هذه الصفحة غير متوفرة حاليًا بلغتك المحلية. نحن نعمل جاهدين على إضافة المزيد من اللغات. شاكرين تفهمك ودعمك المستمر لنا.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Real-Time Clustering

Updated on 2025-01-22 GMT+08:00

Clustering algorithms belong to unsupervised algorithms. K-Means, a clustering algorithm, partitions data points into related clusters by calculating the distance between data points based on the predefined cluster quantity. For offline static datasets, we can determine the clusters based on field knowledge and run K-Means to achieve a better clustering effect. However, online real-time streaming data is always changing and evolving, and the cluster quantity is likely to change. To address clustering issues on online real-time streaming data, DLI provides a low-delay online clustering algorithm that does not require predefined cluster quantity.

The algorithm works as follows: Given a distance function, if the distance between two data points is less than a threshold, both data points will be partitioned into the same cluster. If the distances between a data point and the central data points in several cluster centers are less than the threshold, then related clusters will be merged. When data in a data stream arrives, the algorithm computes the distances between each data point and the central data points of all clusters to determine whether the data point can be partitioned into to an existing or new cluster.

Syntax

1
2
3
4
CENTROID(ARRAY[field_names], distance_threshold): Compute the centroid of the cluster where the current data point is assigned.
CLUSTER_CENTROIDS(ARRAY[field_names], distance_threshold): Compute all centroids after the data point is assigned.
ALL_POINTS_OF_CLUSTER(ARRAY[field_names], distance_threshold): Compute all data points in the cluster where the current data point is assigned.
ALL_CLUSTERS_POINTS(ARRAY[field_names], distance_threshold): Computers all data points in each cluster after the current data point is assigned.
NOTE:
  • Clustering algorithms can be applied in unbounded streams.

Parameters

Table 1 Parameters

Parameter

Mandatory

Description

field_names

Yes

Name of the field where the data is located in the data stream. Multiple fields are separated by commas (,). For example, ARRAY[a, b, c].

distance_threshold

Yes

Distance threshold. When the distance between two data points is less than the threshold, both data points are placed in the same cluster.

Example

Use four functions to compute information related to clusters over windows.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
SELECT 
  CENTROID(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE UNBOUNDED PRECEDING) AS centroid,
  CLUSTER_CENTROIDS(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE UNBOUNDED PRECEDING) AS centroids
FROM MyTable

SELECT 
  CENTROID(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60' MINUTE PRECEDING AND CURRENT ROW) AS centroidCE, 
  ALL_POINTS_OF_CLUSTER(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60' MINUTE PRECEDING AND CURRENT ROW) AS itemList,
  ALL_CLUSTERS_POINTS(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE  BETWEEN INTERVAL '60' MINUTE PRECEDING AND CURRENT ROW) AS listoflistofpoints
FROM MyTable

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback