SSL Connection

      If SSL connection is required, enable SSL on the source database, ensure that related parameters have been correctly configured, and upload an SSL certificate.

      NOTE:
      • The maximum size of a single certificate file that can be uploaded is 500 KB.
      • If SSL is disabled, your data may be at risk.

      The username and password of the source database are encrypted and stored in the database and the synchronization instance during the synchronization. After the task is deleted, the username and password are permanently deleted.

    • Destination database information
      Figure 7 Destination database information
      Table 10 Destination database settings

      Parameter

      Description

      IP Address or Domain Name

      The IP address or domain name of the destination database.

      Port

      The port of the destination database. Range: 1 - 65535

      Database Username

      The username for accessing the destination database.

      Database Password

      The password for the database username.

      SSL Connection

      SSL encrypts the connections between the source and destination databases. If SSL is enabled, upload the SSL root certificate.

      NOTE:
      • The maximum size of a single certificate file that can be uploaded is 500 KB.
      • Only .cer and .pem certificates are supported.
      • If SSL is disabled, your data may be at risk.

      The username and password of the destination database are encrypted and stored in the database and the synchronization instance during the synchronization. After the task is deleted, the username and password are permanently deleted.

  4. On the Set Synchronization Task page, select the conflict policy and synchronization objects, and then click Next.

    Figure 8 Synchronization Mode

    Table 11 Synchronization mode and object

    Parameter

    Description

    Flow Control

    You can choose whether to control the flow. Flow Control takes effect in the full phase only.

    • Yes

      You can customize the maximum synchronization speed. During the full synchronization, the synchronization speed of each task (or each subtask in multi-task mode) does not exceed the value of this parameter.

      In addition, you can set the time range based on your service requirements. The traffic rate setting usually includes setting of a rate limiting time period and a traffic rate value. Flow can be controlled all day or during specific time ranges. The default value is Always. A maximum of three time ranges can be set, and they cannot overlap.

      The flow rate must be set based on the service scenario and cannot exceed 9,999 MB/s.

      Figure 9 Flow control
    • No
      The synchronization speed is not limited and the outbound bandwidth of the source database is maximally used, which will increase the read burden on the source database. For example, if the outbound bandwidth of the source database is 100 MB/s and 80% bandwidth is used, the I/O consumption on the source database is 80 MB/s.
      NOTE:
      • The flow control mode takes effect only in the full synchronization phase.
      • You can also change the flow control mode after creating a task. For details, see Modifying the Flow Control Mode.

    Incremental Conflict Policy

    The conflict policy refers to the conflict handling policy during incremental synchronization. By default, conflicts in the full synchronization phase are ignored. Select any of the following conflict policies:

    • Ignore

      The system will skip the conflicting data and continue the subsequent synchronization process. If you select Ignore, data in the source database may be inconsistent with that in the destination database.

    • Overwrite

      Conflicting data will be overwritten.

    Filter DROP DATABASE

    During real-time synchronization, executing DDL operations on the source database may affect the synchronization performance. To reduce the risk of synchronization failure, DRS allows you to filter out DDL operations. Currently, only the delete operations on databases can be filtered by default.

    • If you select Yes, the database deletion operation performed on the source database is not synchronized during data synchronization.
    • If you select No, related operations are synchronized to the destination database during data synchronization.

    Synchronize

    Normal indexes and incremental DDLs can be synchronized. You can determine whether to synchronize normal indexes and DDLs based on service requirements.

    Synchronize DML

    Select the DML operations to be synchronized. By default, all DML operations are selected.

    If you do not select Delete, DELETE statements in the incremental data of the source database will not be synchronized, which may cause a data inconsistency. As a result, there may be a data conflict or the task may fail.

    Start Point

    This option is available if you select Incremental in 2. The logs of the source database are obtained from the position after the start point during an incremental synchronization.

    Run show master status to obtain the start point of the source database and set File, Position, and Executed_Gtid_Set as prompted.

    Data Synchronization Topology

    This parameter is available when Incremental DDLs is selected for Synchronize. Data synchronization supports multiple synchronization topologies. You can plan your synchronization instances based on service requirements. For details, see Data Synchronization Topologies.

    Synchronize DDLs

    This parameter is available when Incremental DDLs is selected for Synchronize. Select DDL type for incremental synchronization. You can select Default or Custom based on your service requirements.

    • Default
      • During database-level synchronization, all DDL operations in the binlog related to database objects, except DDL related to permissions, are synchronized to the destination. Common DDL statements are CREATE_TABLE and RENAME_TABLE.
      • During table-level synchronization, only DDL operations in the binlog related to the selected tables are synchronized. Common DDL statements are ADD_COLUMN, MODIFY_COLUMN, and ALTER_COLUMN.
    • Custom: You can select the DDL type to be synchronized as required. The DDL types supported by different data flow types are displayed on the GUI.

      If Incremental DDLs is selected for Synchronize, but no DDL type is selected for Custom, DDLs will not be synchronized by default.

    NOTE:
    • Only whitelisted users can synchronize incremental DDL operations. You need to submit a service ticket to apply for this function. In the upper right corner of the management console, choose Service Tickets > Create Service Ticket to submit a service ticket.
    • One-to-one and one-to-many scenarios: If the DDL usage of the source and destination databases must be consistent, high-risk DDLs must be synchronized. If you do not want a high-risk DDL to be performed in the destination, deselect the high-risk DDL to protect destination data. However, this may cause the synchronization to fail. However, filtering DDL may cause synchronization to fail, for example, column deletion.
    • Many-to-one scenarios: Synchronize only the Add Column operation, or tasks may fail or data may be inconsistent due to changes in destination tables.

    Synchronization Object

    The left pane displays the source database objects, and the right pane displays the selected objects. You can select Tables, Import object file, or Databases for Synchronization Object as required.

    • If the synchronization objects in source and destination databases have different names, you can map the source object name to the destination one in the right pane. For details, see Changing Object Names (Mapping Object Names).
      • If the database table name contains characters other than letters, digits, and underscores (_), or the mapped database table name contains hyphens (-) and number signs (#), the name length cannot exceed 42 characters.
      • In the many-to-one scenario, if you want to change the saved database mapping name during table-level synchronization, you need to expand the database.
    • For details about how to import an object file, see Importing Synchronization Objects.
    NOTE:
    • To quickly select the desired database objects, you can use the search function.
    • If there are changes made to the source databases or objects, click in the upper right corner to update the objects to be synchronized.
    • If an object name contains spaces, the spaces before and after the object name are not displayed. If there are two or more consecutive spaces in the middle of the object name, only one space is displayed.
    • The name of the selected synchronization object cannot contain spaces.

  5. On the Process Data page, set the filtering rules for data processing.

    • If data processing is not required, click Next.
    • If data processing is required, select Data filtering, Additional Columns, or Processing Columns. For details about how to configure related rules, see Processing Data.
    Figure 10 Processing data

  6. On the Check Task page, check the synchronization task.

    • If any check fails, review the cause and rectify the fault. After the fault is rectified, click Check Again.

      For details about how to handle check failures, see Solutions to Failed Check Items in Data Replication Service User Guide.

    • If all check items are successful, click Next.

      You can proceed to the next step only when all checks are successful. If there are any items that require confirmation, view and confirm the details first before proceeding to the next step.

  7. On the displayed page, specify Start Time, Send Notifications, SMN Topic, Delay Threshold (s), and Stop Abnormal Tasks After, confirm that the configured information is correct, select the check box before the agreement, and click Submit to submit the task.

    Figure 11 Task startup settings

    Table 12 Task startup settings

    Parameter

    Description

    Start Time

    Set Start Time to Start upon task creation or Start at a specified time based on site requirements.

    NOTE:

    After a synchronization task is started, the performance of the source and destination databases may be affected. You are advised to start a synchronization task during off-peak hours.

    Send Notifications

    This parameter is optional. After enabled, select a SMN topic. If the status, latency metric, or data of the migration task is abnormal, DRS will send you a notification.

    SMN Topic

    This parameter is available only after you enable Send Notifications and create a topic on the SMN console and add a subscriber.

    For details, see Simple Message Notification User Guide.

    Delay Threshold (s)

    During an incremental synchronization, a synchronization delay indicates a time difference (in seconds) of synchronization between the source and destination database.

    If the synchronization delay exceeds the threshold you specify, DRS will send alarms to the specified recipients. The value ranges from 0 to 3,600. To avoid repeated alarms caused by the fluctuation of delay, an alarm is sent only after the delay has exceeded the threshold for six minutes.

    NOTE:
    • If the delay threshold is set to 0, no notifications will be sent to the recipient.
    • In the early stages of an incremental synchronization, the synchronization delay is long because a large quantity of data is awaiting synchronization. In this case, no notifications will be sent.
    • Before setting the delay threshold, enable Send Notifications.

    Data Exception Notification

    This parameter is optional. After enabled, DRS will send a notification if the task data is abnormal.

    Stop Abnormal Tasks After

    Number of days after which an abnormal task is automatically stopped. The value must range from 14 to 100. The default value is 14.

    NOTE:
    • You can set this parameter only for pay-per-use tasks.
    • Tasks in the abnormal state are still charged. If tasks remain in the abnormal state for a long time, they cannot be resumed. Abnormal tasks run longer than the period you set (unit: day) will automatically stop to avoid unnecessary fees.

  8. After the task is submitted, you can view and manage it on the Data Synchronization Management page.

    • You can view the task status. For more information about task status, see Task Statuses.
    • You can click in the upper right corner to view the latest task status.
    • By default, DRS retains a task in the Configuration state for three days. After three days, DRS automatically deletes background resources, but the task status remains unchanged. When you configure the task again, DRS applies for resources for the task again. In this case, the IP address of the DRS instance changes.
    • For a public network task, DRS needs to delete background resources after you stop the task. The EIP bound to the task cannot be restored to the Unbound state until background resources are deleted.