
Data Lake Insight

SQL Syntax Reference

Date 2023-03-06

Contents

1 Spark SQL Syntax Reference... 1
1.1 Common Configuration Items of Batch SQL Jobs... 1
1.2 SQL Syntax Overview of Batch Jobs... 2
1.3 Databases...5
1.3.1 Creating a Database... 5
1.3.2 Deleting a Database... 6
1.3.3 Viewing a Specified Database... 7
1.3.4 Viewing All Databases..8
1.4 Creating an OBS Table...8
1.4.1 Creating an OBS Table Using the DataSource Syntax.. 8
1.4.2 Creating an OBS Table Using the Hive Syntax.. 12
1.5 Creating a DLI Table.. 16
1.5.1 Creating a DLI Table Using the DataSource Syntax.. 16
1.5.2 Creating a DLI Table Using the Hive Syntax.. 18
1.6 Deleting a Table.. 20
1.7 Viewing Tables... 21
1.7.1 Viewing All Tables... 21
1.7.2 Viewing Table Creation Statements.. 22
1.7.3 Viewing Table Properties.. 22
1.7.4 Viewing All Columns in a Specified Table...23
1.7.5 Viewing All Partitions in a Specified Table... 24
1.7.6 Viewing Table Statistics... 25
1.8 Modifying a Table... 26
1.8.1 Adding a Column... 26
1.8.2 Enabling or Disabling Multiversion Backup... 27
1.9 Syntax for Partitioning a Table...28
1.9.1 Adding Partition Data (Only OBS Tables Supported)...28
1.9.2 Renaming a Partition (Only OBS Tables Supported).. 31
1.9.3 Deleting a Partition.. 31
1.9.4 Deleting Partitions by Specifying Filter Criteria (Only OBS Tables Supported)...33
1.9.5 Altering the Partition Location of a Table (Only OBS Tables Supported)... 34
1.9.6 Updating Partitioned Table Data (Only OBS Tables Supported)..35
1.9.7 Updating Table Metadata with REFRESH TABLE..36

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 ii

1.10 Importing Data to the Table...37
1.11 Inserting Data.. 42
1.12 Clearing Data... 44
1.13 Exporting Search Results..44
1.14 Backing Up and Restoring Data of Multiple Versions... 45
1.14.1 Setting the Retention Period for Multiversion Backup Data..46
1.14.2 Viewing Multiversion Backup Data...47
1.14.3 Restoring Multiversion Backup Data..48
1.14.4 Configuring the Trash Bin for Expired Multiversion Data... 49
1.14.5 Deleting Multiversion Backup Data..50
1.15 Creating a Datasource Connection with an HBase Table...51
1.15.1 Creating a Table and Associating It with HBase.. 51
1.15.2 Inserting Data to an HBase Table... 53
1.15.3 Querying an HBase Table...55
1.16 Creating a Datasource Connection with an OpenTSDB Table..56
1.16.1 Creating a Table and Associating It with OpenTSDB... 57
1.16.2 Inserting Data to the OpenTSDB Table... 58
1.16.3 Querying an OpenTSDB Table.. 59
1.17 Creating a Datasource Connection with a DWS table...59
1.17.1 Creating a Table and Associating It with DWS... 59
1.17.2 Inserting Data to the DWS Table.. 62
1.17.3 Querying the DWS Table.. 63
1.18 Creating a Datasource Connection with an RDS Table... 63
1.18.1 Creating a Table and Associating It with RDS.. 63
1.18.2 Inserting Data to the RDS Table.. 66
1.18.3 Querying the RDS Table... 68
1.19 Creating a Datasource Connection with a CSS Table.. 68
1.19.1 Creating a Table and Associating It with CSS... 68
1.19.2 Inserting Data to the CSS Table... 70
1.19.3 Querying the CSS Table.. 72
1.20 Creating a Datasource Connection with a DCS Table..72
1.20.1 Creating a Table and Associating It with DCS.. 72
1.20.2 Inserting Data to a DCS Table.. 74
1.20.3 Querying the DCS Table... 76
1.21 Creating a Datasource Connection with a DDS Table... 77
1.21.1 Creating a Table and Associating It with DDS.. 77
1.21.2 Inserting Data to the DDS Table..78
1.21.3 Querying the DDS Table... 79
1.22 Views... 80
1.22.1 Creating a View... 80
1.22.2 Deleting a View... 80
1.23 Viewing the Execution Plan.. 81

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 iii

1.24 Data Permissions Management.. 81
1.24.1 Data Permissions List...82
1.24.2 Creating a Role.. 85
1.24.3 Deleting a Role.. 85
1.24.4 Binding a Role.. 86
1.24.5 Unbinding a Role.. 86
1.24.6 Displaying a Role.. 86
1.24.7 Granting a Permission... 87
1.24.8 Revoking a Permission.. 88
1.24.9 Displaying the Granted Permissions... 89
1.24.10 Displaying the Binding Relationship Between All Roles and Users.. 90
1.25 Data Types.. 90
1.25.1 Overview.. 91
1.25.2 Primitive Data Types.. 91
1.25.3 Complex Data Types.. 94
1.26 User-Defined Functions.. 97
1.26.1 Creating a Function.. 97
1.26.2 Deleting a Function.. 98
1.26.3 Displaying Function Details... 98
1.26.4 Displaying All Functions... 99
1.27 Built-in Functions... 100
1.27.1 Mathematical Functions...100
1.27.2 Date Functions...103
1.27.3 String Functions.. 105
1.27.4 Aggregate Functions..108
1.27.5 Window Functions.. 109
1.28 Basic SELECT Statements.. 111
1.29 Filtering... 112
1.29.1 WHERE Filtering Clause..112
1.29.2 HAVING Filtering Clause.. 113
1.30 Sorting..113
1.30.1 ORDER BY.. 114
1.30.2 SORT BY... 114
1.30.3 CLUSTER BY.. 115
1.30.4 DISTRIBUTE BY.. 115
1.31 Grouping... 116
1.31.1 Column-Based GROUP BY... 116
1.31.2 Expression-Based GROUP BY.. 117
1.31.3 GROUP BY Using HAVING... 117
1.31.4 ROLLUP.. 118
1.31.5 GROUPING SETS... 119
1.32 JOIN.. 120

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 iv

1.32.1 INNER JOIN...120
1.32.2 LEFT OUTER JOIN... 120
1.32.3 RIGHT OUTER JOIN... 121
1.32.4 FULL OUTER JOIN.. 122
1.32.5 IMPLICIT JOIN.. 122
1.32.6 Cartesian JOIN... 123
1.32.7 LEFT SEMI JOIN... 123
1.32.8 NON-EQUIJOIN... 124
1.33 Subquery... 124
1.33.1 Subquery Nested by WHERE.. 125
1.33.2 Subquery Nested by FROM... 125
1.33.3 Subquery Nested by HAVING... 126
1.33.4 Multi-Layer Nested Subquery.. 127
1.34 Alias.. 127
1.34.1 AS for Table.. 127
1.34.2 AS for Column..128
1.35 Set Operations.. 129
1.35.1 UNION.. 129
1.35.2 INTERSECT...129
1.35.3 EXCEPT... 130
1.36 WITH...AS.. 130
1.37 CASE...WHEN... 131
1.37.1 Basic CASE Statement... 131
1.37.2 CASE Query Statement... 132
1.38 OVER Clause.. 132

2 Flink SQL Syntax... 135
2.1 SQL Syntax Constraints and Definitions... 135
2.2 SQL Syntax Overview of Stream Jobs... 136
2.3 Creating a Source Stream.. 137
2.3.1 DIS Source Stream.. 137
2.3.2 DMS Source Stream... 142
2.3.3 MRS Kafka Source Stream... 142
2.3.4 Open-Source Kafka Source Stream...146
2.3.5 OBS Source Stream.. 149
2.4 Creating a Sink Stream... 152
2.4.1 MRS OpenTSDB Sink Stream.. 152
2.4.2 CSS Elasticsearch Sink Stream.. 154
2.4.3 DCS Sink Stream..156
2.4.4 DDS Sink Stream... 158
2.4.5 DIS Sink Stream... 160
2.4.6 DMS Sink Stream.. 162
2.4.7 DWS Sink Stream (JDBC Mode)...162

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 v

2.4.8 DWS Sink Stream (OBS-based Dumping).. 165
2.4.9 MRS HBase Sink Stream... 168
2.4.10 MRS Kafka Sink Stream..170
2.4.11 Open-Source Kafka Sink Stream... 172
2.4.12 File System Sink Stream (Recommended)...174
2.4.13 OBS Sink Stream... 177
2.4.14 RDS Sink Stream... 181
2.4.15 SMN Sink Stream..183
2.5 Creating a Temporary Stream.. 185
2.6 Creating a Dimension Table... 185
2.6.1 Creating a Redis Table... 185
2.6.2 Creating an RDS Table.. 187
2.7 Custom Stream Ecosystem.. 189
2.7.1 Custom Source Stream.. 189
2.7.2 Custom Sink Stream...191
2.8 Data Type.. 192
2.9 Built-In Functions... 196
2.9.1 Mathematical Operation Functions.. 196
2.9.2 String Functions... 202
2.9.3 Temporal Functions.. 215
2.9.4 Type Conversion Functions.. 219
2.9.5 Aggregate Functions.. 221
2.9.6 Table-Valued Functions... 226
2.9.7 Other Functions... 226
2.10 User-Defined Functions... 227
2.11 Geographical Functions... 232
2.12 SELECT... 240
2.13 Condition Expression... 244
2.14 Window... 245
2.15 JOIN Between Stream Data and Table Data.. 248
2.16 Configuring Time Models.. 249
2.17 Pattern Matching... 251
2.18 StreamingML... 256
2.18.1 Anomaly Detection.. 256
2.18.2 Time Series Forecasting.. 258
2.18.3 Real-Time Clustering... 260
2.18.4 Deep Learning Model Prediction...261
2.19 Reserved Keywords.. 263

3 Identifiers.. 282
3.1 aggregate_func..282
3.2 alias... 282
3.3 attr_expr.. 283

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 vi

3.4 attr_expr_list... 284
3.5 attrs_value_set_expr.. 285
3.6 boolean_expression..285
3.7 col.. 285
3.8 col_comment.. 286
3.9 col_name... 286
3.10 col_name_list... 286
3.11 condition... 287
3.12 condition_list..289
3.13 cte_name... 289
3.14 data_type.. 290
3.15 db_comment.. 290
3.16 db_name..290
3.17 else_result_expression...290
3.18 file_format.. 290
3.19 file_path...291
3.20 function_name.. 291
3.21 groupby_expression... 291
3.22 having_condition.. 292
3.23 input_expression... 293
3.24 join_condition.. 294
3.25 non_equi_join_condition.. 295
3.26 number.. 295
3.27 partition_col_name.. 295
3.28 partition_col_value...296
3.29 partition_specs.. 296
3.30 property_name.. 296
3.31 property_value.. 296
3.32 regex_expression.. 297
3.33 result_expression.. 297
3.34 select_statement...297
3.35 separator... 297
3.36 sql_containing_cte_name.. 297
3.37 sub_query.. 298
3.38 table_comment... 298
3.39 table_name...298
3.40 table_properties.. 298
3.41 table_reference..299
3.42 when_expression.. 299
3.43 where_condition... 299
3.44 window_function.. 300

4 Operators.. 301

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 vii

4.1 Relational Operators... 301
4.2 Arithmetic Operators...302
4.3 Logical Operators... 303

Data Lake Insight
SQL Syntax Reference Contents

2023-03-06 viii

1 Spark SQL Syntax Reference

1.1 Common Configuration Items of Batch SQL Jobs
This section describes the common configuration items of the SQL syntax for DLI
batch jobs.

Table 1-1 Common configuration items

Item Defa
ult
Valu
e

Description

spark.sql.files.maxRe
cordsPerFile

0 Maximum number of records to be written into
a single file. If the value is zero or negative,
there is no limit.

spark.sql.autoBroadc
astJoinThreshold

2097
1520
0

Maximum size of the table that displays all
working nodes when a connection is executed.
You can set this parameter to -1 to disable the
display.
NOTE

Currently, only the configuration unit metastore table
that runs the ANALYZE TABLE COMPUTE statistics
noscan command and the file-based data source table
that directly calculates statistics based on data files are
supported.

spark.sql.shuffle.parti
tions

200 Default number of partitions used to filter data
for join or aggregation.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 1

Item Defa
ult
Valu
e

Description

spark.sql.dynamicPar
titionOverwrite.enabl
ed

false Whether DLI overwrites the partitions where
data will be written into during runtime. If you
set this parameter to false, all partitions that
meet the specified condition will be deleted
before data overwrite starts. For example, if you
set false and use INSERT OVERWRITE to write
partition 2021-02 to a partitioned table that has
the 2021-01 partition, this partition will be
deleted.
If you set this parameter to true, DLI does not
delete partitions before overwrite starts.

spark.sql.files.maxPar
titionBytes

1342
1772
8

Maximum number of bytes to be packed into a
single partition when a file is read.

spark.sql.badRecords
Path

- Path of bad records.

1.2 SQL Syntax Overview of Batch Jobs
This section describes the Spark SQL syntax list provided by DLI. For details about
the parameters and examples, see the syntax description.

Table 1-2 SQL syntax of batch jobs

Classification Function

Database-related Syntax Creating a Database

Deleting a Database

Viewing a Specified Database

Viewing All Databases

Syntax for Creating an
OBS Table

Creating an OBS Table Using the Datasource
Syntax

Creating an OBS Table Using the Hive Syntax

Syntax for Deleting a
Table

Deleting a Table

Syntax for Viewing a
Table

Viewing All Tables

Viewing Table Creation Statements

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 2

Classification Function

Viewing Table Properties

Viewing All Columns in a Specified Table

Viewing All Partitions in a Specified Table

Viewing Table Statistics

Syntax for Modifying a
Table

Adding a Column

Syntax for Partitioning a
Table

Adding a Partition (Only OBS Tables Supported)

Renaming a Partition

Deleting a Partition

Altering the Partition Location of a Table (Only
OBS Tables Supported)

Updating Partitioned Table Data (Only OBS
Tables Supported)

Syntax for Importing Data Importing Data

Syntax for Inserting Data Inserting Data

Syntax for Clearing Data Clearing Data

Syntax for Exporting
Query Results

Exporting Query Result

Syntax for Datasource
Connection to an HBase
Table

Creating a Table and Associating It with HBase

Inserting Data to an HBase Table

Querying an HBase Table

Syntax for Datasource
Connection to an
OpenTSDB Table

Creating a Table and Associating It with
OpenTSDB

Inserting Data to an OpenTSDB Table

Querying an OpenTSDB Table

Syntax for Datasource
Connection to a DWS
Table

Creating a Table and Associating It with DWS

Inserting Data to a DWS Table

Querying a DWS Table

Syntax for Datasource
Connection to an RDS
Table

Creating a Table and Associating It with RDS

Inserting Data to an RDS Table

Querying an RDS Table

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 3

Classification Function

Syntax for Datasource
Connection to a CSS Table

Creating a Table and Associating It with CSS

Inserting Data to a CSS Table

Querying a CSS Table

Syntax for Datasource
Connection to a DCS
Table

Creating a Table and Associating It with DCS

Inserting Data to a DCS Table

Querying a DCS Table

Syntax for Datasource
Connection to a DDS
Table

Creating a Table and Associating It with DDS

Inserting Data to a DDS Table

Querying a DDS Table

View-related Syntax Creating a View

Deleting a View

Syntax for Viewing the
Execution Plan

Viewing the Execution Plan

Syntax Related to Data
Permissions

Creating a Role

Deleting a Role

Binding a Role

Unbinding a Role

Displaying a Role

Granting a Permission

Revoking a Permission

Displaying the Granted Permissions

Displaying the Binding Relationship Between All
Roles and Users

UDF-related Syntax Creating a Function

Deleting a Function

Displaying Function Details

Displaying All Functions

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 4

Classification Function

Multiversion-related
Syntax

Enabling Multiversion Backup When Creating an
OBS Table
Enabling or Disabling Multiversion Backup When
Modifying a Table
Setting the Retention Period for Multiversion
Backup Data
Viewing Multiversion Backup Data
Restoring Multiversion Backup Data
Configuring the Trash Bin for Expired
Multiversion Data
Deleting Multiversion Backup Data

1.3 Databases

1.3.1 Creating a Database

Function
This statement is used to create a database.

Syntax
CREATE [DATABASE | SCHEMA] [IF NOT EXISTS] db_name
 [COMMENT db_comment]
 [WITH DBPROPERTIES (property_name=property_value, ...)];

Keyword
● IF NOT EXISTS: Prevents system errors if the database to be created exists.
● COMMENT: Describes a database.
● DBPROPERTIES: Specifies database attributes. The attribute name and

attribute value appear in pairs.

Parameters

Table 1-3 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

db_comment Database description

property_name Database property name

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 5

Parameter Description

property_value Database property value

Precautions
● DATABASE and SCHEMA can be used interchangeably. You are advised to use

DATABASE.

● The default database is a built-in database. You cannot create a database
named default.

Example
1. Create a queue. A queue is the basis for using DLI. Before executing SQL

statements, you need to create a queue.

2. On the DLI management console, click SQL Editor in the navigation pane on
the left. The SQL Editor page is displayed.

3. In the editing window on the right of the SQL Editor page, enter the
following SQL statement for creating a database and click Execute. Read and
agree to the privacy agreement, and click OK.

If database testdb does not exist, run the following statement to create
database testdb:
CREATE DATABASE IF NOT EXISTS testdb;

1.3.2 Deleting a Database

Function

This statement is used to delete a database.

Syntax
DROP [DATABASE | SCHEMA] [IF EXISTS] db_name [RESTRICT|CASCADE];

Keyword

IF EXISTS: Prevents system errors if the database to be deleted does not exist.

Precautions
● DATABASE and SCHEMA can be used interchangeably. You are advised to use

DATABASE.

● RESTRICT: If the database is not empty (tables exist), an error is reported and
the DROP operation fails. RESTRICT is the default logic.

● CASCADE: Even if the database is not empty (tables exist), the DROP will
delete all the tables in the database. Therefore, exercise caution when using
this function.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 6

Parameters

Table 1-4 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

Example
1. Create a database, for example, testdb, by referring to Example.
2. Run the following statement to delete database testdb if it exists:

DROP DATABASE IF EXISTS testdb;

1.3.3 Viewing a Specified Database

Function
This syntax is used to view the information about a specified database, including
the database name and database description.

Syntax
DESCRIBE DATABASE [EXTENDED] db_name;

Keyword
EXTENDED: Displays the database properties.

Parameters

Table 1-5 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

Precautions
If the database to be viewed does not exist, the system reports an error.

Example
1. Create a database, for example, testdb, by referring to Example.
2. Run the following statement to query information about the testdb database:

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 7

DESCRIBE DATABASE testdb;

1.3.4 Viewing All Databases

Function
This syntax is used to query all current databases.

Syntax
SHOW [DATABASES | SCHEMAS] [LIKE regex_expression];

Keyword
None

Parameters

Table 1-6 Parameter description

Parameter Description

regex_expressi
on

Database name

Precautions
Keyword DATABASES is equivalent to SCHEMAS. You can use either of them in this
statement.

Example
View all the current databases.

SHOW DATABASES;

View all databases whose names start with test.

SHOW DATABASES LIKE "test.*";

1.4 Creating an OBS Table

1.4.1 Creating an OBS Table Using the DataSource Syntax

Function
This statement is used to create an OBS table using the DataSource syntax. The
main differences between the DataSource and the Hive syntax lie in the supported
data formats and the number of supported partitions. For details, see syntax and
precautions.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 8

Usage
● The size of the table will not be calculated during table creation.
● When data is added, the table size will be changed to 0.
● You can view the table size on OBS.

Syntax
CREATE TABLE [IF NOT EXISTS] [db_name.]table_name
 [(col_name1 col_type1 [COMMENT col_comment1], ...)]
 USING file_format
 [OPTIONS (path 'obs_path', key1=val1, key2=val2, ...)]
 [PARTITIONED BY (col_name1, col_name2, ...)]
 [COMMENT table_comment]
 [AS select_statement];

Keyword
● IF NOT EXISTS: Prevents system errors when the created table exists.
● USING: Specifies the storage format.
● OPTIONS: Specifies the attribute name and attribute value when a table is

created.
● COMMENT: Field or table description.
● PARTITIONED BY: Partition field.
● AS: Run the CREATE TABLE AS statement to create a table.

Parameter

Table 1-7 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores
(_). The value cannot contain only digits and cannot start with
a digit or underscore (_).

table_name Table name of a database that contains letters, digits, and
underscores (_). The value cannot contain only digits and
cannot start with a digit or underscore (_). The matching rule
is ^(?!_)(?![0-9]+$)[A-Za-z0-9_$]*$. If special characters are
required, use single quotation marks ('') to enclose them.

col_name Column names with data types separated by commas (,). The
column name contains letters, digits, and underscores (_). It
cannot contain only digits and must contain at least one letter.

col_type Field type

col_comment Field description

file_format Table format stored in an OBS bucket. The value can be ORC,
Parquet, JSON, CSV, or Avro.

path Data storage path

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 9

Parameter Description

table_commen
t

Table description

select_stateme
nt

The CREATE TABLE AS statement is used to insert the SELECT
query result of the source table or a data record to a new
table in OBS bucket.

Table 1-8 OPTIONS parameter description

Parameter Description Default
Value

path Specified table storage location. Currently, only
OBS is supported.

-

multiLevelDirE
nable

Whether to iteratively query data in
subdirectories. When this parameter is set to
true, all files in the table path, including files
in subdirectories, are iteratively read when a
table is queried.

false

dataDelegated Whether to clear data in the path when
deleting a table or a partition.

false

compression Specified compression format. Generally, you
need to set this parameter to zstd for parquet
files.

-

When the file format is set to CSV, you can set the following OPTIONS
parameters:

Table 1-9 OPTIONS parameter description of the CSV data format

Parameter Description Default Value

delimiter Data separator Comma (,)

quote Quotation character Double quotation
marks (" ")

escape Escape character Backslash (\)

multiLine Whether the column data contains carriage
return characters or transfer characters. The
value true indicates yes and the value false
indicates no.

false

dateFormat Date format of the date field in a CSV file yyyy-MM-dd

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 10

Parameter Description Default Value

timestampF
ormat

Date format of the timestamp field in a CSV
file

yyyy-MM-dd
HH:mm:ss

mode Mode for parsing CSV files. The options are
as follows:
● PERMISSIVE: Permissive mode. If an

incorrect field is encountered, set the line
to Null.

● DROPMALFORMED: When an incorrect
field is encountered, the entire line is
discarded.

● FAILFAST: Error mode. If an error occurs, it
is automatically reported.

PERMISSIVE

header Whether CSV contains header information.
The value true indicates that the table
header information is contained, and the
value false indicates that the information is
not included.

false

nullValue Character that represents the null value. For
example, nullValue= "\\N" indicates that \N
represents the null value.

-

comment Character that indicates the beginning of the
comment. For example, comment= '#'
indicates that the line starting with # is a
comment.

-

compressio
n

Data compression format. Currently, gzip,
bzip2, and deflate are supported. If you do
not want to compress data, enter none.

none

encoding Data encoding format. Available values are
utf-8, gb2312, and gbk. Value utf-8 will be
used if this parameter is left empty.

utf-8

Precautions
● The table and column names are case-insensitive.
● Descriptions of table names and column names support only string constants.
● During table creation, you need to specify the column name and

corresponding data type. The data type is primitive type.
● If a folder and a file have the same name in the OBS directory, the file is

preferred as the path when creating an OBS table.
● During table creation, if the specified path is an OBS directory and it contains

subdirectories (or nested subdirectories), all file types and content in the
subdirectories are considered table content. Ensure that all file types in the
specified directory and its subdirectories are consistent with the storage

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 11

format specified in the table creation statement. All file content must be
consistent with the fields in the table. Otherwise, errors will be reported in the
query. You can set multiLevelDirEnable to true in the OPTIONS statement
to query the content in the subdirectory. The default value is false (Note that
this configuration item is a table attribute, exercise caution when performing
this operation). Hive tables do not support this configuration item.

● The OBS storage path must be a directory on the OBS. The directory must be
created in advance and be empty.

● When a partitioned table is created, the column specified in PARTITIONED BY
must be a column in the table, and the partition type must be specified. The
partition column supports only the string, boolean, tinyint, smallint, short,
int, bigint, long, decimal, float, double, date, and timestamp type.

● When a partitioned table is created, the partition field must be the last one or
several fields of the table field, and the sequence of the partition fields must
be the same. Otherwise, an error occurs.

● A maximum of 7,000 partitions can be created in a single table.
● The CREATE TABLE AS statement cannot specify table attributes or create

partitioned tables.

Example
● Create a parquetTable OBS table.

CREATE TABLE parquetTable (name string, id int) USING parquet OPTIONS (path "obs://bucketName/
filePath");

● Create a parquetZstdTable OBS table and set the compression format to
zstd.
CREATE TABLE parquetZstdTable (name string, id string) USING parquet OPTIONS (path "obs://
bucketName/filePath",compression='zstd');

● Create a student table that has two fields name and scoreand partition the
table by classNo.
CREATE TABLE IF NOT EXISTS student(name STRING, score DOUBLE, classNo INT) USING csv
OPTIONS (PATH 'obs://bucketName/filePath') PARTITIONED BY (classNo);

NO TE

The classNo field is a partition field and must be placed at the end of the table field,
that is, student(name STRING, score DOUBLE, classNo INT).

● To create table t1 and insert data of table t2 into table t1, run the following
statement:
CREATE TABLE t1 USING parquet OPTIONS(path 'obs://bucketName/tblPath') AS select * from t2;

1.4.2 Creating an OBS Table Using the Hive Syntax

Function

This statement is used to create an OBS table using the Hive syntax. The main
differences between the DataSource and the Hive syntax lie in the supported data
formats and the number of supported partitions. For details, see syntax and
precautions.

Usage
● The size of the table will be calculated during creation.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 12

● When data is added, the table size will not be changed.
● You can view the table size on OBS.

Syntax
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 [(col_name1 col_type1 [COMMENT col_comment1], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name2 col_type2, [COMMENT col_comment2], ...)]
 [ROW FORMAT row_format]
 [STORED AS file_format]
 LOCATION 'obs_path'
 [TBLPROPERTIES (key = value)]
 [AS select_statement];

row_format:
 : SERDE serde_cls [WITH SERDEPROPERTIES (key1=val1, key2=val2, ...)]
 | DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]]
 [COLLECTION ITEMS TERMINATED BY char]
 [MAP KEYS TERMINATED BY char]
 [LINES TERMINATED BY char]
 [NULL DEFINED AS char]

Keyword
● EXTERNAL: Creates an OBS table.
● IF NOT EXISTS: Prevents system errors when the created table exists.
● COMMENT: Field or table description.
● PARTITIONED BY: Partition field.
● ROW FORMAT: Row data format.
● STORED AS: Specifies the format of the file to be stored. Currently, only the

TEXTFILE, AVRO, ORC, SEQUENCEFILE, RCFILE, and PARQUET format are
supported.

● LOCATION: Specifies the path of OBS. This keyword is mandatory when you
create OBS tables.

● TBLPROPERTIES: Allows you to add the key/value properties to a table.
For example, you can use this statement to enable the multiversion function
to back up and restore table data. After the multiversion function is enabled,
the system automatically backs up table data when you delete or modify the
data using insert overwrite or truncate, and retains the data for a certain
period. You can quickly restore data within the retention period. For details
about SQL syntax related to the multiversion function, see Enabling or
Disabling Multiversion Backup and Backing Up and Restoring Data of
Multiple Versions.
When creating an OBS table, you can use TBLPROPERTIES
("dli.multi.version.enable"="true") to enable multiversion. For details, see
the following example.

Table 1-10 TBLPROPERTIES parameters

Key Value

dli.multi.version.enable ● true: Enable the multiversion backup function.
● false: Disable the multiversion backup function.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 13

Key Value

comment Description of the table

orc.compress An attribute of the ORC table, which specifies the
compression mode of the ORC storage. Available
values are as follows:
● ZLIB
● SNAPPY
● NONE

auto.purge If this parameter is set to true, the deleted or
overwritten data is removed and will not be
dumped to the recycle bin.

● AS: You can run the CREATE TABLE AS statement to create a table.

Parameter

Table 1-11 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and
underscores (_). The value cannot contain only digits
and cannot start with a digit or underscore (_).

table_name Table name of a database that contains letters, digits,
and underscores (_). The value cannot contain only
digits and cannot start with a digit or underscore (_).
The matching rule is ^(?!_)(?![0-9]+$)[A-Za-z0-9_$]*
$. If special characters are required, use single
quotation marks ('') to enclose them.

col_name Field name

col_type Field type

col_comment Field description

row_format Line data format

file_format OBS table storage format. TEXTFILE, AVRO, ORC,
SEQUENCEFILE, RCFILE, and PARQUET are supported.

table_comment Table description

obs_path OBS path

key = value Set table properties and values.
For example, if you want to enable multiversion, you
can set "dli.multi.version.enable"="true".

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 14

Parameter Description

select_statement The CREATE TABLE AS statement is used to insert the
SELECT query result of the source table or a data
record to a new table in OBS bucket.

Precautions
● The table and column names are case-insensitive.

● Descriptions of table names and column names support only string constants.

● During table creation, you need to specify the column name and
corresponding data type. The data type is primitive type.

● If a folder and a file have the same name in the OBS directory, the file is
preferred as the path when creating an OBS table.

● When you create a partitioned table, ensure that the specified column in
PARTITIONED BY is not a column in the table and the data type is specified.
The partition column supports only the open-source Hive table types
including string, boolean, tinyint, smallint, short, int, bigint, long, decimal,
float, double, date, and timestamp.

● Multiple partition fields can be specified. The partition fields need to be
specified after the PARTITIONED BY keyword, instead of the table name.
Otherwise, an error occurs.

● A maximum of 100,000 partitions can be created in a single table.

● The CREATE TABLE AS statement cannot specify table attributes or create
partitioned tables.

Example
● To create a Parquet table named student, in which the id, name, and score

fields are contained and the data types of the respective fields are INT,
STRING, and FLOAT, run the following statement:
CREATE TABLE student (id INT, name STRING, score FLOAT) STORED AS PARQUET LOCATION 'obs://
bucketName/filePath';

● To create a table named student, for which classNo is the partition field and
two fields name and score are specified, run the following statement:
CREATE TABLE IF NOT EXISTS student(name STRING, score DOUBLE) PARTITIONED BY (classNo INT)
STORED AS PARQUET LOCATION 'obs://bucketName/filePath';

NO TE

classNo is a partition field and must be specified after the PARTITIONED BY keyword,
that is, PARTITIONED BY (classNo INT). It cannot be specified after the table name
as a table field.

● To create table t1 and insert data of table t2 into table t1 by using the Hive
syntax, run the following statement:
CREATE TABLE t1 STORED AS parquet LOCATION 'obs://bucketName/filePath' as select * from t2;

● Create the student table and enable multiversion by using the Hive syntax.
CREATE TABLE student (id INT, name STRING, score FLOAT) STORED AS PARQUET LOCATION 'obs://
bucketName/filePath' TBLPROPERTIES ("dli.multi.version.enable"="true");

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 15

1.5 Creating a DLI Table

1.5.1 Creating a DLI Table Using the DataSource Syntax

Function
This DataSource syntax can be used to create a DLI table. The main differences
between the DataSource and the Hive syntax lie in the supported data formats
and the number of supported partitions. For details, see syntax and precautions.

Syntax
CREATE TABLE [IF NOT EXISTS] [db_name.]table_name
 [(col_name1 col_type1 [COMMENT col_comment1], ...)]
 USING file_format
 [OPTIONS (key1=val1, key2=val2, ...)]
 [PARTITIONED BY (col_name1, col_name2, ...)]
 [COMMENT table_comment]
 [AS select_statement];

Keyword
● IF NOT EXISTS: Prevents system errors when the created table exists.
● USING: Specifies the storage format.
● OPTIONS: Specifies the attribute name and attribute value when a table is

created.
● COMMENT: Field or table description.
● PARTITIONED BY: Partition field.
● AS: Run the CREATE TABLE AS statement to create a table.

Parameter Description

Table 1-12 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores
(_). The value cannot contain only digits and cannot start with
a digit or underscore (_).

table_name Table name of a database that contains letters, digits, and
underscores (_). The value cannot contain only digits and
cannot start with a digit or underscore (_). The matching rule is
^(?!_)(?![0-9]+$)[A-Za-z0-9_$]*$. If special characters are
required, use single quotation marks ('') to enclose them.

col_name Column names with data types separated by commas (,). The
column name contains letters, digits, and underscores (_). It
cannot contain only digits and must contain at least one letter.

col_type Field type

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 16

Parameter Description

col_comment Field description

file_format Data storage format of DLI tables. The value can be parquet
only.

table_comme
nt

Table description

select_stateme
nt

The CREATE TABLE AS statement is used to insert the SELECT
query result of the source table or a data record to a newly
created DLI table.

Table 1-13 OPTIONS parameter description

Parameter Description Default
Value

multiLevelDirE
nable

Whether to iteratively query data in
subdirectories. When this parameter is set to
true, all files in the table path, including files
in subdirectories, are iteratively read when a
table is queried.

false

compression Specified compression format. Generally, you
need to set this parameter to zstd for parquet
files.

-

Precautions
● If no delimiter is specified, the comma (,) is used by default.
● When a partitioned table is created, the column specified in PARTITIONED BY

must be a column in the table, and the partition type must be specified. The
partition column supports only the string, boolean, tinyint, smallint, short,
int, bigint, long, decimal, float, double, date, and timestamp type.

● When a partitioned table is created, the partition field must be the last one or
several fields of the table field, and the sequence of the partition fields must
be the same. Otherwise, an error occurs.

● A maximum of 7,000 partitions can be created in a single table.
● The CREATE TABLE AS statement cannot specify table attributes or create

partitioned tables.

Example
● Create a src table that has two columns key and value in INT and STRING

types respectively, and set the compression format to zstd.
CREATE TABLE src(key INT, value STRING) USING PARQUET OPTIONS(compression = 'zstd');

● Create a student table that has name, score, and classNo columns and
stores data in Parquet format. Partition the table by classNo.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 17

CREATE TABLE student(name STRING, score INT, classNo INT) USING PARQUET OPTIONS('key1' =
'value1') PARTITIONED BY(classNo) ;

NO TE

classNo is the partition field, which must be placed at the end of the table field, that
is, student(name STRING, score INT, classNo INT).

● Create table t1 and insert t2 data into table t1.
CREATE TABLE t1 USING parquet AS select * from t2;

1.5.2 Creating a DLI Table Using the Hive Syntax

Function
This Hive syntax is used to create a DLI table. The main differences between the
DataSource and the Hive syntax lie in the supported data formats and the number
of supported partitions. For details, see syntax and precautions.

Syntax
CREATE TABLE [IF NOT EXISTS] [db_name.]table_name
 [(col_name1 col_type1 [COMMENT col_comment1], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name2 col_type2, [COMMENT col_comment2], ...)]
 [ROW FORMAT row_format]
 STORED AS file_format
 [TBLPROPERTIES (key1=val1, key2=val2, ...)]
 [AS select_statement];

row_format:
 : SERDE serde_cls [WITH SERDEPROPERTIES (key1=val1, key2=val2, ...)]
 | DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]]
 [COLLECTION ITEMS TERMINATED BY char]
 [MAP KEYS TERMINATED BY char]
 [LINES TERMINATED BY char]
 [NULL DEFINED AS char]

Keyword
● IF NOT EXISTS: Prevents system errors when the created table exists.
● COMMENT: Field or table description.
● PARTITIONED BY: Partition field.
● ROW FORMAT: Row data format.
● STORED AS: Specifies the format of the file to be stored. Currently, only the

TEXTFILE, AVRO, ORC, SEQUENCEFILE, RCFILE, and PARQUET format are
supported. This keyword is mandatory when you create DLI tables.

● TBLPROPERTIES: The TBLPROPERTIES clause allows you to add the key/value
attribute to a table.
For example, if the table storage format is Parquet, you can use
TBLPROPERTIES(parquet.compression = 'zstd') to set the table compression
format to zstd.

● AS: Run the CREATE TABLE AS statement to create a table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 18

Parameter Description

Table 1-14 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores
(_). The value cannot contain only digits and cannot start with
a digit or underscore (_).

table_name Table name of a database that contains letters, digits, and
underscores (_). The value cannot contain only digits and
cannot start with a digit or underscore (_). The matching rule
is ^(?!_)(?![0-9]+$)[A-Za-z0-9_$]*$. If special characters are
required, use single quotation marks ('') to enclose them.

col_name Column names with data types separated by commas (,). The
column name contains letters, digits, and underscores (_). It
cannot contain only digits and must contain at least one
letter.

col_type Field type

col_comment Field description

row_format Line data format

file_format Data storage format: TEXTFILE, AVRO, ORC, SEQUENCEFILE,
RCFILE, PARQUET.

table_comment Table description

select_stateme
nt

The CREATE TABLE AS statement is used to insert the SELECT
query result of the source table or a data record to a newly
created DLI table.

Precautions
● When you create a partitioned table, ensure that the specified column in

PARTITIONED BY is not a column in the table and the data type is specified.
The partition column supports only the open-source Hive table types
including string, boolean, tinyint, smallint, short, int, bigint, long, decimal,
float, double, date, and timestamp.

● Multiple partition fields can be specified. The partition fields need to be
specified after the PARTITIONED BY keyword, instead of the table name.
Otherwise, an error occurs.

● A maximum of 100,000 partitions can be created in a single table.
● The CREATE TABLE AS statement cannot specify table attributes or create

partitioned tables.

Example
● Create a src table that has key and value columns in INT and STRING types

respectively, and specify a property as required.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 19

CREATE TABLE src
 (key INT, value STRING)
 STORED AS PARQUET
 TBLPROPERTIES('key1' = 'value1');

● Create a student table that has name, score, and classNo columns, and
partition the table by classNo.
CREATE TABLE student
 (name STRING, score INT)
 STORED AS PARQUET
 TBLPROPERTIES(parquet.compression = 'zstd') PARTITIONED BY(classNo INT);

● Create table t1 and insert t2 data into table t1.
CREATE TABLE t1
 STORED AS PARQUET
 AS select * from t2;

1.6 Deleting a Table

Function
This statement is used to delete tables.

Syntax
DROP TABLE [IF EXISTS] [db_name.]table_name;

Keyword
● If the table is stored in OBS, only the metadata is deleted. The data stored on

OBS is not deleted.

Parameters

Table 1-15 Parameter description

Paramet
er

Description

db_name Database name, which consists of letters, digits, and underscores (_).
The value cannot contain only digits or start with a digit or
underscore (_).

table_na
me

Table name

Precautions
The to-be-deleted table must exist in the current database. Otherwise, an error is
reported. To avoid this error, add IF EXISTS in this statement.

Example
1. Create a table. For details, see Creating an OBS Table or Creating a DLI

Table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 20

2. Run the following statement to delete table test from the current database:
DROP TABLE IF EXISTS test;

1.7 Viewing Tables

1.7.1 Viewing All Tables

Function

This statement is used to view all tables and views in the current database.

Syntax
SHOW TABLES [IN | FROM db_name] [LIKE regex_expression];

Keyword

FROM/IN: followed by the name of a database whose tables and views will be
displayed.

Parameters

Table 1-16 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and underscores
(_). The value cannot contain only digits or start with a digit or
underscore (_).

regex_expres
sion

Name of a database table.

Precautions

None

Example
1. Create a table. For details, see Creating an OBS Table or Creating a DLI

Table.

2. To show all tables and views in the current database, run the following
statement:
SHOW TABLES;

3. To show all tables started with test in the testdb database, run the following
statement:
SHOW TABLES IN testdb LIKE "test*";

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 21

1.7.2 Viewing Table Creation Statements

Function

This statement is used to show the statements for creating a table.

Syntax
SHOW CREATE TABLE table_name;

Keyword

CREATE TABLE: statement for creating a table

Parameters

Table 1-17 Parameter description

Parameter Description

table_nam
e

Table name

Precautions

The table specified in this statement must exist. Otherwise, an error will occur.

Example
1. Create a table. For details, see Creating an OBS Table or Creating a DLI

Table.

1. Run the following statement to view the statement that is used to create
table test:
SHOW CREATE TABLE test;

1.7.3 Viewing Table Properties

Function

Check the properties of a table.

Syntax
SHOW TBLPROPERTIES table_name [('property_name')];

Keyword

TBLPROPERTIES: This statement allows you to add a key/value property to a
table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 22

Parameters

Table 1-18 Parameter description

Paramete
r

Description

table_nam
e

Table name

property_n
ame

● If this parameter is not specified, all properties and their values
are returned.

● If a property name is specified, only the specified property and
its value are returned.

Precautions
property_name is case sensitive. You cannot specify multiple property_name
attributes at the same time. Otherwise, an error occurs.

Example
To return the value of property_key1 in the test table, run the following
statement:

SHOW TBLPROPERTIES test ('property_key1');

1.7.4 Viewing All Columns in a Specified Table

Function
This statement is used to query all columns in a specified table.

Syntax
SHOW COLUMNS {FROM | IN} table_name [{FROM | IN} db_name];

Keyword
● COLUMNS: columns in the current table
● FROM/IN: followed by the name of a database whose tables and views will be

displayed. Keyword FROM is equivalent to IN. You can use either of them in a
statement.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 23

Parameters

Table 1-19 Parameter description

Paramete
r

Description

table_nam
e

Table name

db_name Database name

Precautions

The specified table must exist in the database. If the table does not exist, an error
is reported.

Example

Run the following statement to view all columns in the student table.

SHOW COLUMNS IN student;

1.7.5 Viewing All Partitions in a Specified Table

Function

This statement is used to view all partitions in a specified table.

Syntax
SHOW PARTITIONS [db_name.]table_name
 [PARTITION partition_specs];

Keyword
● PARTITIONS: partitions in a specified table

● PARTITION: a specified partition

Parameters

Table 1-20 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores (_).
It cannot contain only digits and cannot start with an
underscore (_).

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 24

Parameter Description

table_name Table name of a database that contains letters, digits, and
underscores (_). It cannot contain only digits and cannot start
with an underscore (_). The matching rule is ^(?!_)(?![0-9]+$)
[A-Za-z0-9_$]*$. If special characters are required, use single
quotation marks ('') to enclose them.

partition_spe
cs

Partition information, in the format of "key=value", where key
indicates the partition field and value indicates the partition
value. If a partition field contains multiple fields, the system
displays all partition information that matches the partition
field.

Precautions
The table specified in this statement must exist and must be a partitioned table.
Otherwise, an error is reported.

Example
● To show all partitions in the student table, run the following statement:

SHOW PARTITIONS student;

● Check the dt='2010-10-10' partition in the student table, run the following
statement:
SHOW PARTITIONS student PARTITION(dt='2010-10-10')

1.7.6 Viewing Table Statistics

Function
This statement is used to view the table statistics. The names and data types of all
columns in a specified table will be returned.

Syntax
DESCRIBE [EXTENDED|FORMATTED] [db_name.]table_name;

Keyword
● EXTENDED: displays all metadata of the specified table. It is used during

debugging in general.
● FORMATTED: displays all metadata of the specified table in a form.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 25

Parameters

Table 1-21 Parameter description

Paramet
er

Description

db_name Database name that contains letters, digits, and underscores (_). It
cannot contain only digits or start with an underscore (_).

table_na
me

Table name of a database that contains letters, digits, and
underscores (_). It cannot contain only digits or start with an
underscore (_). The matching rule is ^(?!_)(?![0-9]+$)[A-Za-z0-9_
$]*$. If special characters are required, use single quotation marks
('') to enclose them.

Precautions
The to-be-queried table must exist. If this statement is used to query the
information about a table that does not exist, an error is reported.

Example
To query the names and data types of all columns in the student table, run the
following statement:

DESCRIBE student;

1.8 Modifying a Table

1.8.1 Adding a Column

Function
This statement is used to add one or more new columns to a table.

Syntax
ALTER TABLE [db_name.]table_name ADD COLUMNS (col_name1 col_type1 [COMMENT
col_comment1], ...);

Keyword
● ADD COLUMNS: columns to add
● COMMENT: column description

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 26

Parameters

Table 1-22 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores (_). It
cannot contain only digits or start with an underscore (_).

table_nam
e

Table name

col_name Column name

col_type Field type

col_comm
ent

Column description

Precautions

Do not run this SQL statement concurrently. Otherwise, columns may be
overwritten.

Example
ALTER TABLE t1 ADD COLUMNS (column2 int, column3 string);

1.8.2 Enabling or Disabling Multiversion Backup

Function

DLI controls multiple versions of backup data for restoration. After the
multiversion function is enabled, the system automatically backs up table data
when you delete or modify the data using insert overwrite or truncate, and
retains the data for a certain period. You can quickly restore data within the
retention period. For details about the syntax related to the multiversion function,
see Backing Up and Restoring Data of Multiple Versions.

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Syntax
● Enable the multiversion function.

ALTER TABLE [db_name.]table_name
SET TBLPROPERTIES ("dli.multi.version.enable"="true");

● Disable the multiversion function.
ALTER TABLE [db_name.]table_name
UNSET TBLPROPERTIES ("dli.multi.version.enable");

After multiversion is enabled, data of different versions is automatically stored
in the OBS storage directory when insert overwrite or truncate is executed.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 27

After multiversion is disabled, run the following statement to restore the
multiversion backup data directory:
RESTORE TABLE [db_name.]table_name TO initial layout;

Keyword
● SET TBLPROPERTIES: Used to set table properties and enable multiversion.
● UNSET TBLPROPERTIES: Used to unset table properties and disable

multiversion.

Parameter

Table 1-23 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores (_). It
cannot contain only digits or start with an underscore (_).

table_nam
e

Table name

Precautions
Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Example
● Modify the test_table table to enable multiversion.

ALTER TABLE test_table
SET TBLPROPERTIES ("dli.multi.version.enable"="true");

● Modify the test_table table to disable multiversion.
ALTER TABLE test_table
UNSET TBLPROPERTIES ("dli.multi.version.enable");

Restore the multiversion backup data directory.
RESTORE TABLE test_table TO initial layout;

1.9 Syntax for Partitioning a Table

1.9.1 Adding Partition Data (Only OBS Tables Supported)

Function
After an OBS partitioned table is created, no partition information is generated for
the table. Partition information is generated only after you:

● Insert data to the OBS partitioned table. After the data is inserted successfully,
the partition metadata can be queried, for example, by partition columns.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 28

● Copy the partition directory and data into the OBS path of the partitioned
table, and run the partition adding statements described in this section to
generate partition metadata. Then you can perform operations such as table
query by partition columns.

The following describes how to use the ALTER TABLE statement to add a
partition.

Syntax
ALTER TABLE table_name ADD [IF NOT EXISTS]
 PARTITION partition_specs1
 [LOCATION 'obs_path1']
 PARTITION partition_specs2
 [LOCATION 'obs_path2'];

Keyword
● IF NOT EXISTS: prevents errors when partitions are repeatedly added.
● PARTITION: specifies a partition.
● LOCATION: specifies the partition path.

Parameters

Table 1-24 Parameter description

Parameter Description

table_name Table name

partition_sp
ecs

Partition fields

obs_path OBS path

Precautions
● When you add a partition to a table, the table and the partition column

(specified by PARTITIONED BY during table creation) must exist, and the
partition to be added cannot be added repeatedly. Otherwise, an error is
reported. You can use IF NOT EXISTS to avoid errors if the partition does not
exist.

● If tables are partitioned by multiple fields, you need to specify all partitioning
fields in any sequence when adding partitions.

● By default, parameters in partition_specs contain parentheses (). For
example: PARTITION (dt='2009-09-09',city='xxx').

● If you need to specify an OBS path when adding a partition, the OBS path
must exist. Otherwise, an error occurs.

● To add multiple partitions, you need to use spaces to separate each set of
LOCATION 'obs_path' in the PARTITION partition_specs. The following is an
example:

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 29

PARTITION partition_specs LOCATION 'obs_path' PARTITION
partition_specs LOCATION 'obs_path'

● If the path specified in the new partition contains subdirectories (or nested
subdirectories), all file types and content in the subdirectories are considered
partition records. Ensure that all file types and file content in the partition
directory are the same as those in the table. Otherwise, an error is reported.

Example
● The following example shows you how to add partition data when the OBS

table is partitioned by a single column.

a. Use the DataSource syntax to create an OBS table, and partition the table
by column external_data. The partition data is stored in obs://
bucketName/datapath.
create table testobstable(id varchar(128), external_data varchar(16)) using JSON OPTIONS
(path 'obs://bucketName/datapath') PARTITIONED by (external_data);

b. Copy the partition directory to obs://bucketName/datapath. In this
example, copy all files in the partition column external_data=22 to
obs://bucketName/datapath.

c. Run the following command to add partition data:
ALTER TABLE testobstable ADD
 PARTITION (external_data='22')
 LOCATION 'obs://bucketName/datapath/external_data=22';

d. After the partition data is added successfully, you can perform operations
such as data query based on the partition column.
select * from testobstable where external_data='22';

● The following example shows you how to add partition data when the OBS
table is partitioned by multiple columns.

a. Use the DataSource syntax to create an OBS table, and partition the table
by columns external_data and dt. The partition data is stored in obs://
bucketName/datapath.
create table testobstable(
 id varchar(128),
 external_data varchar(16),
 dt varchar(16)
) using JSON OPTIONS (path 'obs://bucketName/datapath') PARTITIONED by (external_data,
dt);

b. Copy the partition directories to obs://bucketName/datapath. In this
example, copy files in external_data=22 and its subdirectory
dt=2021-07-27 to obs://bucketName/datapath.

c. Run the following command to add partition data:
ALTER TABLE
 testobstable
ADD
 PARTITION (external_data = '22', dt = '2021-07-27') LOCATION 'obs://bucketName/datapath/
external_data=22/dt=2021-07-27';

d. After the partition data is added successfully, you can perform operations
such as data query based on the partition columns.
select * from testobstable where external_data = '22';
select * from testobstable where external_data = '22' and dt='2021-07-27';

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 30

1.9.2 Renaming a Partition (Only OBS Tables Supported)

Function
This statement is used to rename partitions.

Syntax
ALTER TABLE table_name
 PARTITION partition_specs
 RENAME TO PARTITION partition_specs;

Keyword
● PARTITION: a specified partition
● RENAME: new name of the partition

Parameters

Table 1-25 Parameter description

Parameter Description

table_name Table name

partition_spec
s

Partition fields

Precautions
● This statement is used for OBS table operations.
● The table and partition to be renamed must exist. Otherwise, an error occurs.

The name of the new partition must be unique. Otherwise, an error occurs.
● If a table is partitioned using multiple fields, you are required to specify all

the fields of a partition (at random order) when renaming the partition.
● By default, the partition_specs parameter contains (). For example:

PARTITION (dt='2009-09-09',city='xxx')

Example
To modify the name of the city='xxx',dt='2008-08-08' partition in the student
table to city='xxx',dt='2009-09-09', run the following statement:

ALTER TABLE student
 PARTITION (city='xxx',dt='2008-08-08')
 RENAME TO PARTITION (city='xxx',dt='2009-09-09');

1.9.3 Deleting a Partition

Function
Deletes one or more partitions from a partitioned table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 31

Precautions
● The table in which partitions are to be deleted must exist. Otherwise, an error

is reported.
● The to-be-deleted partition must exist. Otherwise, an error is reported. To

avoid this error, add IF EXISTS in this statement.

Syntax
ALTER TABLE [db_name.]table_name
 DROP [IF EXISTS]
 PARTITION partition_spec1[,PARTITION partition_spec2,...];

Keyword
● DROP: deletes a partition.
● IF EXISTS: The partition to be deleted must exist. Otherwise, an error is

reported.
● PARTITION: specifies the partition to be deleted

Parameters

Table 1-26 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores
(_). It cannot contain only digits and cannot start with an
underscore (_).

table_name Table name of a database that contains letters, digits, and
underscores (_). It cannot contain only digits and cannot start
with an underscore (_). The matching rule is ^(?!_)(?![0-9]+$)
[A-Za-z0-9_$]*$. If special characters are required, use single
quotation marks ('') to enclose them.

partition_spec
s

Partition information, in the format of "key=value", where key
indicates the partition field and value indicates the partition
value. In a table partitioned using multiple fields, if you specify
all the fields of a partition name, only the partition is deleted;
if you specify only some fields of a partition name, all
matching partitions will be deleted. By default, the
partition_specs parameter contains (). For example:
PARTITION (dt='2009-09-09',city='xxx')

Example

To delete the dt = '2008-08-08', city = 'xxx' partition in the student table, run the
following statement:

ALTER TABLE student
 DROP
 PARTITION (dt = '2008-08-08', city = 'xxx');

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 32

1.9.4 Deleting Partitions by Specifying Filter Criteria (Only
OBS Tables Supported)

Function
This statement is used to delete one or more partitions based on specified
conditions.

Precautions
● This statement is used for OBS table operations only.
● The table in which partitions are to be deleted must exist. Otherwise, an error

is reported.
● The to-be-deleted partition must exist. Otherwise, an error is reported. To

avoid this error, add IF EXISTS in this statement.

Syntax
ALTER TABLE [db_name.]table_name
 DROP [IF EXISTS]
 PARTITIONS partition_filtercondition;

Keyword
● DROP: deletes specified partitions.
● IF EXISTS: Partitions to be deleted must exist. Otherwise, an error is reported.
● PARTITIONS: specifies partitions meeting the conditions

Parameters

Table 1-27 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores
(_). It cannot contain only digits or start with an underscore
(_).

table_name Table name of a database that contains letters, digits, and
underscores (_). It cannot contain only digits or start with an
underscore (_). The matching rule is ^(?!_)(?![0-9]+$)[A-Za-
z0-9_$]*$. If special characters are required, use single
quotation marks ('') to enclose them.
This statement is used for OBS table operations.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 33

Parameter Description

partition_filter
condition

Condition used to search partitions to be deleted. The format is
as follows:
● Partition column name Operator Value to compare

Example: start_date < '201911'
● <partition_filtercondition1> AND|OR

<partition_filtercondition2>
Example: start_date < '201911' OR start_date >= '202006'

● (<partition_filtercondition1>) [,partitions
(<partition_filtercondition2>), ...]
Example: (start_date <> '202007'), partitions(start_date <
'201912')

Example
You can run the following statements to delete the dt partition of the student
table using different conditions:

alter table student drop partitions(start_date < '201911');
alter table student drop partitions(start_date >= '202007');
alter table student drop partitions(start_date BETWEEN '202001' AND '202007');
alter table student drop partitions(start_date < '201912' OR start_date >= '202006');
alter table student drop partitions(start_date > '201912' AND start_date <= '202004');
alter table student drop partitions(start_date != '202007');
alter table student drop partitions(start_date <> '202007');
alter table student drop partitions(start_date <> '202007'), partitions(start_date < '201912');

1.9.5 Altering the Partition Location of a Table (Only OBS
Tables Supported)

Function
This statement is used to modify the positions of table partitions.

Syntax
ALTER TABLE table_name
 PARTITION partition_specs
 SET LOCATION obs_path;

Keyword
● PARTITION: a specified partition
● LOCATION: path of the partition

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 34

Parameters

Table 1-28 Parameter description

Parameter Description

table_name Table name

partition_spe
cs

Partition fields

obs_path OBS path

Precautions
● For a table partition whose position is to be modified, the table and partition

must exist. Otherwise, an error is reported.
● By default, the partition_specs parameter contains (). For example:

PARTITION (dt='2009-09-09',city='xxx')
● The specified OBS path must be an absolute path. Otherwise, an error is

reported.
● If the path specified in the new partition contains subdirectories (or nested

subdirectories), all file types and content in the subdirectories are considered
partition records. Ensure that all file types and file content in the partition
directory are the same as those in the table. Otherwise, an error is reported.

Example

To set the OBS path of partition dt='2008-08-08',city='xxx' in table student to
obs://bucketName/fileName/student/dt=2008-08-08/city=xxx, run the
following statement:

ALTER TABLE student
 PARTITION(dt='2008-08-08',city='xxx')
 SET LOCATION 'obs://bucketName/fileName/student/dt=2008-08-08/city=xxx';

1.9.6 Updating Partitioned Table Data (Only OBS Tables
Supported)

Function

This statement is used to update the partition information about a table in the
Metastore.

Syntax
MSCK REPAIR TABLE table_name;

Or

ALTER TABLE table_name RECOVER PARTITIONS;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 35

Keyword
● PARTITIONS: partition information

● SERDEPROPERTIES: Serde attribute

Parameters

Table 1-29 Parameter description

Parameter Description

table_name Table name

partition_spe
cs

Partition fields

obs_path OBS path

Precautions
● This statement is applied only to partitioned tables. After you manually add

partition directories to OBS, run this statement to update the newly added
partition information in the metastore. The SHOW PARTITIONS table_name
statement can be used to query the newly-added partitions.

● The partition directory name must be in the specified format, that is,
tablepath/partition_column_name=partition_column_value.

Example

Run the following statements to update the partition information about table
ptable in the Metastore:

MSCK REPAIR TABLE ptable;

Or

ALTER TABLE ptable RECOVER PARTITIONS;

1.9.7 Updating Table Metadata with REFRESH TABLE

Function

Spark caches Parquet metadata to improve performance. If you update a Parquet
table, the cached metadata is not updated. Spark SQL cannot find the newly
inserted data and an error similar with the following is reported:
DLI.0002: FileNotFoundException: getFileStatus on error message

You can use REFRESH TABLE to solve this problem. REFRESH TABLE reorganizes
files of a partition and reuses the original table metadata information to detect
the increase or decrease of table fields. This statement is mainly used when the
metadata in a table is not modified but the table data is modified.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 36

Syntax
REFRESH TABLE [db_name.]table_name;

Keyword

None

Parameter

Table 1-30 Parameter description

Parameter Description

db_name Database name that contains letters, digits, and underscores (_).
It cannot contain only digits or start with an underscore (_).

table_name Table name of a database that contains letters, digits, and
underscores (_). It cannot contain only digits or start with an
underscore (_). The matching rule is ^(?!_)(?![0-9]+$)[A-Za-
z0-9_$]*$. If special characters are required, use single quotation
marks ('') to enclose them.

Precautions

None

Example

Update metadata of the test table.

REFRESH TABLE test;

1.10 Importing Data to the Table

Function

The LOAD DATA function can be used to import data in CSV, Parquet, ORC,
JSON, and Avro formats. The data is converted into the Parquet data format for
storage.

Syntax
LOAD DATA INPATH 'folder_path' INTO TABLE [db_name.]table_name
 OPTIONS(property_name=property_value, ...);

Keyword
● INPATH: path of data to be imported
● OPTIONS: list of properties

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 37

Parameter

Table 1-31 Parameter description

Parameter Description

folder_path OBS path of the file or folder used for storing the raw data.

db_name Enter the database name. If this parameter is not specified,
the current database is used.

table_name Name of the table to which data is to be imported.

The following configuration options can be used during data import:

● DATA_TYPE: specifies the type of data to be imported. Currently, CSV,
Parquet, ORC, JSON, and Avro are supported. The default value is CSV.
The configuration item is OPTIONS ('DATA_TYPE' = 'CSV').
When importing a CSV file or a JSON file, you can select one of the following
modes:
– PERMISSIVE: When the PERMISSIVE mode is selected, the data of a

column is set to null if its data type does not match that of the target
table column.

– DROPMALFORMED: When the DROPMALFORMED mode is selected, the
data of a column s not imported if its data type does not match that of
the target table column.

– FAILFAST: When the FAILFAST mode is selected, exceptions might occur
and the import may fail if a column type does not match.

You can set the mode by adding OPTIONS ('MODE' = 'PERMISSIVE') to the
OPTIONS parameter.

● DELIMITER: You can specify a separator in the import statement. The default
value is ,.
The configuration item is OPTIONS('DELIMITER'=',').
For CSV data, the following delimiters are supported:
– Tab character, for example, 'DELIMITER'='\t'.
– Any binary character, for example, 'DELIMITER'='\u0001(^A)'.
– Single quotation mark ('). A single quotation mark must be enclosed in

double quotation marks (" "). For example, 'DELIMITER'= "'".
● QUOTECHAR: You can specify quotation marks in the import statement. The

default value is double quotation marks (").
The configuration item is OPTIONS('QUOTECHAR'='"').

● COMMENTCHAR: You can specify the comment character in the import
statement. During the import operation, if a comment character is at the
beginning of a row, the row is considered as a comment and will not be
imported. The default value is a pound key (#).
The configuration item is OPTIONS('COMMENTCHAR'='#').

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 38

● HEADER: Indicates whether the source file contains a header. Possible values
can be true and false. true indicates that the source file contains a header,
and false indicates that the source file does not contain a header. The default
value is false. If no header exists, specify the FILEHEADER parameter in the
LOAD DATA statement to add a header.
The configuration item is OPTIONS('HEADER'='true').

● FILEHEADER: If the source file does not contain any header, add a header to
the LOAD DATA statement.
OPTIONS('FILEHEADER'='column1,column2')

● ESCAPECHAR: Is used to perform strict verification of the escape character on
CSV files. The default value is a slash (\\).
The configuration item is OPTIONS. (ESCAPECHAR?=?\\?)

NO TE

Enter ESCAPECHAR in the CSV data. ESCAPECHAR must be enclosed in double
quotation marks (" "). For example, "a\b".

● MAXCOLUMNS: This parameter is optional and specifies the maximum
number of columns parsed by a CSV parser in a line.
The configuration item is OPTIONS('MAXCOLUMNS'='400').

Table 1-32 MAXCOLUMNS

Name of the Optional
Parameter

Default Value Maximum Value

MAXCOLUMNS 2000 20000

NO TE

After the value of MAXCOLUMNS Option is set, data import will require the memory
of executor. As a result, data may fail to be imported due to insufficient executor
memory.

● DATEFORMAT: Specifies the date format of a column.
OPTIONS('DATEFORMAT'='dateFormat')

NO TE

● The default value is yyyy-MM-dd.
● The date format is specified by the date mode string of Java. For the Java strings

describing date and time pattern, characters A to Z and a to z without single
quotation marks (') are interpreted as pattern characters , which are used to
represent date or time string elements. If the pattern character is quoted by single
quotation marks ('), text matching rather than parsing is performed. For the
definition of pattern characters in Java, see Table 1-33.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 39

Table 1-33 Definition of characters involved in the date and time patterns

Charact
er

Date or Time
Element

Example

G Epoch ID AD

y Year 1996; 96

M Month July; Jul; 07

w Number of the
week in a year

27 (the twenty-seventh week of the year)

W Number of the
week in a month

2 (the second week of the month)

D Number of the
day in a year

189 (the 189th day of the year)

d Number of the
day in a month

10 (the tenth day of the month)

u Number of the
day in a week

1 (Monday), ..., 7 (Sunday)

a am/pm flag pm (12:00-24:00)

H Hour time (0-23) 2

h Hour time (1-12) 12

m Number of
minutes

30

s Number of
seconds

55

S Number of
milliseconds

978

z Time zone Pacific Standard Time; PST; GMT-08:00

● TIMESTAMPFORMAT: Specifies the timestamp format of a column.

OPTIONS('TIMESTAMPFORMAT'='timestampFormat')

NO TE

● Default value: yyyy-MM-dd HH:mm:ss.
● The timestamp format is specified by the Java time pattern character string. For

details, see Table 3 Definition of date and time pattern characters.

● Mode: Specifies the processing mode of error records while importing. The
options are as follows: PERMISSIVE, DROPMALFORMED, and FAILFAST.
OPTIONS('MODE'='permissive')

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 40

NO TE

● PERMISSIVE (default): Parse bad records as much as possible. If a field cannot be
converted, the entire row is null.

● DROPMALFORMED: Ignore the bad records that cannot be parsed.

● FAILFAST: If a record cannot be parsed, an exception is thrown and the job fails.

● BADRECORDSPATH: Specifies the directory for storing error records during
the import.

OPTIONS('BADRECORDSPATH'='obs://bucket/path')

NO TE

It is recommended that this option be used together with the DROPMALFORMED
pattern to import the records that can be successfully converted into the target table
and store the records that fail to be converted to the specified error record storage
directory.

Precautions
● When importing or creating an OBS table, you must specify a folder as the

directory. If a file is specified, data import may be failed.

● Only the raw data stored in the OBS path can be imported.

● You are advised not to concurrently import data in to a table. If you
concurrently import data into a table, there is a possibility that conflicts occur,
leading to failed data import.

● Only one path can be specified during data import. The path cannot contain
commas (,).

● If a folder and a file with the same name exist in the OBS bucket directory,
the data is preferentially to be imported directed to the file rather than the
folder.

● When importing data of the PARQUET, ORC, or JSON format, you must
specify DATA_TYPE. Otherwise, the data is parsed into the default format CSV.
In this case, the format of the imported data is incorrect.

● If the data to be imported is in the CSV or JSON format and contains the date
and columns, you need to specify DATEFORMAT and TIMESTAMPFORMAT.
Otherwise, the data will be parsed into the default date and timestamp
formats.

Example
NO TE

Before importing data, you must create a table. For details, see Creating an OBS Table or
Creating a DLI Table.

● To import a CSV file to a table named t, run the following statement:
LOAD DATA INPATH 'obs://dli/data.csv' INTO TABLE t
 OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"','COMMENTCHAR'='#','HEADER'='false');

● To import a JSON file to a table named jsontb, run the following statement:
LOAD DATA INPATH 'obs://dli/alltype.json' into table jsontb
 OPTIONS('DATA_TYPE'='json','DATEFORMAT'='yyyy/MM/dd','TIMESTAMPFORMAT'='yyyy/MM/dd
HH:mm:ss');

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 41

1.11 Inserting Data

Function
This statement is used to insert the SELECT query result or a certain data record
into a table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO [TABLE] [db_name.]table_name
 [PARTITION part_spec] select_statement;
INSERT OVERWRITE TABLE [db_name.]table_name
 [PARTITION part_spec] select_statement;
part_spec:
 : (part_col_name1=val1 [, part_col_name2=val2, ...])

● Insert a data record into a table.
INSERT INTO [TABLE] [db_name.]table_name
 [PARTITION part_spec] VALUES values_row [, values_row ...];
INSERT OVERWRITE TABLE [db_name.]table_name
 [PARTITION part_spec] VALUES values_row [, values_row ...];
values_row:
 : (val1 [, val2, ...])

Keyword

Table 1-34 INSERT parameter description

Parameter Description

db_name Name of the database where the target table resides.

table_name Name of the target table.

part_spec Detailed partition information. If there are multiple partition
fields, all fields must be contained, but the corresponding values
are optional. The system matches the corresponding partition. A
maximum of 100,000 partitions can be created in a single table.

select_state
ment

SELECT query on the source table.

values_row Value to be inserted to a table. Use commas (,) to separate
columns.

Precautions
● The target DLI table must exist.
● If no partition needs to be specified for dynamic partitioning, place part_spec

in the SELECT statement as a common field.
● During creation of the target OBS table, only the folder path can be specified.
● The source table and the target table must have the same data types and

column field quantity. Otherwise, data insertion fails.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 42

● You are advised not to concurrently insert data into a table. If you
concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

● The INSERT INTO statement is used to add the query result to the target
table.

● The INSERT OVERWRITE statement is used to overwrite existing data in the
source table.

● The INSERT INTO statement can be batch executed, but the INSERT
OVERWRITE statement can be batch executed only when data of different
partitioned tables is inserted to different static partitions.

● The INSERT INTO and INSERT OVERWRITE statements can be executed at
the same time. However, the result is unknown.

● When you insert data of the source table to the target table, you cannot
import or update data of the source table.

● The dynamic INSERT OVERWRITE statement of Hive partitioned tables can
overwrite the involved partition data but cannot overwrite the entire table
data.

● To overwrite data in a specified partition of the datasource table, set
dli.sql.dynamicPartitionOverwrite.enabled to true and run the insert
overwrite statement. The default value of
dli.sql.dynamicPartitionOverwrite.enabled is false, indicating that data in
the entire table is overwritten. The following is an example:
insert overwrite table tb1 partition(part1='v1', part2='v2') select * from ...

NO TE

On the DLI management console, click SQL Editor. In the upper right corner of the
editing window, click Settings to configure parameters.

● You can configure the spark.sql.shuffle.partitions parameter to set the
number of files to be inserted into the OBS bucket in the table. In addition, to
avoid data skew, you can add distribute by rand() to the end of the INSERT
statement to increase the number of concurrent jobs. The following is an
example:
insert into table table_target select * from table_source distribute by cast(rand() * N as int);

Example
NO TE

Before importing data, you must create a table. For details, see Creating an OBS Table or
Creating a DLI Table.

● Insert the SELECT query result into a table.
– Use the DataSource syntax to create a parquet partitioned table.

CREATE TABLE data_source_tab1 (col1 INT, p1 INT, p2 INT)
 USING PARQUET PARTITIONED BY (p1, p2);

– Insert the query result to the partition (p1 = 3, p2 = 4).
INSERT INTO data_source_tab1 PARTITION (p1 = 3, p2 = 4)
 SELECT id FROM RANGE(1, 3);

– Insert the new query result to the partition (p1 = 3, p2 = 4).
INSERT OVERWRITE TABLE data_source_tab1 PARTITION (p1 = 3, p2 = 4)
 SELECT id FROM RANGE(3, 5);

● Insert a data record into a table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 43

– Create a Parquet partitioned table with Hive format
CREATE TABLE hive_serde_tab1 (col1 INT, p1 INT, p2 INT)
 USING HIVE OPTIONS(fileFormat 'PARQUET') PARTITIONED BY (p1, p2);

– Insert two data records into the partition (p1 = 3, p2 = 4).
INSERT INTO hive_serde_tab1 PARTITION (p1 = 3, p2 = 4)
 VALUES (1), (2);

– Insert new data to the partition (p1 = 3, p2 = 4).
INSERT OVERWRITE TABLE hive_serde_tab1 PARTITION (p1 = 3, p2 = 4)
 VALUES (3), (4);

1.12 Clearing Data

Function

This statement is used to delete data from the table.

Syntax
TRUNCATE TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)];

Keyword

Table 1-35 Parameter

Parameter Description

tablename Name of the target table that runs the Truncate statement.

partcol1 Partition name of the table to be deleted.

Precautions

Only data in the table can be deleted.

Example
truncate table test PARTITION (class = 'test');

1.13 Exporting Search Results

Function

This statement is used to directly write query results to a specified directory. The
query results can be stored in CSV, Parquet, ORC, JSON, or Avro format.

Syntax
INSERT OVERWRITE DIRECTORY path
 USING file_format
 [OPTIONS(key1=value1)]
 select_statement;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 44

Keyword
● USING: Specifies the storage format.

● OPTIONS: Specifies the list of attributes to be exported. This parameter is
optional.

Parameter

Table 1-36 INSERT OVERWRITE DIRECTORY parameter description

Parameter Description

path The OBS path to which the query result is to be written.

file_format Format of the file to be written. The value can be CSV,
Parquet, ORC, JSON, or Avro.

NO TE

If the file format is set to CSV, see the Table 1-9 for the OPTIONS parameters.

Precautions
● You can configure the spark.sql.shuffle.partitions parameter to set the

number of files to be inserted into the OBS bucket in the table. In addition, to
avoid data skew, you can add distribute by rand() to the end of the INSERT
statement to increase the number of concurrent jobs. The following is an
example:
insert into table table_target select * from table_source distribute by cast(rand() * N as int);

● When the configuration item is OPTIONS('DELIMITER'=','), you can specify a
separator. The default value is ,.

For CSV data, the following delimiters are supported:

– Tab character, for example, 'DELIMITER'='\t'.

– Any binary character, for example, 'DELIMITER'='\u0001(^A)'.

– Single quotation mark ('). A single quotation mark must be enclosed in
double quotation marks (" "). For example, 'DELIMITER'= "'".

Example
INSERT OVERWRITE DIRECTORY 'obs://bucket/dir'
 USING csv
 OPTIONS(key1=value1)
 select * from db1.tb1;

1.14 Backing Up and Restoring Data of Multiple
Versions

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 45

1.14.1 Setting the Retention Period for Multiversion Backup
Data

Function
After multiversion is enabled, backup data is retained for seven days by default.
You can change the retention period by setting system parameter
dli.multi.version.retention.days. Multiversion data out of the retention period
will be automatically deleted when the insert overwrite or truncate statement is
executed. You can also set table attribute dli.multi.version.retention.days to
adjust the retention period when adding a column or modifying a partitioned
table. For details about the syntax for enabling or disabling the multiversion
function, see Enabling or Disabling Multiversion Backup.

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Syntax
ALTER TABLE [db_name.]table_name
SET TBLPROPERTIES ("dli.multi.version.retention.days"="days");

Keyword
● TBLPROPERTIES: This keyword is used to add a key/value property to a table.

Parameter

Table 1-37 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

table_name Table name

days Date when the multiversion backup data is reserved. The
default value is 7 days. The value ranges from 1 to 7 days.

Precautions
Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Example
Set the retention period of multiversion backup data to 5 days.
ALTER TABLE test_table
SET TBLPROPERTIES ("dli.multi.version.retention.days"="5");

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 46

1.14.2 Viewing Multiversion Backup Data

Function
After the multiversion function is enabled, you can run the SHOW HISTORY
command to view the backup data of a table. For details about the syntax for
enabling or disabling the multiversion function, see Enabling or Disabling
Multiversion Backup.

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Syntax
● View the backup data of a non-partitioned table.

SHOW HISTORY FOR TABLE [db_name.]table_name;

● View the backup data of a specified partition.
SHOW HISTORY FOR TABLE [db_name.]table_name PARTITION (column = value, ...);

Keyword
● SHOW HISTORY FOR TABLE: Used to view backup data
● PARTITION: Used to specify the partition column

Parameter

Table 1-38 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

table_name Table name

column Partition column name

value Value corresponding to the partition column name

Precautions
Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Example
● View multiversion backup data of the test_table table.

SHOW HISTORY FOR TABLE test_table;

● View multiversion backup data of the dt partition in the test_table
partitioned table.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 47

SHOW HISTORY FOR TABLE test_table PARTITION (dt='2021-07-27');

1.14.3 Restoring Multiversion Backup Data

Function

After the multiversion function is enabled, you can run the RESTORE TABLE
statement to restore a table or partition of a specified version. For details about
the syntax for enabling or disabling the multiversion function, see Enabling or
Disabling Multiversion Backup.

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Syntax
● Restore the non-partitioned table data to the backup data of a specified

version.
RESTORE TABLE [db_name.]table_name TO VERSION 'version_id';

● Restore the data of a single partition in a partitioned table to the backup data
of a specified version.
RESTORE TABLE [db_name.]table_name PARTITION (column = value, ...) TO VERSION 'version_id';

Keyword
● RESTORE TABLE: Used to restore backup data

● PARTITION: Used to specify the partition column

● TO VERSION: Used to specify the version number You can run the SHOW
HISTORY command to obtain the version number. For details, see Viewing
Multiversion Backup Data.

Parameter

Table 1-39 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

table_name Table name

column Partition column name

value Value corresponding to the partition column name

version_id Target version of the backup data to be restored You can run
the SHOW HISTORY command to obtain the version number.
For details, see Viewing Multiversion Backup Data.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 48

Precautions

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Example
● Restore the data in non-partitioned table test_table to version 20210930.

RESTORE TABLE test_table TO VERSION '20210930';

● Restore the data of partition dt in partitioned table test_table to version
20210930.
RESTORE TABLE test_table PARTITION (dt='2021-07-27') TO VERSION '20210930';

1.14.4 Configuring the Trash Bin for Expired Multiversion Data

Function

After the multiversion function is enabled, expired backup data will be directly
deleted by the system when the insert overwrite or truncate statement is
executed. You can configure the trash bin of the OBS parallel file system to
accelerate the deletion of expired backup data. To enable the trash bin, add
dli.multi.version.trash.dir to the table properties. For details about the syntax for
enabling or disabling the multiversion function, see Enabling or Disabling
Multiversion Backup.

Currently, the multiversion function supports only OBS tables created using the
Hive syntax. For details about the syntax for creating a table, see Creating an
OBS Table Using the Hive Syntax.

Syntax
ALTER TABLE [db_name.]table_name
SET TBLPROPERTIES ("dli.multi.version.trash.dir"="OBS bucket for expired multiversion backup data");

Keyword
● TBLPROPERTIES: This keyword is used to add a key/value property to a table.

Parameter

Table 1-40 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

table_name Table name

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 49

Parameter Description

OBS bucket for
expired
multiversion
backup data

A directory in the bucket where the current OBS table locates.
You can change the directory path as needed. For example, if
the current OBS table directory is obs://bucketName/filePath
and a Trash directory has been created in the OBS table
directory, you can set the trash bin directory to obs://
bucketName/filePath/Trash.

Precautions
● Currently, the multiversion function supports only OBS tables created using

the Hive syntax. For details about the syntax for creating a table, see
Creating an OBS Table Using the Hive Syntax.

● To automatically empty the trash bin, you need to configure a lifecycle rule
for the bucket of the OBS parallel file system. The procedure is as follows:

a. On the OBS console, choose Parallel File System in the left navigation
pane. Click the name of the target file system. The Overview page is
displayed.

b. In the left navigation pane, choose Basic Configurations > Lifecycle
Rules to create a lifecycle rule.

Example

Configure the trash bin to accelerate the deletion of expired backup data. The
data is dumped to the /.Trash directory in OBS.
ALTER TABLE test_table
SET TBLPROPERTIES ("dli.multi.version.trash.dir"="/.Trash");

1.14.5 Deleting Multiversion Backup Data

Function

The retention period of multiversion backup data takes effect each time the insert
overwrite or truncate statement is executed. If neither statement is executed for
the table, multiversion backup data out of the retention period will not be
automatically deleted. You can run the SQL commands described in this section to
manually delete multiversion backup data.

Syntax

Delete multiversion backup data out of the retention period.
clear history for table [db_name.]table_name older_than 'timestamp';

Keyword
● clear history for table: Used to delete multiversion backup data
● older_than: Used to specify the time range for deleting multiversion backup

data

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 50

Parameter

Table 1-41 Parameter description

Parameter Description

db_name Database name, which consists of letters, digits, and
underscores (_). The value cannot contain only digits or start
with a digit or underscore (_).

table_name Table name

Timestamp Multiversion backup data generated before the timestamp will
be deleted. Timestamp format: yyyy-MM-dd HH:mm:ss

Precautions
● Currently, the multiversion function supports only OBS tables created using

the Hive syntax. For details about the syntax for creating a table, see
Creating an OBS Table Using the Hive Syntax.

● This statement does not delete the backup data of the current version.

Example

Delete the multiversion backup data generated before 2021-09-25 23:59:59 in the
dliTable table. When the multiversion backup data is generated, a timestamp is
generated.
clear history for table dliTable older_than '2021-09-25 23:59:59';

1.15 Creating a Datasource Connection with an HBase
Table

1.15.1 Creating a Table and Associating It with HBase

Function

This statement is used to create a table and associate it with an existing HBase
table.

Prerequisites
● Before creating a table and associating it with HBase, you need to create a

datasource connection. For details about operations on the management
console, see

● Ensure that the /etc/hosts information of the master node in the MRS cluster
is added to the host file of the DLI queue.

● The syntax is not supported for security clusters.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 51

Syntax
● Single row key

CREATE TABLE [IF NOT EXISTS] TABLE_NAME (
 ATTR1 TYPE,
 ATTR2 TYPE,
 ATTR3 TYPE)
 USING [HBASE] OPTIONS (
 'ZKHost'='xx',
 'TableName'='TABLE_IN_HBASE',
 'RowKey'='ATTR1',
 'Cols'='ATTR2:CF1.C1, ATTR3:CF1.C2');

● Combined row key
CREATE TABLE [IF NOT EXISTS] TABLE_NAME (
 ATTR1 String,
 ATTR2 String,
 ATTR3 TYPE)
 USING [HBASE] OPTIONS (
 'ZKHost'='xx',
 'TableName'='TABLE_IN_HBASE',
 'RowKey'='ATTR1:2, ATTR2:10',
 'Cols'='ATTR2:CF1.C1, ATTR3:CF1.C2'

Keyword

Table 1-42 CREATE TABLE parameter description

Paramet
er

Description

USING
[HBASE]

Specify the HBase datasource. The value is case insensitive.

ZKHost ZooKeeper IP address of the HBase cluster.
Before obtaining the ZooKeeper IP address, you need to create a
datasource connection first..
● To access the MRS cluster, enter the IP address of the node where

the ZooKeeper is located and the external port number of the
ZooKeeper. The format is ZK_IP1:ZK_PORT1,ZK_IP2:ZK_PORT2.

NOTE

TableNa
me

Specifies the name of a table that has been created in the HBase
cluster.

RowKey Specifies the row key field of the table connected to DLI. The single
and composite row keys are supported. A single row key can be of
the numeric or string type. The length does not need to be specified.
The composite row key supports only fixed-length data of the string
type. The format is attribute name 1:Length, attribute name
2:length.

Cols Provides mappings between fields in the table and columns in the
HBase table. The mappings are separated by commas (,). In a
mapping, the field in the table is located before the colon (:) and
information about the HBase table follows the colon (:). In the
HBase table information, the column family and column name are
separated using a dot (.).

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 52

Precautions
● If the to-be-created table exists, an error is reported. To avoid such error, add

IF NOT EXISTS in this statement.
● All parameters in OPTIONS are mandatory. Parameter names are case-

insensitive, while parameter values are case-sensitive.
● In OPTIONS, spaces are not allowed before or after the value in the quotation

marks because spaces are also considered as a part of the value.
● Descriptions of table names and column names support only string constants.
● When creating a table, specify the column name and the corresponding data

types. Currently, supported data types include Boolean, short, int, long, float,
double, and string.

● The value of row key (for example, ATTR1) cannot be null, and its length
must be greater than 0 and less than or equal to 32767.

● The total number of fields in Cols and row key must be the same as that in
the table. Specifically, all fields in the table are mapped to Cols and row key
without sequence requirements specified.

● The combined row key only supports data of the string type. If the combined
row key is used, the length must follow each attribute name. If only one field
is specified as the row key, the field type can be any supported data type and
you do not need to specify the length.

● If the combined row key is used:
– When the row key is inserted, if the actual attribute length is shorter than

the specified length when the attribute is used as the row key, add \0
after the attribute. If it is longer, the attribute will be truncated when it is
inserted into HBase.

– When reading the row key field in HBase, if the actual data length of an
attribute is shorter than that specified when the attribute is used as the
row key, an error message (OutofBoundException) is reported. If it is
longer, the attribute will be truncated during data reading.

Example
CREATE TABLE test_hbase(
ATTR1 int,
ATTR2 int,
ATTR3 string)
using hbase OPTIONS (
'ZKHost'='to-hbase-1174405101-CE1bDm5B.datasource.com:2181',
'TableName'='HBASE_TABLE',
'RowKey'='ATTR1',
'Cols'='ATTR2:CF1.C1, ATTR3:CF1.C2');

1.15.2 Inserting Data to an HBase Table

Function
This statement is used to insert data in a table to the associated HBase table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 53

 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

Keywords
For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-43 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
● The target table must exist.
● In the column family created in Creating a Table and Associating It with

HBase, if the column family specified by Cols in OPTIONS does not exist, an
error is reported when INSERT INTO is executed.

● If the row key, column family, or column you need to insert to the HBase
table already exists, the existing data in HBase table will be overwritten.

● You are advised not to concurrently insert data into a table. If you
concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

● INSERT OVERWRITE is not supported.

Example
● Query data in the user table and insert the data into the test table.

INSERT INTO test
 SELECT ATTR_EXPR

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 54

 FROM user
 WHERE user_name='cyz'
 LIMIT 3
 GROUP BY user_age

● Insert data 1 into the test table.
INSERT INTO test
 VALUES (1);

1.15.3 Querying an HBase Table
This statement is used to query data in an HBase table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword
LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Precautions
The table to be queried must exist. Otherwise, an error is reported.

Example
Query data in the test_ct table.

SELECT * FROM test_hbase limit 100;

Query Pushdown
Query pushdown implements data filtering using HBase. Specifically, the HBase
Client sends filtering conditions to the HBase server, and the HBase server returns
only the required data, speeding up your Spark SQL queries. For the filter criteria
that HBase does not support, for example, query with the composite row key,
Spark SQL performs data filtering.

● Scenarios where query pushdown is supported
– Query pushdown can be performed on data of the following types:

▪ Int

▪ boolean

▪ short

▪ long

▪ double

▪ string

NO TE

Data of the float type does not support query pushdown.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 55

– Query pushdown is not supported for the following filter criteria:

▪ >, <, >=, <=, =, !=, and, or
The following is an example:
select * from tableName where (column1 >= value1 and column2<= value2) or column3 !
= value3

▪ The filtering conditions are like and not like. The prefix, suffix, and
inclusion match are supported.
The following is an example:
select * from tableName where column1 like "%value" or column2 like "value%" or
column3 like "%value%"

▪ IsNotNull()
The following is an example:
select * from tableName where IsNotNull(column)

▪ in and not in
The following is an example:
select * from tableName where column1 in (value1,value2,value3) and column2 not in
(value4,value5,value6)

▪ between _ and _
The following is an example:
select * from tableName where column1 between value1 and value2

▪ Filtering of the row sub-keys in the composite row key
For example, to perform row sub-key query on the composite row
key column1+column2+column3, run the following statement:
select * from tableName where column1= value1

● Scenarios where query pushdown is not supported
– Query pushdown can be performed on data of the following types:

Except for the preceding data types where query pushdown is supported,
data of other types does not support query pushdown.

– Query pushdown is not supported for the following filter criteria:

▪ Length, count, max, min, join, groupby, orderby, limit, and avg

▪ Column comparison
The following is an example:
select * from tableName where column1 > (column2+column3)

1.16 Creating a Datasource Connection with an
OpenTSDB Table

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 56

1.16.1 Creating a Table and Associating It with OpenTSDB

Function

Run the CREATE TABLE statement to create the table and associate it with the
existing metric in OpenTSDB. This syntax supports the OpenTSDB of MRS.

Prerequisites

Before creating a table and associating it with OpenTSDB, you need to create a
datasource connection. For details about operations on the management console,
see

Syntax
CREATE TABLE [IF NOT EXISTS] UQUERY_OPENTSDB_TABLE_NAME
 USING OPENTSDB OPTIONS (
 'host' = 'xx;xx',
 'metric' = 'METRIC_NAME',
 'tags' = 'TAG1,TAG2');

Keyword

Table 1-44 CREATE TABLE parameter description

Parameter Description

host OpenTSDB IP address.
Before obtaining the OpenTSDB IP address, you need to create a
datasource connection first..
● You can also access the MRS OpenTSDB. If you have created

an enhanced datasource connection, enter the IP address and
port number of the node where the OpenTSDB is located. The
format is IP:PORT. If the OpenTSDB has multiple nodes, enter
one of the node IP addresses.

metric Name of the metric in OpenTSDB corresponding to the table to
be created.

tags Tags corresponding to the metric. The tags are used for
classification, filtering, and quick retrieval. You can set 1 to 8
tags, which are separated by commas (,). The parameter value
includes values of all tagKs in the corresponding metric.

Precautions

When creating a table, you do not need to specify the timestamp and value
fields. The system automatically builds the following fields based on the specified
tags. The fields TAG1 and TAG2 are specified by tags.

● TAG1 String

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 57

● TAG2 String
● timestamp Timestamp
● value double

Example
CREATE table opentsdb_table
 USING OPENTSDB OPTIONS (
 'host' = 'opentsdb-3xcl8dir15m58z3.com:4242',
 'metric' = 'city.temp',
 'tags' = 'city,location');

1.16.2 Inserting Data to the OpenTSDB Table

Function
Run the INSERT INTO statement to insert the data in the table to the associated
OpenTSDB metric.

NO TE

If no metric exists on the OpenTSDB, a new metric is automatically created on the
OpenTSDB when data is inserted.

Syntax
INSERT INTO TABLE TABLE_NAME SELECT * FROM DLI_TABLE;
INSERT INTO TABLE TABLE_NAME VALUES(XXX);

Keyword

Table 1-45 INSERT INTO parameter description

Parameter Description

TABLE_NAME Name of the associated OpenTSDB table.

DLI_TABLE Name of the table created.

Precautions
● The inserted data cannot be null. If the inserted data is the same as the

original data or only the value is different, the inserted data overwrites the
original data.

● INSERT OVERWRITE is not supported.
● You are advised not to concurrently insert data into a table. If you

concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

● The TIMESTAMP format supports only yyyy-MM-dd hh:mm:ss.

Example
INSERT INTO TABLE opentsdb_table VALUES('xxx','xxx','2018-05-03 00:00:00',21);

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 58

1.16.3 Querying an OpenTSDB Table
This SELECT command is used to query data in an OpenTSDB table.

NO TE

● If no metric exists in OpenTSDB, an error will be reported when the corresponding table
is queried.

● If the security mode is enabled, you need to set conf:dli.sql.mrs.opentsdb.ssl.enabled
to true when connecting to OpenTSDB.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword
LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Precautions
The table to be queried must exist. Otherwise, an error is reported.

Example
Query data in the opentsdb_table table.

SELECT * FROM opentsdb_table limit 100;

1.17 Creating a Datasource Connection with a DWS
table

1.17.1 Creating a Table and Associating It with DWS

Function
This statement is used to create a table and associate it with an existing DWS
table.

Prerequisites
Before creating a table and associating it with DWS, you need to create a
datasource connection. For details about operations on the management console,
see

Syntax
CREATE TABLE [IF NOT EXISTS] TABLE_NAME
 USING JDBC OPTIONS (
 'url'='xx',
 'dbtable'='db_name_in_DWS.table_name_in_DWS',

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 59

 'passwdauth' = 'xxx',
 'encryption' = 'true');

Keyword

Table 1-46 CREATE TABLE parameter description

Parameter Description

url Before obtaining the DWS IP address, you need to create a
datasource connection first..
If you have created an enhanced datasource connection, you can
use the JDBC Connection String (intranet) provided by DWS or
the intranet address and port number to access DWS. The format
is protocol header: //Internal IP address:Internal network port/
Database name, for example: jdbc:postgresql://
192.168.0.77:8000/postgres.
NOTE

The DWS IP address is in the following format: protocol header://IP
address:port number/database name
The following is an example:
jdbc:postgresql://to-dws-1174405119-ihlUr78j.datasource.com:8000/
postgres
If you want to connect to a database created in DWS, change postgres to
the corresponding database name in this connection.

dbtable Specifies the name or Schema name.Table name of the table that
is associated with the DWS. For example: public.table_name.

user (Discarded) DWS username.

password User password of the DWS cluster.

passwdaut
h

Datasource password authentication name. For details about how
to create datasource authentication, see in the Data Lake Insight
User Guide.

encryption Set this parameter to true when datasource password
authentication is used.

partitionCo
lumn

This parameter is used to set the numeric field used concurrently
when data is read.
NOTE

● The partitionColumn, lowerBound, upperBound, and numPartitions
parameters must be set at the same time.

● To improve the concurrent read performance, you are advised to use
auto-increment columns.

lowerBoun
d

Minimum value of a column specified by partitionColumn. The
value is contained in the returned result.

upperBoun
d

Maximum value of a column specified by partitionColumn. The
value is not contained in the returned result.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 60

Parameter Description

numPartiti
ons

Number of concurrent read operations.
NOTE

When data is read, the number of concurrent operations are evenly
allocated to each task according to the lowerBound and upperBound to
obtain data. The following is an example:
'partitionColumn'='id',
'lowerBound'='0',
'upperBound'='100',
'numPartitions'='2'

Two concurrent tasks are started in DLI. The execution ID of one task is
greater than or equal to 0 and the ID is less than 50, and the execution ID
of the other task is greater than or equal to 50 and the ID is less than 100.

fetchsize Number of data records obtained in each batch during data
reading. The default value is 1000. If this parameter is set to a
large value, the performance is good but more memory is
occupied. If this parameter is set to a large value, memory
overflow may occur.

batchsize Number of data records written in each batch. The default value is
1000. If this parameter is set to a large value, the performance is
good but more memory is occupied. If this parameter is set to a
large value, memory overflow may occur.

truncate Indicates whether to clear the table without deleting the original
table when overwrite is executed. The options are as follows:
● true
● false
The default value is false, indicating that the original table is
deleted and then a new table is created when the overwrite
operation is performed.

isolationLe
vel

Transaction isolation level. The options are as follows:
● NONE
● READ_UNCOMMITTED
● READ_COMMITTED
● REPEATABLE_READ
● SERIALIZABLE
The default value is READ_UNCOMMITTED.

Precautions
When creating a table associated with DWS, you do not need to specify the
Schema of the associated table. DLI automatically obtains the schema of the table
in the dbtable parameter of DWS.

Example
CREATE TABLE IF NOT EXISTS dli_to_dws
 USING JDBC OPTIONS (

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 61

 'url'='jdbc:postgresql://to-dws-1174405119-ih1Ur78j.datasource.com:8000/postgres',
 'dbtable'='test_dws',
 'passwdauth' = 'xxx',
 'encryption' = 'true');

1.17.2 Inserting Data to the DWS Table

Function

This statement is used to insert data in a table to the associated DWS table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...
 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

Keywords

For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-47 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
● The target table must exist.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 62

● When creating the table, you do not need to specify the Schema information.
The Schema information complies with that in the DWS table. If the number
and type of fields selected in the SELECT clause do not match the Schema
information in the DWS table, the system reports an error.

● You are advised not to concurrently insert data into a table. If you
concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

Example
● Query data in the user table and insert the data into the test table.

INSERT INTO test
 SELECT ATTR_EXPR
 FROM user
 WHERE user_name='cyz'
 LIMIT 3
 GROUP BY user_age

● Insert data 1 into the test table.
INSERT INTO test
 VALUES (1);

1.17.3 Querying the DWS Table
This statement is used to query data in a DWS table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword
LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Precautions
The table to be queried must exist. Otherwise, an error is reported.

Example
To query data in the dli_to_dws table, enter the following statement:

SELECT * FROM dli_to_dws limit 100;

1.18 Creating a Datasource Connection with an RDS
Table

1.18.1 Creating a Table and Associating It with RDS

Function
This statement is used to create a table and associate it with an existing RDS
table. This function supports access to the MySQL and PostgreSQL clusters of RDS.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 63

Prerequisites
Before creating a table and associating it with RDS, you need to create a
datasource connection. For details about operations on the management console,
see

Syntax
CREATE TABLE [IF NOT EXISTS] TABLE_NAME
 USING JDBC OPTIONS (
 'url'='xx',
 'driver'='DRIVER_NAME',
 'dbtable'='db_name_in_RDS.table_name_in_RDS',
 'passwdauth' = 'xxx',
 'encryption' = 'true');

Keywords

Table 1-48 CREATE TABLE parameter description

Paramete
r

Description

url Before obtaining the RDS IP address, you need to create a
datasource connection first..
After an enhanced datasource connection is created, use the
internal network domain name or internal network address and
database port number provided by RDS to connect to DLI. If
MySQL is used, the format is protocol header://internal IP
address:internal network port number. If PostgreSQL is used, the
format is protocol header://internal IP address:internal network
port number/database name.
For example: jdbc:mysql://192.168.0.193:3306 or
jdbc:postgresql://192.168.0.193:3306/postgres.

driver JDBC driver class name. To connect to a MySQL cluster, enter
com.mysql.jdbc.Driver. To connect to a PostgreSQL cluster, enter
org.postgresql.Driver.

dbtable ● To access the MySQL cluster, enter Database name.Table
name.
CAUTION

The name of the RDS database cannot contain hyphens (-) or ^.
Otherwise, the table fails to be created.

● To access the PostGre cluster, enter Schema name.Table name
NOTE

The schema name is the name of the database schema. A schema is a
collection of database objects, including tables and views.

user (Discarded) Specifies the RDS username.

password (Discarded) Specifies the RDS username and password.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 64

Paramete
r

Description

passwdaut
h

Datasource password authentication name. For details about how
to create datasource authentication, see in the Data Lake Insight
User Guide.

encryption Set this parameter to true when datasource password
authentication is used.

partitionC
olumn

This parameter is used to set the numeric field used concurrently
when data is read.
NOTE

● The partitionColumn, lowerBound, upperBound, and numPartitions
parameters must be set at the same time.

● To improve the concurrent read performance, you are advised to use
auto-increment columns.

lowerBoun
d

Minimum value of a column specified by partitionColumn. The
value is contained in the returned result.

upperBou
nd

Maximum value of a column specified by partitionColumn. The
value is not contained in the returned result.

numPartiti
ons

Number of concurrent read operations.
NOTE

When data is read, the number of concurrent operations are evenly
allocated to each task according to the lowerBound and upperBound to
obtain data. The following is an example:
'partitionColumn'='id',
'lowerBound'='0',
'upperBound'='100',
'numPartitions'='2'

Two concurrent tasks are started in DLI. The execution ID of one task is
greater than or equal to 0 and the ID is less than 50, and the execution ID
of the other task is greater than or equal to 50 and the ID is less than 100.

fetchsize Number of data records obtained in each batch during data
reading. The default value is 1000. If this parameter is set to a
large value, the performance is good but more memory is
occupied. If this parameter is set to a large value, memory
overflow may occur.

batchsize Number of data records written in each batch. The default value is
1000. If this parameter is set to a large value, the performance is
good but more memory is occupied. If this parameter is set to a
large value, memory overflow may occur.

truncate Indicates whether to clear the table without deleting the original
table when overwrite is executed. The options are as follows:
● true
● false
The default value is false, indicating that the original table is
deleted and then a new table is created when the overwrite
operation is performed.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 65

Paramete
r

Description

isolationLe
vel

Transaction isolation level. The options are as follows:
● NONE
● READ_UNCOMMITTED
● READ_COMMITTED
● REPEATABLE_READ
● SERIALIZABLE
The default value is READ_UNCOMMITTED.

Precautions
When creating a table associated with RDS, you do not need to specify the
Schema of the associated table. DLI automatically obtains the schema of the table
in the dbtable parameter of RDS.

Example
Accessing MySQL:

CREATE TABLE IF NOT EXISTS dli_to_rds
 USING JDBC OPTIONS (
 'url'='jdbc:mysql://to-rds-117405104-3eAHxnlz.datasource.com:3306',
 'driver'='com.mysql.jdbc.Driver',
 'dbtable'='rds_test.test1',
 'passwdauth' = 'xxx',
 'encryption' = 'true');

Accessing PostgreSQL:

CREATE TABLE IF NOT EXISTS dli_to_rds
 USING JDBC OPTIONS (
 'url'='jdbc:postgresql://to-rds-1174405119-oLRHAGE7.datasource.com:3306/postgreDB',
 'driver'='org.postgresql.Driver',
 'dbtable'='pg_schema.test1',
 'passwdauth' = 'xxx',
 'encryption' = 'true');

1.18.2 Inserting Data to the RDS Table

Function
This statement is used to insert data in a table to the associated RDS table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...
 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 66

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

Keywords

For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-49 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
● The target table must exist.
● When creating the table, you do not need to specify the Schema information.

The Schema information complies with that in the RDS table. If the number
and type of fields selected in the SELECT clause do not match the Schema
information in the RDS table, the system reports an error.

● You are advised not to concurrently insert data into a table. If you
concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

Example
● Query data in the user table and insert the data into the test table.

INSERT INTO test
 SELECT ATTR_EXPR
 FROM user
 WHERE user_name='cyz'
 LIMIT 3
 GROUP BY user_age

● Insert data 1 into the test table.
INSERT INTO test
 VALUES (1);

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 67

1.18.3 Querying the RDS Table
This statement is used to query data in an RDS table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword

LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Precautions

The table to be queried must exist. Otherwise, an error is reported.

Example

Query data in the test_ct table.

SELECT * FROM dli_to_rds limit 100;

1.19 Creating a Datasource Connection with a CSS
Table

1.19.1 Creating a Table and Associating It with CSS

Function

This statement is used to create a table and associate it with an existing CSS table.

Prerequisites

Before creating a table and associating it with CSS, you need to create a
datasource connection. For details about operations on the management console,
see

Syntax
CREATE TABLE [IF NOT EXISTS] TABLE_NAME(
 FIELDNAME1 FIELDTYPE1,
 FIELDNAME2 FIELDTYPE2)
 USING CSS OPTIONS (
 'es.nodes'='xx',
 'resource'='type_path_in_CSS',
 'pushdown'='true',
 'strict'='false',
 'batch.size.entries'= '1000',
 'batch.size.bytes'= '1mb',
 'es.nodes.wan.only' = 'true',
 'es.mapping.id' = 'FIELDNAME');

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 68

Keyword

Table 1-50 CREATE TABLE parameter description

Parameter Description

es.nodes Before obtaining the CSS IP address, you need to create a
datasource connection first..
If you have created an enhanced datasource connection, you can
use the internal IP address provided by CSS. The format is
IP1:PORT1,IP2:PORT2.

resource The resource is used to specify the CSS datasource connection
name. You can use /index/type to specify the resource location
(for easier understanding, the index can be seen as database and
type as table).
NOTE

● In ES 6.X, a single index supports only one type, and the type name can
be customized.

● In ES 7.X, a single index uses _doc as the type name and cannot be
customized. To access ES 7.X, set this parameter to index.

pushdown Indicates whether the press function of CSS is enabled. The
default value is set to true. If there are a large number of I/O
transfer tables, the pushdown can be enabled to reduce I/Os
when the where filtering conditions are met.

strict Indicates whether the CSS pushdown is strict. The default value is
set to false. In exact match scenarios, more I/Os are reduced than
pushdown.

batch.size.e
ntries

Maximum number of entries that can be inserted to a batch
processing. The default value is 1000. If the size of a single data
record is so large that the number of data records in the bulk
storage reaches the upper limit of the data amount of a single
batch processing, the system stops storing data and submits the
data based on the batch.size.bytes.

batch.size.b
ytes

Maximum amount of data in a single batch processing. The
default value is 1 MB. If the size of a single data record is so small
that the number of data records in the bulk storage reaches the
upper limit of the data amount of a single batch processing, the
system stops storing data and submits the data based on the
batch.size.entries.

es.nodes.w
an.only

Indicates whether to access the Elasticsearch node using only the
domain name. The default value is false. If the original internal IP
address provided by CSS is used as the es.nodes, you do not need
to set this parameter or set it to false.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 69

Parameter Description

es.mapping
.id

Specifies a field whose value is used as the document ID in the
Elasticsearch node.
NOTE

● The document ID in the same /index/type is unique. If a field that
functions as a document ID has duplicate values, the document with
the duplicate ID will be overwritten when the ES is inserted.

● This feature can be used as a fault tolerance solution. When data is
being inserted, the DLI job fails and some data has been inserted into
Elasticsearch. The data is redundant. If Document id is set, the last
redundant data will be overwritten when the DLI job is executed again.

es.net.ssl Whether to connect to the secure CSS cluster. The default value is
false.

es.certificat
e.name

Name of the datasource authentication used to connect to the
secure CSS cluster. For details about how to create datasource
authentication, see in the Data Lake Insight User Guide.

NO TE

batch.size.entries and batch.size.bytes limit the number of data records and data volume
respectively.

Example
CREATE TABLE IF NOT EXISTS dli_to_css (doc_id String, name string, age int)
 USING CSS OPTIONS (
 es.nodes 'to-css-1174404703-LzwpJEyx.datasource.com:9200',
 resource '/dli_index/dli_type',
 pushdown 'false',
 strict 'true',
 es.nodes.wan.only 'true',
 es.mapping.id 'doc_id');

1.19.2 Inserting Data to the CSS Table

Function

This statement is used to insert data in a table to the associated CSS table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...
 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 70

Keywords

For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-51 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
● The target table must exist.

● When creating the table, you need to specify the schema information. If the
number and type of fields selected in the SELECT clause or in Values do not
match the Schema information in the CSS table, the system reports an error.

● Inconsistent types may not always cause error reports. For example, if the
data of the int type is inserted, but the text type is saved in the CSS Schema,
the int type will be converted to the text type and no error will be reported.

● You are advised not to concurrently insert data into a table. If you
concurrently insert data into a table, there is a possibility that conflicts occur,
leading to failed data insertion.

Example
● Query data in the user table and insert the data into the test table.

INSERT INTO test
 SELECT ATTR_EXPR
 FROM user
 WHERE user_name='cyz'
 LIMIT 3
 GROUP BY user_age

● Insert data 1 into the test table.
INSERT INTO test
 VALUES (1);

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 71

1.19.3 Querying the CSS Table
This statement is used to query data in a CSS table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword
LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Precautions
The table to be queried must exist. Otherwise, an error is reported.

Example
To query data in the dli_to_css table, enter the following statement:

SELECT * FROM dli_to_css limit 100;

1.20 Creating a Datasource Connection with a DCS
Table

1.20.1 Creating a Table and Associating It with DCS

Function
This statement is used to create a table and associate it with an existing DCS key.

Prerequisites
Before creating a table and associating it with DCS, you need to create a
datasource connection and bind it to a queue. For details about operations on the
management console, see

Syntax
● Specified key

CREATE TABLE [IF NOT EXISTS] TABLE_NAME(
 FIELDNAME1 FIELDTYPE1,
 FIELDNAME2 FIELDTYPE2)
 USING REDIS OPTIONS (
 'host'='xx',
 'port'='xx',
 'passwdauth' = 'xxx',
 'encryption' = 'true',
 'table'='namespace_in_redis:key_in_redis',
 'key.column'= 'FIELDNAME1'
);

● Wildcard key

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 72

CREATE TABLE [IF NOT EXISTS] TABLE_NAME(
 FIELDNAME1 FIELDTYPE1,
 FIELDNAME2 FIELDTYPE2)
 USING REDIS OPTIONS (
 'host'='xx',
 'port'='xx',
 'passwdauth' = 'xxx',
 'encryption' = 'true',
 'keys.pattern'='key*:*',
 'key.column'= 'FIELDNAME1'
);

Keyword

Table 1-52 CREATE TABLE parameter description

Parameter Description

host To connect to DCS, you need to create a datasource connection
first.
After creating an enhanced datasource connection, use the
connection address provided by DCS. If there are multiple
connection addresses, select one of them.
NOTE

Currently, only enhanced datasource is supported.

port DCS connection port, for example, 6379.

password Password entered during DCS cluster creation. You do not need
to set this parameter when accessing a non-secure Redis cluster.

passwdauth Datasource password authentication name. For details about
how to create datasource authentication, see in the Data Lake
Insight User Guide.

encryption Set this parameter to true when datasource password
authentication is used.

table The key or hash key in Redis.
● This parameter is mandatory when Redis data is inserted.
● Either this parameter or the keys.pattern parameter when

Redis data is queried.

keys.pattern Use a regular expression to match multiple keys or hash keys.
This parameter is used only for query. Either this parameter or
table is used to query Redis data.

key.column (Optional) Specifies a field in the schema as the key ID in Redis.
This parameter is used together with the table parameter when
data is inserted.

partitions.nu
mber

Number of concurrent tasks during data reading.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 73

Parameter Description

scan.count Number of data records read in each batch. The default value is
100. If the CPU usage of the Redis cluster still needs to be
improved during data reading, increase the value of this
parameter.

iterator.grou
ping.size

Number of data records inserted in each batch. The default
value is 100. If the CPU usage of the Redis cluster still needs to
be improved during the insertion, increase the value of this
parameter.

timeout Timeout interval for connecting to the Redis, in milliseconds. The
default value is 2000 (2 seconds).

NO TE

When connecting to DCS, complex data types such as Array, Struct, and Map are not
supported.
The following methods can be used to process complex data:
● Place the fields of the next level in the Schema field of the same level.
● Write and read data in binary mode, and encode and decode it using user-defined

functions.

Example
● Specified table
create table test_redis(name string, age int) using redis options(
 'host' = '192.168.4.199',
 'port' = '6379',
 'passwdauth' = 'xxx',
 'encryption' = 'true',
 'table' = 'person'
);

● Wildcard table name
create table test_redis_keys_patten(id string, name string, age int) using redis options(
 'host' = '192.168.4.199',
 'port' = '6379',
 'passwdauth' = 'xxx',
 'encryption' = 'true',
 'keys.pattern' = 'p*:*',
 'key.column' = 'id'
);

1.20.2 Inserting Data to a DCS Table

Function
This statement is used to insert data in a table to the DCS key.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 74

 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

Keywords
For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-53 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
● The target table must exist.
● When creating a table, you need to specify the schema information.
● If key.column is specified during table creation, the value of the specified

field is used as a part of the Redis key name. The following is an example:
create table test_redis(name string, age int) using redis options(
 'host' = '192.168.4.199',
 'port' = '6379',
 'password' = '******',
 'table' = 'test_with_key_column',
 'key.column' = 'name'
);
insert into test_redis values("James", 35), ("Michael", 22);

The Redis database contains two tables, naming
test_with_key_column:James and test_with_key_column:Michael
respectively.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 75

● If key.column is not specified during table creation, the key name in Redis
uses the UUID. The following is an example:
create table test_redis(name string, age int) using redis options(
 'host' = '192.168.7.238',
 'port' = '6379',
 'password' = '******',
 'table' = 'test_without_key_column'
);
insert into test_redis values("James", 35), ("Michael", 22);

In Redis, there are two tables named test_without_key_column:uuid.

Example
INSERT INTO test_redis
 VALUES("James", 35), ("Michael", 22);

1.20.3 Querying the DCS Table
This statement is used to query data in a DCS table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword

LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Example

Query data in the test_redis table.

SELECT * FROM test_redis limit 100;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 76

1.21 Creating a Datasource Connection with a DDS
Table

1.21.1 Creating a Table and Associating It with DDS

Function

This statement is used to create a table and associate it with an existing DDS
collection.

Prerequisites

Before creating a table and associating it with DDS, you need to create a
datasource connection and bind it to a queue. For details about operations on the
management console, see

Syntax
CREATE TABLE [IF NOT EXISTS] TABLE_NAME(
 FIELDNAME1 FIELDTYPE1,
 FIELDNAME2 FIELDTYPE2)
 USING MONGO OPTIONS (
 'url'='IP:PORT[,IP:PORT]/[DATABASE][.COLLECTION][AUTH_PROPERTIES]',
 'database'='xx',
 'collection'='xx',
 'passwdauth' = 'xxx',
 'encryption' = 'true'
);

Keyword

Table 1-54 CREATE TABLE parameter description

Parameter Description

url Before obtaining the DDS IP address, you need to create a
datasource connection first..
After creating an enhanced datasource connection, use the
random connection address provided by DDS. The format is as
follows:
"IP:PORT[,IP:PORT]/[DATABASE][.COLLECTION]
[AUTH_PROPERTIES]"
Example: "192.168.4.62:8635,192.168.5.134:8635/test?
authSource=admin"

database DDS database name. If the database name is specified in the URL,
the database name in the URL does not take effect.

collection Collection name in the DDS. If the collection is specified in the
URL, the collection in the URL does not take effect.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 77

Parameter Description

user (Discarded) Username for accessing the DDS cluster.

password (Discarded) Password for accessing the DDS cluster.

passwdaut
h

Datasource password authentication name. For details about how
to create datasource authentication, see in the Data Lake Insight
User Guide.

encryption Set this parameter to true when datasource password
authentication is used.

NO TE

If a collection already exists in DDS, you do not need to specify schema information when
creating a table. DLI automatically generates schema information based on data in the
collection.

Example
create table 1_datasource_mongo.test_mongo(id string, name string, age int) using mongo options(
 'url' = '192.168.4.62:8635,192.168.5.134:8635/test?authSource=admin',
 'database' = 'test',
 'collection' = 'test',
 'passwdauth' = 'xxx',
 'encryption' = 'true');

1.21.2 Inserting Data to the DDS Table

Function

This statement is used to insert data in a table to the associated DDS table.

Syntax
● Insert the SELECT query result into a table.

INSERT INTO DLI_TABLE
 SELECT field1,field2...
 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

● Insert a data record into a table.
INSERT INTO DLI_TABLE
 VALUES values_row [, values_row ...];

● Overwriting the inserted data
INSERT OVERWRITE TABLE DLI_TABLE
 SELECT field1,field2...
 [FROM DLI_TEST]
 [WHERE where_condition]
 [LIMIT num]
 [GROUP BY field]
 [ORDER BY field] ...;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 78

Keywords
For details about the SELECT keywords, see Basic SELECT Statements.

Parameter description

Table 1-55 Parameter description

Parameter Description

DLI_TABLE Name of the table for which a datasource connection
has been created.

DLI_TEST indicates the table that contains the data to be
queried.

field1,field2..., field Column values in the DLI_TEST table must match the
column values and types in the DLI_TABLE table.

where_condition Query condition.

num Limit the query result. The num parameter supports
only the INT type.

values_row Value to be inserted to a table. Use commas (,) to
separate columns.

Precautions
The target table must exist.

Example
● Query data in the user table and insert the data into the test table.

INSERT INTO test
 SELECT ATTR_EXPR
 FROM user
 WHERE user_name='cyz'
 LIMIT 3
 GROUP BY user_age

● Insert data 1 into the test table.
INSERT INTO test
 VALUES (1);

1.21.3 Querying the DDS Table
This statement is used to query data in a DDS table.

Syntax
SELECT * FROM table_name LIMIT number;

Keyword
LIMIT is used to limit the query results. Only INT type is supported by the number
parameter.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 79

Precautions

If schema information is not specified during table creation, the query result
contains the _id field for storing _id in the DOC file.

Example

Query data in the test_mongo table.

SELECT * FROM test_mongo limit 100;

1.22 Views

1.22.1 Creating a View

Function

This statement is used to create views.

Syntax
CREATE [OR REPLACE] VIEW view_name AS select_statement;

Keyword
● CREATE VIEW: creates views based on the given select statement. The result

of the select statement will not be written into the disk.
● OR REPLACE: updates views using the select statement. No error is reported

and the view definition is updated using the SELECT statement if a view
exists.

Precautions
● The view to be created must not exist in the current database. Otherwise, an

error will be reported. When the view exists, you can add keyword OR
REPLACE to avoid the error message.

● The table or view information contained in the view cannot be modified. If
the table or view information is modified, the query may fail.

Example

To create a view named student_view for the queried ID and name of the
student table, run the following statement:

CREATE VIEW student_view AS SELECT id, name FROM student;

1.22.2 Deleting a View

Function

This statement is used to delete views.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 80

Syntax
DROP VIEW [IF EXISTS] [db_name.]view_name;

Keyword
DROP: Deletes the metadata of a specified view. Although views and tables have
many common points, the DROP TABLE statement cannot be used to delete views.

Precautions
The to-be-deleted view must exist. If you run this statement to delete a view that
does not exist, an error is reported. To avoid such an error, you can add IF EXISTS
in this statement.

Example
To delete a view named student_view, run the following statement:

DROP VIEW student_view;

1.23 Viewing the Execution Plan

Function
This statement returns the logical plan and physical execution plan for the SQL
statement.

Syntax
EXPLAIN [EXTENDED | CODEGEN] statement;

Keyword
EXTENDED: After this keyword is specified, the logical and physical plans are
outputted at the same time.

CODEGEN: After this keyword is specified, code generated by using the Codegen is
also outputted.

Precautions
None

Example
To return the logical and physical plans of SELECT * FROM test, run the following
statement:

EXPLAIN EXTENDED select * from test;

1.24 Data Permissions Management

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 81

1.24.1 Data Permissions List
Table 1-56 describes the SQL statement permission matrix in DLI in terms of
permissions on databases, tables, and roles.

Table 1-56 Permission matrix

Category SQL statement Permission Descriptio
n

Database DROP DATABASE
db1

The DROP_DATABASE
permission of database.db1

-

CREATE TABLE
tb1(...)

The CREATE_TABLE
permission of database.db1

-

CREATE VIEW v1 The CREATE_VIEW
permission of database.db1

-

EXPLAIN query The EXPLAIN permission of
database.db1

Depending
on the
permission
s required
by query
statements
.

Table SHOW CREATE
TABLE tb1

The SHOW_CREATE_TABLE
permission of
database.db1.tables.tb1

-

DESCRIBE
[EXTENDED|
FORMATTED] tb1

The DESCRIBE_TABLE
permission of
databases.db1.tables.tb1

-

DROP TABLE [IF
EXISTS] tb1

The DROP_TABLE permission
of database.db1.tables.tb1

-

SELECT * FROM tb1 The SELECT permission of
database.db1.tables.tb1

-

SELECT count(*)
FROM tb1

The SELECT permission of
database.db1.tables.tb1

-

SELECT * FROM
view1

The SELECT permission of
database.db1.tables.view1

-

SELECT count(*)
FROM view1

The SELECT permission of
database.db1.tables.view1

-

LOAD DLI TABLE The INSERT_INTO_TABLE
permission of
database.db1.tables.tb1

-

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 82

Category SQL statement Permission Descriptio
n

INSERT INTO TABLE The INSERT_INTO_TABLE
permission of
database.db1.tables.tb1

-

INSERT OVERWRITE
TABLE

The
INSERT_OVERWRITE_TABLE
permission of
database.db1.tables.tb1

-

ALTER TABLE ADD
COLUMNS

The
ALTER_TABLE_ADD_COLUM
NS permission of
database.db1.tables.tb1

-

ALTER TABLE
RENAME

The ALTER_TABLE_RENAME
permission of
database.db1.tables.tb1

-

ROLE&PRIVI
LEGE

CREATE ROLE The CREATE_ROLE
permission of db

-

DROP ROLE The DROP_ROLE permission
of db

-

SHOW ROLES The SHOW_ROLES
permission of db

-

GRANT ROLES The GRANT_ROLE
permission of db

-

REVOKE ROLES The REVOKE_ROLE
permission of db

-

GRANT PRIVILEGE The GRANT_PRIVILEGE
permission of db or table

-

REVOKE PRIVILEGE The REVOKE_PRIVILEGE
permission of db or table

-

SHOW GRANT The SHOW_GRANT
permission of db or table

-

For privilege granting or revocation on databases and tables, DLI supports the
following permissions:

● Permissions that can be assigned or revoked on databases are as follows:

– DROP_DATABASE (Deleting a database)

– CREATE_TABLE (Creating a table)

– CREATE_VIEW (Creating a view)

– EXPLAIN (Explaining a SQL statement as an execution plan)

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 83

– CREATE_ROLE (Creating a role)
– DROP_ROLE (Deleting a role)
– SHOW_ROLES (Displaying a role)
– GRANT_ROLE (Bounding a role)
– REVOKE_ROLE (Unbinding a role)
– DESCRIBE_TABLE (Describing a table)
– DROP_TABLE (Deleting a table)
– Select (Querying a table)
– INSERT_INTO_TABLE (Inserting)
– INSERT_OVERWRITE_TABLE (Overwriting)
– GRANT_PRIVILEGE (Granting permissions to a database)
– REVOKE_PRIVILEGE (Revoking permissions from a database)
– SHOW_PRIVILEGES (Viewing the database permissions of other users)
– ALTER_TABLE_ADD_PARTITION (Adding partitions to a partitioned table)
– ALTER_TABLE_DROP_PARTITION (Deleting partitions from a partitioned

table)
– ALTER_TABLE_RENAME_PARTITION (Renaming table partitions)
– ALTER_TABLE_RECOVER_PARTITION (Restoring table partitions)
– ALTER_TABLE_SET_LOCATION (Setting the path of a partition)
– SHOW_PARTITIONS (Displaying all partitions)
– SHOW_CREATE_TABLE (Viewing table creation statements)

● Permissions that can be assigned or revoked on tables are as follows:
– DESCRIBE_TABLE (Describing a table)
– DROP_TABLE (Deleting a table)
– Select (Querying a table)
– INSERT_INTO_TABLE (Inserting)
– INSERT_OVERWRITE_TABLE (Overwriting)
– GRANT_PRIVILEGE (Granting permissions to a table)
– REVOKE_PRIVILEGE (Revoking permissions from a table)
– SHOW_PRIVILEGES (Viewing the table permissions of other users)
– ALTER_TABLE_ADD_COLUMNS (Adding a column)
– ALTER_TABLE_RENAME (Renaming a table)
– ALTER_TABLE_ADD_PARTITION (Adding partitions to a partitioned table)
– ALTER_TABLE_DROP_PARTITION (Deleting partitions from a partitioned

table)
– ALTER_TABLE_RENAME_PARTITION (Renaming table partitions)
– ALTER_TABLE_RECOVER_PARTITION (Restoring table partitions)
– ALTER_TABLE_SET_LOCATION (Setting the path of a partition)
– SHOW_PARTITIONS (Displaying all partitions)
– SHOW_CREATE_TABLE (Viewing table creation statements)

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 84

1.24.2 Creating a Role

Function
● This statement is used to create a role in the current database or a specified

database.
● Only users with the CREATE_ROLE permission on the database can create

roles. For example, the administrator, database owner, and other users with
the CREATE_ROLE permission.

● Each role must belong to only one database.

Syntax
CREATE ROLE [db_name].role_name;

Keyword
None

Precautions
● The role_name to be created must not exist in the current database or the

specified database. Otherwise, an error will be reported.
● If db_name is not specified, the role is created in the current database.

Example
CREATE ROLE role1;

1.24.3 Deleting a Role

Function
This statement is used to delete a role in the current database or a specified
database.

Syntax
DROP ROLE [db_name].role_name;

Keyword
None

Precautions
● The role_name to be deleted must exist in the current database or the

specified database. Otherwise, an error will be reported.
● If db_name is not specified, the role is deleted in the current database.

Example
DROP ROLE role1;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 85

1.24.4 Binding a Role

Function
This statement is used to bind a user with a role.

Syntax
GRANT ([db_name].role_name,...) TO (user_name,...);

Keyword
None

Precautions
The role_name and username must exist. Otherwise, an error will be reported.

Example
GRANT role1 TO user_name1;

1.24.5 Unbinding a Role

Function
This statement is used to unbind the user with the role.

Syntax
REVOKE ([db_name].role_name,...) FROM (user_name,...);

Keyword
None

Precautions
role_name and user_name must exist and user_name has been bound to
role_name.

Example
To unbind the user_name1 from role1, run the following statement:

REVOKE role1 FROM user_name1;

1.24.6 Displaying a Role

Function
This statement is used to display all roles or roles bound to the user_name in the
current database.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 86

Syntax
SHOW [ALL] ROLES [user_name];

Keyword

ALL: Displays all roles.

Precautions

Keywords ALL and user_name cannot coexist.

Example
● To display all roles bound to the user, run the following statement:

SHOW ROLES;

● To display all roles in the project, run the following statement:
SHOW ALL ROLES;

NO TE

Only the administrator has the permission to run the show all roles statement.

● To display all roles bound to the user named user_name1, run the following
statement:
SHOW ROLES user_name1;

1.24.7 Granting a Permission

Function

This statement is used to grant permissions to a user or role.

Syntax
GRANT (privilege,...) ON (resource,..) TO ((ROLE [db_name].role_name) | (USER user_name)),...);

Keyword

ROLE: The subsequent role_name must be a role.

USER: The subsequent user_name must be a user.

Precautions
● The privilege must be one of the authorizable permissions. If the object has

the corresponding permission on the resource or the upper-level resource, the
permission fails to be granted. For details about the permission types
supported by the privilege, see Data Permissions List.

● The resource can be a queue, database, table, view, or column. The formats
are as follows:
– Queue format: queues.queue_name

The following table lists the permission types supported by a queue.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 87

Operation Description

DROP_QUEUE Deleting a queue

SUBMIT_JOB Submitting a job

CANCEL_JOB Cancel a job

RESTART Restarting a queue

SCALE_QUEUE Scaling out/in a queue

GRANT_PRIVILEGE Granting queue permissions

REVOKE_PRIVILEGE Revoking queue permissions

SHOW_PRIVILEGES Viewing queue permissions of
other users

– Database format: databases.db_name

For details about the permission types supported by a database, see Data
Permissions List.

– Table format: databases.db_name.tables.table_name
For details about the permission types supported by a table, see Data
Permissions List.

– View format: databases.db_name.tables.view_name
Permission types supported by a view are the same as those supported by
a table. For details, see table permissions in Data Permissions List.

– Column format:
databases.db_name.tables.table_name.columns.column_name
Columns support only the SELECT permission.

Example
Run the following statement to grant user_name1 the permission to delete the
db1 database:

GRANT DROP_DATABASE ON databases.db1 TO USER user_name1;

Run the following statement to grant user_name1 the SELECT permission of data
table tb1 in the db1 database:

GRANT SELECT ON databases.db1.tables.tb1 TO USER user_name1;

Run the following statement to grant role_name the SELECT permission of data
table tb1 in the db1 database:

GRANT SELECT ON databases.db1.tables.tb1 TO ROLE role_name;

1.24.8 Revoking a Permission

Function
This statement is used to revoke permissions granted to a user or role.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 88

Syntax
REVOKE (privilege,...) ON (resource,..) FROM ((ROLE [db_name].role_name) | (USER user_name)),...);

Keyword
ROLE: The subsequent role_name must be a role.

USER: The subsequent user_name must be a user.

Precautions
● The privilege must be the granted permissions of the authorized object in the

resource. Otherwise, the permission fails to be revoked. For details about the
permission types supported by the privilege, see Data Permissions List.

● The resource can be a queue, database, table, view, or column. The formats
are as follows:
– Queue format: queues.queue_name
– Database format: databases.db_name
– Table format: databases.db_name.tables.table_name
– View format: databases.db_name.tables.view_name
– Column format:

databases.db_name.tables.table_name.columns.column_name

Example
To revoke the permission of user user_name1 to delete database db1, run the
following statement:

REVOKE DROP_DATABASE ON databases.db1 FROM USER user_name1;

To revoke the SELECT permission of user user_name1 on table tb1 in database
db1, run the following statement:

REVOKE SELECT ON databases.db1.tables.tb1 FROM USER user_name1;

To revoke the SELECT permission of role role_name on table tb1 in database db1,
run the following statement:

REVOKE SELECT ON databases.db1.tables.tb1 FROM ROLE role_name;

1.24.9 Displaying the Granted Permissions

Function
This statement is used to show the permissions granted to a user or role in the
resource.

Syntax
SHOW GRANT ((ROLE [db_name].role_name) | (USER user_name)) ON resource;

Keyword
ROLE: The subsequent role_name must be a role.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 89

USER: The subsequent user_name must be a user.

Precautions

The resource can be a queue, database, table, view, or column. The formats are as
follows:

● Queue format: queues.queue_name
● Database format: databases.db_name
● Table format: databases.db_name.tables.table_name
● Column format: databases.db_name.tables.table_name.columns.column_name
● View format: databases.db_name.tables.view_name

Example

Run the following statement to show permissions of user_name1 in the db1
database:

SHOW GRANT USER user_name1 ON databases.db1;

Run the following statement to show permissions of role_name on table tb1 in
the db1 database:

SHOW GRANT ROLE role_name ON databases.db1.tables.tb1;

1.24.10 Displaying the Binding Relationship Between All Roles
and Users

Function

This statement is used to display the binding relationship between roles and a
user in the current database.

Syntax
SHOW PRINCIPALS ROLE;

Keyword

None

Precautions

The ROLE variable must exist.

Example
SHOW PRINCIPALS role1;

1.25 Data Types

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 90

1.25.1 Overview
Data type is a basic attribute of data. It is used to distinguish different types of
data. Different data types occupy different storage space and support different
operations. Data is stored in data tables in the database. A data type is specified
for each column of a data table. Therefore, data to be stored in a data table must
comply with the attribute of the specific data type. Otherwise, errors may occur.

DLI only supports primitive data types.

1.25.2 Primitive Data Types
Table 1-57 lists the primitive data types supported by DLI.

Table 1-57 Primitive data types

Data Type Description Storage
Space

Value Range Support by
OBS Table

INT Signed integer 4 bytes –2147483648
to
2147483647

Yes

STRING Character string - - Yes

FLOAT Single-precision
floating point

4 bytes - Yes

DOUBLE Double-precision
floating-point

8 bytes - Yes

DECIMAL(pr
ecision,scale
)

Decimal number.
Data type of valid
fixed places and
decimal places, for
example, 3.5.
● precision:

indicates the
maximum
number of digits
that can be
displayed.

● scale: indicates
the number of
decimal places.

- 1<=precision<
=38
0<=scale<=38
If precision
and scale are
not specified,
DECIMAL
(38,38) is
used by
default.

Yes

BOOLEAN Boolean 1 byte TRUE/FALSE Yes

SMALLINT/
SHORT

Signed integer 2 bytes -32768~3276
7

Yes

TINYINT Signed integer 1 byte -128~127 Yes

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 91

Data Type Description Storage
Space

Value Range Support by
OBS Table

BIGINT/
LONG

Signed integer 8 bytes –
92233720368
54775808 to
92233720368
54775807

Yes

TIMESTAMP Timestamp in raw
data format,
indicating the date
and time Example:
1621434131222

- - Yes

CHAR Fixed-length
character string

- - Yes

VARCHAR Variable-length
character string

- - Yes

DATE Date type in the
format of yyyy-mm-
dd, for example,
2014-05-29

- DATE does
not contain
time
information.
Its value
ranges from
0000-01-01
to
9999-12-31.

Yes

NO TE

● VARCHAR and CHAR data is stored in STRING type on DLI. Therefore, the string that
exceeds the specified length will not be truncated.

● FLOAT data is stored as DOUBLE data on DLI.

INT
Signed integer with a storage space of 4 bytes. Its value ranges from –2147483648
to 2147483647. If this field is NULL, value 0 is used by default.

STRING
Character string.

FLOAT
Single-precision floating point with a storage space of 4 bytes. If this field is NULL,
value 0 is used by default.

Due to the limitation of storage methods of floating point data, do not use the
formula a==b to check whether two floating point values are the same. You are

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 92

advised to use the formula: absolute value of (a-b) <= EPSILON. EPSILON indicates
the allowed error range which is usually 1.19209290E-07F. If the formula is
satisfied, the compared two floating point values are considered the same.

DOUBLE
Double-precision floating point with a storage space of 8 bytes. If this field is
NULL, value 0 is used by default.

Due to the limitation of storage methods of floating point data, do not use the
formula a==b to check whether two floating point values are the same. You are
advised to use the formula: absolute value of (a-b) <= EPSILON. EPSILON indicates
the allowed error range which is usually 2.2204460492503131E-16. If the formula
is satisfied, the compared two floating point values are considered the same.

DECIMAL
Decimal(p,s) indicates that the total digit length is p, including p – s integer digits
and s fractional digits. p indicates the maximum number of decimal digits that
can be stored, including the digits to both the left and right of the decimal point.
The value of p ranges from 1 to 38. s indicates the maximum number of decimal
digits that can be stored to the right of the decimal point. The fractional digits
must be values ranging from 0 to p. The fractional digits can be specified only
after significant digits are specified. Therefore, the following inequality is
concluded: 0 ≤ s ≤ p. For example, decimal (10,6) indicates that the value contains
10 digits, in which there are four integer digits and six fractional digits.

BOOLEAN
Boolean, which can be TRUE or FALSE.

SMALLINT/SHORT
Signed integer with a storage space of 2 bytes. Its value ranges from –32768 to
32767. If this field is NULL, value 0 is used by default.

TINYINT
Signed integer with a storage space of 1 byte. Its value ranges from –128 to 127. If
this field is NULL, value 0 is used by default.

BIGINT/LONG
Signed integer with a storage space of 8 bytes. Its value ranges from –
9223372036854775808 to 9223372036854775807. It does not support scientific
notation. If this field is NULL, value 0 is used by default.

TIMESTAMP
Legacy UNIX TIMESTAMP is supported, providing the precision up to the
microsecond level. TIMESTAMP is defined by the difference between the specified
time and UNIX epoch (UNIX epoch time: 1970-01-01 00:00:00) in seconds. Data of
the STRING type supports implicit conversion to TIMESTAMP. (The STRING must in

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 93

the yyyy-MM-dd HH:MM:SS[.ffffff] format. The precision after the decimal point is
optional.)

CHAR
Character string with a fixed length. In DLI, the STRING type is used.

VARCHAR
VARCHAR is declared with a length that indicates the maximum number of
characters in a string. During conversion from STRING to VARCHAR, if the
number of characters in STRING exceeds the specified length, the excess
characters of STRING are automatically trimmed. Similar to STRING, the spaces at
the end of VARCHAR are meaningful and affect the comparison result. In DLI, the
STRING type is used.

DATE
DATE supports only explicit conversion (cast) with DATE, TIMESTAMP, and
STRING. For details, see Table 1-58.

Table 1-58 cast function conversion

Explicit Conversion Conversion Result

cast(date as date) Same as value of DATE.

cast(timestamp as
date)

The date (yyyy-mm-dd) is obtained from TIMESTAMP
based on the local time zone and returned as the value
of DATE.

cast(string as date) If the STRING is in the yyyy-MM-dd format, the
corresponding date (yyyy-mm-dd) is returned as the
value of DATE. If the STRING is not in the yyyy-MM-
dd format, NULL is returned.

cast(date as
timestamp)

Timestamp that maps to the zero hour of the date
(yyyy-mm-dd) specified by DATE is generated based
on the local time zone and returned as the value of
DATE.

cast(date as string) A STRING in the yyyy-MM-dd format is generated
based on the date (yyyy-mm-dd) specified by DATE
and returned as the value of DATE.

1.25.3 Complex Data Types
Spark SQL supports complex data types, as shown in Table 1-59.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 94

Table 1-59 Complex data types

Data
Type

Description Syntax

ARRAY A set of ordered fields that construct an
ARRAY with the specified values. The
value can be of any type and the data
type of all fields must be the same.

array(<value>,<value>[, ...])
For details, see Example of
ARRAY.

MAP A group of unordered key/value pairs
used to generate a MAP. The key must
be native data type, but the value can
be either native data type or complex
data type. The type of the same MAP
key, as well as the MAP value, must be
the same.

map(K <key1>, V <value1>,
K <key2>, V <value2>[, ...])
For details, see Example of
Map.

STRUC
T

Indicates a group of named fields. The
data types of the fields can be
different.

struct(<value1>,<value2>[, ..
.])
For details, see Example of
STRUCT.

Restrictions
● When a table containing fields of the complex data type is created, the

storage format of this table cannot be CSV (txt).
● If a table contains fields of the complex data type, data in CSV (txt) files

cannot be imported to the table.
● When creating a table of the MAP data type, you must specify the schema

and do not support the date, short, and timestamp data types.
● For the OBS table in JSON format, the key type of the MAP supports only the

STRING type.
● The key of the MAP type cannot be NULL. Therefore, the MAP key does not

support implicit conversion between inserted data formats where NULL values
are allowed. For example, the STRING type cannot be converted to other
native types, the FLOAT type cannot be converted to the TIMESTAMP type,
and other native types cannot be converted to the DECIMAL type.

● Values of the double or boolean data type cannot be included in the STRUCT
data type does not support the.

Example of ARRAY
Create an array_test table, set id to ARRAY<INT>, and name to STRING. After
the table is created, insert test data into array_test. The procedure is as follows:

1. Create a table.
CREATE TABLE array_test(name STRING, id ARRAY < INT >) USING
PARQUET;

2. Run the following statements to insert test data:
INSERT INTO array_test VALUES ('test',array(1,2,3,4));

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 95

INSERT INTO array_test VALUES ('test2',array(4,5,6,7))
INSERT INTO array_test VALUES ('test3',array(7,8,9,0));

3. Query the result.
To query all data in the array_test table, run the following statement:
SELECT * FROM array_test;
test3 [7,8,9,0]
test2 [4,5,6,7]
test [1,2,3,4]

To query the data of element 0 in the id array in the array_test table, run the
following statement:
SELECT id[0] FROM array_test;
7
4
1

Example of Map
Create the map_test table and set score to map<STRING,INT>. The key is of the
STRING type and the value is of the INT type. After the table is created, insert test
data to map_test. The procedure is as follows:

1. Create a table.
CREATE TABLE map_test(id STRING, score map<STRING,INT>) USING
PARQUET;

2. Run the following statements to insert test data:
INSERT INTO map_test VALUES ('test4',map('math',70,'chemistry',84));
INSERT INTO map_test VALUES ('test5',map('math',85,'chemistry',97));
INSERT INTO map_test VALUES ('test6',map('math',88,'chemistry',80));

3. Query the result.
To query all data in the map_test table, run the following statement:
SELECT * FROM map_test;
test6 {"chemistry":80,"math":88}
test5 {"chemistry":97,"math":85}
test4 {"chemistry":84,"math":70}

To query the math score in the map_test table, run the following statement:
SELECT id, score['Math'] FROM map_test;
test6 88
test5 85
test4 70

Example of STRUCT
Create a struct_test table and set info to the STRUCT<name:STRING, age:INT>
data type (the field consists of name and age, where the type of name is STRING
and age is INT). After the table is created, insert test data into the struct_test
table. The procedure is as follows:

1. Create a table.
CREATE TABLE struct_test(id INT, info STRUCT<name:STRING,age:INT>)
USING PARQUET;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 96

2. Run the following statements to insert test data:
INSERT INTO struct_test VALUES (8, struct('zhang',23));
INSERT INTO struct_test VALUES (9, struct('li',25));
INSERT INTO struct_test VALUES (10, struct('wang',26));

3. Query the result.
To query all data in the struct_test table, run the following statement:
SELECT * FROM struct_test;
8 {"name":"zhang","age":23}
10 {"name":"wang","age":26}
9 {"name":"li","age":25}

Query name and age in the struct_test table.
SELECT id,info.name,info.age FROM struct_test;
8 zhang 23
10 wang 26
9 li 25

1.26 User-Defined Functions

1.26.1 Creating a Function

Function

DLI allows you to create and use user-defined functions (UDF) and user-defined
table functions (UDTF) in Spark jobs.

Syntax
CREATE [TEMPORARY] FUNCTION [db_name.]function_name AS class_name
 [USING resource,...]

resource:
 : (JAR|FILE|ARCHIVE)file_uri

Precautions
● If a function with the same name exists in the database, the system reports

an error.
● Only the Hive syntax can be used to create functions.
● If you specify the same class name for two UDFs, the functions conflict

though the package names are different. Avoid this problem because it causes
failure of job execution.

Keywords
● TEMPORARY: The created function is available only in the current session and

is not persisted to the underlying metabase, if any. The database name
cannot be specified for a temporary function.

● USING <resources>: resources to be loaded. It can be a list of JARs, files, or
URIs.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 97

Example
Create the mergeBill function.

CREATE FUNCTION mergeBill AS 'com.xxx.hiveudf.MergeBill'
 using jar 'obs://onlyci-7/udf/MergeBill.jar';

1.26.2 Deleting a Function

Function
This statement is used to delete functions.

Syntax
DROP [TEMPORARY] FUNCTION [IF EXISTS] [db_name.] function_name;

Keywords
● TEMPORARY: Indicates whether the function to be deleted is a temporary

function.
● IF EXISTS: Used when the function to be deleted does not exist to avoid

system errors.

Precautions
● An existing function is deleted. If the function to be deleted does not exist,

the system reports an error.
● Only the HIVE syntax is supported.

Example
The mergeBill function is deleted.

DROP FUNCTION mergeBill;

1.26.3 Displaying Function Details

Function
Displays information about a specified function.

Syntax
DESCRIBE FUNCTION [EXTENDED] [db_name.] function_name;

Keywords
EXTENDED: displays extended usage information.

Precautions
The metadata (implementation class and usage) of an existing function is
returned. If the function does not exist, the system reports an error.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 98

Example
Displays information about the mergeBill function.

DESCRIBE FUNCTION mergeBill;

1.26.4 Displaying All Functions

Function
View all functions in the current project.

Syntax
SHOW [USER|SYSTEM|ALL] FUNCTIONS ([LIKE] regex | [db_name.] function_name);

In the preceding statement, regex is a regular expression. For details about its
parameters, see Table 1-60.

Table 1-60 Parameter examples

Expression Description

'xpath*' Matches all functions whose names start with xpath.
Example: SHOW FUNCTIONS LIKE'xpath* ;
Matches functions whose names start with xpath,
including xpath, xpath_int, and xpath_string.

'x[a-z]+' Matches functions whose names start with x and is
followed by one or more characters from a to z. For
example, xpath and xtest can be matched.

'x.*h' Matches functions whose names start with x, end with
h, and contain one or more characters in the middle. For
example, xpath and xtesth can be matched.

For details about other expressions, see the official website.

Keywords
LIKE: This qualifier is used only for compatibility and has no actual effect.

Precautions
The function that matches the given regular expression or function name are
displayed. If no regular expression or name is provided, all functions are displayed.
If USER or SYSTEM is specified, user-defined Spark SQL functions and system-
defined Spark SQL functions are displayed, respectively.

Example
This statement is used to view all functions.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 99

SHOW FUNCTIONS;

1.27 Built-in Functions

1.27.1 Mathematical Functions
Table 1-61 lists the mathematical functions supported in DLI.

Table 1-61 Mathematical functions

Function Return
Type

Description

round(DOUBLE a) DOUBLE Round a.

round(DOUBLE a,
INT d)

DOUBLE Round a to d decimal places. Example:
round(21.263,2) = 21.26.

bround(DOUBLE
a)

DOUBLE Round off a figure using the HALF_EVEN
rounding mode.
If the figure to be rounded off ends in 5, the
HALF_EVEN rounding mode is as follows:
● Round up if the digit in the place preceding

5 is odd.
● Round down if the digit in the place

preceding 5 is even.
Example: bround(7.5) = 8.0, bround(6.5) = 6.0.

bround(DOUBLE
a, INT d)

DOUBLE Retain d decimal places and round the d+1
decimal place using the HALF_EVEN rounding
mode.
If the figure to be rounded off ends in 5, it will
be rounded off as follows:
● Round up if the d decimal digit is odd.
● Round down if the d decimal digit is even.
Example: bround(8.25, 1) = 8.2, bround(8.35,
1) = 8.4.

floor(DOUBLE a) BIGINT Return the largest integer that is less than or
equal to a. Example: floor(21.2) = 21.

ceil(DOUBLE a),
ceiling(DOUBLE a)

BIGINT Return the smallest integer that is greater
than or equal to a. Example: ceil(21.2) = 22.

rand(), rand(INT
seed)

DOUBLE Return a random number that is distributed
uniformly from 0 through 1 (1 is exclusive). If
the seed is specified, a stable random number
sequence is displayed.

exp(DOUBLE a),
exp(DECIMAL a)

DOUBLE Return the value of e raised to the power of a.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 100

Function Return
Type

Description

ln(DOUBLE a),
ln(DECIMAL a)

DOUBLE Return the natural logarithm of the argument
a.

log10(DOUBLE a),
log10(DECIMAL a)

DOUBLE Return the base 10 logarithm of the argument
a.

log2(DOUBLE a),
log2(DECIMAL a)

DOUBLE Return the base 2 logarithm of the argument
a.

log(DOUBLE base,
DOUBLE a)
log(DECIMAL
base, DECIMAL a)

DOUBLE Return the base base logarithm of the
argument a.

pow(DOUBLE a,
DOUBLE p),
power(DOUBLE a,
DOUBLE p)

DOUBLE Return the value of a raised to the power of p.

sqrt(DOUBLE a),
sqrt(DECIMAL a)

DOUBLE Return the square root of a.

bin(BIGINT a) STRING Return a number in binary format.

hex(BIGINT a)
hex(STRING a)

STRING Convert an integer or character to its
hexadecimal representation.

conv(BIGINT num,
INT from_base,
INT to_base),
conv(STRING
num, INT
from_base, INT
to_base)

STRING Convert a number from from_base to
to_base. Example: Convert 5 from decimal to
quaternary using conv(5,10,4) = 11.

abs(DOUBLE a) DOUBLE Return the absolute value.

pmod(INT a, INT
b), pmod(DOUBLE
a, DOUBLE b)

INT or
DOUBLE

Return the positive value of the remainder
after division of a by b.

sin(DOUBLE a),
sin(DECIMAL a)

DOUBLE Return the sine value of a.

asin(DOUBLE a),
asin(DECIMAL a)

DOUBLE Return the arc sine value of a.

cos(DOUBLE a),
cos(DECIMAL a)

DOUBLE Return the cosine value of a.

acos(DOUBLE a),
acos(DECIMAL a)

DOUBLE Return the arc cosine value of a.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 101

Function Return
Type

Description

tan(DOUBLE a),
tan(DECIMAL a)

DOUBLE Return the tangent value of a.

atan(DOUBLE a),
atan(DECIMAL a)

DOUBLE Return the arc tangent value of a.

degrees(DOUBLE
a),
degrees(DECIMAL
a)

DOUBLE Convert the value of a from radians to
degrees.

radians(DOUBLE
a),
radians(DECIMAL
a)

DOUBLE Convert the value of a from degrees to
radians.

positive(INT a),
positive(DOUBLE
a)

INT or
DOUBLE

Return a. Example: positive(2) = 2.

negative(INT a),
negative(DOUBLE
a)

INT or
DOUBLE

Return –a. Example: negative(2) = –2.

sign(DOUBLE a),
sign(DECIMAL a)

DOUBLE
or INT

Return the sign of a. 1.0 is returned if a is
positive. –1.0 is returned if a is negative.
Otherwise, 0.0 is returned.

e() DOUBLE Return the value of e.

pi() DOUBLE Return the value of pi.

factorial(INT a) BIGINT Return the factorial of a.

cbrt(DOUBLE a) DOUBLE Return the cube root of a.

shiftleft(TINYINT|
SMALLINT|INT a,
INT b)
shiftleft(BIGINT a,
INT b)

INT
BIGINT

Bitwise signed left shift. Interpret a as a binary
number and shift the binary number b
positions to the left.

shiftright(TINYINT
|SMALLINT|INT a,
INT b)
shiftright(BIGINT
a, INT b)

INT
BIGINT

Bitwise signed right shift. Interpret a as a
binary number and shift the binary number b
positions to the right.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 102

Function Return
Type

Description

shiftrightunsigne
d(TINYINT|
SMALLINT|INT a,
INT b),
shiftrightunsigne
d(BIGINT a, INT
b)

INT
BIGINT

Bitwise unsigned right shift. Interpret a as a
binary number and shift the binary number b
positions to the right.

greatest(T v1, T
v2, ...)

T Return the maximum value of a list of values.

least(T v1, T
v2, ...)

T Return the minimum value of a list of values.

1.27.2 Date Functions
Table 1-62 lists the date functions supported in DLI.

Table 1-62 Date/time functions

Function Return
Type

Description

from_unixtime(bigi
nt unixtime[, string
format])

STRING Convert a timestamp to the time format "yyyy-
MM-dd HH:mm:ss" or
"yyyyMMddHHmmss.uuuuuu".
For example, select
FROM_UNIXTIME(1608135036,'yyyy-MM-dd
HH:mm:ss').

unix_timestamp() BIGINT Return a Unix timestamp (the number of
seconds that have elapsed since 1970-01-01
00:00:00) represented by an unsigned integer
when the function is called without
arguments.

unix_timestamp(str
ing date)

BIGINT Return the number of seconds between a
specified date and 1970-01-01 00:00:00.

unix_timestamp(str
ing date, string
pattern)

BIGINT Convert a time string with a given pattern to a
Unix timestamp. Example:
unix_timestamp("2009-03-20", "yyyy-MM-dd")
= 1237532400.

to_date(string
timestamp)

STRING Return the date part of a time string. Example:
to_date("1970-01-01 00:00:00") =
"1970-01-01".

year(string date) INT Return the year part of a date.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 103

Function Return
Type

Description

quarter(string
date/timestamp/
string)

INT Return the quarter of the year for a date,
timestamp, or string. Example:
quarter('2015-04-01')=2.

month(string date) INT Return the month (from 1 to 12) part of a
date.

day(string date)
dayofmonth(string
date)

INT Return the day part of a date.

hour(string date) INT Return the hour (from 0 to 23) part of a date.

minute(string date) INT Return the minute (from 0 to 59) part of a
date.

second(string date) INT Return the second (from 0 to 59) part of a
date.

weekofyear(string
date)

INT Return the week number (from 0 to 53) of a
date.

datediff(string
enddate, string
startdate)

INT Return the number of days from startdate to
enddate.

date_add(string
startdate, int days)

STRING Add a number of days to a date.

date_sub(string
startdate, int days)

STRING Subtract a number of days from a date.

from_utc_timestam
p(string timestamp,
string timezone)

TIMESTA
MP

Convert a UTC timestamp to a timestamp in a
given time zone. For example,
from_utc_timestamp('1970-01-01
08:00:00','PST') returns 1970-01-01 00:00:00.

to_utc_timestamp(s
tring timestamp,
string timezone)

TIMESTA
MP

Convert a timestamp in a given time zone to a
UTC timestamp. For example,
to_utc_timestamp('1970-01-01 00:00:00','PST')
returns 1970-01-01 08:00:00.

current_date() DATE Return the current date, for example,
2016-07-04.

current_timestamp(
)

TIMESTA
MP

Return the current time, for example,
2016-07-04 11:18:11.685.

add_months(string
start_date, int
num_months)

STRING Return the date that is num_months after
start_date.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 104

Function Return
Type

Description

last_day(string
date)

STRING Return the last day of the month to which a
date belongs. The returned date is in the
format of yyyy-MM-dd, for example,
2015-08-31.

next_day(string
start_date, string
day_of_week)

STRING Return the first date that is later than
start_date and nearest to day_of_week. The
returned date in the format of yyyy-MM-dd.
day_of_week specifies a day of a week. For
example, the value of day_of_week can be
Monday or FRIDAY.

trunc(string date,
string format)

STRING Reset the date in a specified format. Supported
formats are MONTH/MON/MM and YEAR/
YYYY/YY. Example: trunc('2015-03-17', 'MM') =
2015-03-01.

months_between(st
ring date1, string
date2)

DOUBLE Return number of months between dates
date1 and date2.

date_format(date/
timestamp/string
ts, string fmt)

STRING Return the formatted value of date/
timestamp/string. The Java
SimpleDateFormat format is supported.
Example: date_format('2015-04-08', 'y') =
'2015'.
In the format, y indicates the year. Y indicates
the year when the current week is located. A
week starts from Sunday and ends on
Saturday. If a week crosses years, this week is
counted as the next year.

1.27.3 String Functions
Table 1-63 lists the string functions supported by DLI.

Table 1-63 String functions

Function Return Type Description

ascii(string str) INT Returns the numeric value of the first
character in a string.

concat(string A,
string B...)

STRING Return a string resulting from
concatenating the input strings. This
function can take any number of input
strings.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 105

Function Return Type Description

concat_ws(string
SEP, string A,
string B...)

STRING Return a string resulting from
concatenating the input strings, which
are separated by specified separators.

encode(string src,
string charset)

BINARY Encode src in the encoding mode
specified by charset.

find_in_set(string
str, string strList)

INT Return the position of the first
occurrence of str in strList. If the value
of any parameter is NULL, NULL is
returned. If the first parameter
contains a comma (,), 0 is returned.

get_json_object(str
ing json_string,
string path)

STRING Parse the JSON object in a specified
JSON path. The function will return
NULL if the JSON object is invalid.

instr(string str,
string substr)

INT Return the position of the first
occurrence of substr in str. Return
NULL if NULL is contained in the
parameters and return 0 if substr does
not exist in str. Note that the subscripts
start from 1.

length(string A) INT Return the length of a string.

locate(string
substr, string str[,
int pos])

INT Return the position of the first
occurrence of substr in str after
position pos (starting from 1).

lower(string A)
lcase(string A)

STRING Convert all characters of a string to
lower case.

lpad(string str, int
len, string pad)

STRING Return a string of a specified length. If
the length of the given string (str) is
shorter than the specified length (len),
the given string is left-padded with pad
to the specified length.

ltrim(string A) STRING Trim spaces from the left hand side of
a string.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 106

Function Return Type Description

parse_url(string
urlString, string
partToExtract [,
string
keyToExtract])

STRING Return the specified part of the
specified URL. Valid values of
partToExtract include HOST, PATH,
QUERY, REF, PROTOCOL, AUTHORITY,
FILE, and USERINFO.
For example, parse_url ('http://
facebook.com/path1/p.php?
k1=v1&k2=v2#Ref1 ',' HOST ') returns
'facebook.com'.
When the second parameter is QUERY,
the third parameter can be used to
extract the value of a specific
parameter. For example,
parse_url('http://facebook.com/
path1/p.php?k1=v1&k2=v2#Ref1',
'QUERY', 'k1') returns 'v1'.

printf(String
format, Obj...
args)

STRING Print the input according to a specified
format.

regexp_extract(stri
ng subject, string
pattern, int index)

STRING Extract the string specified by the
regular expression. regexp_extract
('foothebar ',' foo (.*?) (bar) '2)
returns 'bar.'

regexp_replace(str
ing A, string B,
string C)

STRING Replace character B in string A with
character C.

repeat(string str,
int n)

STRING Repeat a string N times.

reverse(string A) STRING Return the reversed string.

rpad(string str, int
len, string pad)

STRING Return a string of a specified length. If
the length of the given string (str) is
shorter than the specified length (len),
the given string is right-padded with
pad to the specified length.

rtrim(string A) STRING Trim spaces from the right hand side of
a string.

space(int n) STRING Returns a specified number of spaces.

substr(string A, int
start)
substring(string A,
int start)

STRING Return the substring starting from the
specified start position in string A till
the end of the string.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 107

Function Return Type Description

substr(string A, int
start, int len)
substring(string A,
int start, int len)

STRING Return the substring of a specified
length starting from the specified start
position in A string.

substring_index(st
ring A, string
delim, int count)

STRING Return the substring from string A
before count occurrences of the
delimiter delim.

translate(string|
char|varchar input,
string|char|varchar
from, string|char|
varchar to)

STRING Translate the input string by replacing
the characters or string specified by
from with the characters or string
specified by to. For example, replace
bcd in abcde with BCD using translate
("abcde", "bcd", "BCD").

trim(string A) STRING Trim spaces from both ends of a string.

upper(string A)
ucase(string A)

STRING Convert all characters of a string to
upper case.

initcap(string A) STRING Convert the first letter of each word of
a string to upper case and all other
letters to lower case.

levenshtein(string
A, string B)

INT Return the Levenshtein distance
between two strings. Example:
levenshtein ('kitten ',' sitting ') = 3.

soundex(string A) STRING Return the soundex string from str.
Example: soundex ('Miller ') = M460.

1.27.4 Aggregate Functions
An aggregate function performs a calculation operation on a set of input values
and returns a value. For example, the COUNT function counts the number of rows
retrieved by an SQL statement. Table 1-64 lists aggregate functions.

Table 1-64 Aggregate functions

Function Return Type Description

count(*),
count(expr),
count(DISTINCT
expr[, expr...])

BIGINT Return the total number of retrieved records.

sum(col),
sum(DISTINCT
col)

DOUBLE Return the sum of the values in a column.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 108

Function Return Type Description

avg(col),
avg(DISTINCT
col)

DOUBLE Return the average of the values in a
column.

min(col) DOUBLE Return the minimum value of a column.

max(col) DOUBLE Return the maximum value of a column.

variance(col),
var_pop(col)

DOUBLE Return the variance of a numeric column.

var_samp(col) DOUBLE Return the sample variance of a numeric
column.

stddev_pop(col) DOUBLE Return the deviation of a numeric column.

stddev_samp(col) DOUBLE Return the sample deviation of a numeric
column.

covar_pop(col1,
col2)

DOUBLE Return the covariance of a pair of numeric
columns.

covar_samp(col1,
col2)

DOUBLE Return the sample covariance of a pair of
numeric columns.

corr(col1, col2) DOUBLE Return the coefficient of correlation of a pair
of numeric columns.

percentile(BIGINT
col, p)

DOUBLE Return the exact pth percentile of a column.
p must be between 0 and 1. Otherwise, this
function returns null. This function does not
work with floating point types.

percentile_appro
x(DOUBLE col, p
[, B])

DOUBLE Return an approximate pth percentile of a
numeric column (including floating point
types) in a group. p must be between 0 and
1. B controls approximation accuracy. Higher
values of B mean better approximations,
and the default value is 10,000. When the
number of distinct values in the numeric
column is smaller than B, an exact
percentile value is returned.

NO TE

Functions such as var_pop, stddev_pop, var_samp, stddev_samp, covar_pop, covar_samp,
corr, and percentile_approx, do not support non-numeral data types, such as TimeStamp.

1.27.5 Window Functions
A window function performs a calculation operation on a set of values related to
the current value. A window function can be an aggregate function used in the
GROUP BY clause, such as sum, max, min, count, and avg functions. The window

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 109

functions also include the functions listed in Table 1-65. A window contains
multiple rows defined by an OVER clause. A window function works on one
window.

Table 1-65 Functions

Function Return Type Description

first_value(c
ol)

Data type of
the argument.

Return the value of the first data record from a
column.

last_value(co
l)

Data type of
the argument.

Return the value of the last data record from a
column.

lag
(col,n,DEFAU
LT)

Data type of
the argument.

Return the value from the nth row preceding
the current row. The first argument specifies
the column name. The second argument
specifies the nth row preceding the current
row. The configuration of the second argument
is optional, and the default argument value is
1 if the argument is not specified. The third
argument is set to a default value. If the nth
row preceding the current row is null, the
default value is used. The default value of the
third argument is NULL if the argument is not
specified.

lead
(col,n,DEFAU
LT)

Data type of
the argument.

Return the value from the nth row following
the current row. The first argument specifies
the column name. The second argument
specifies the nth row following the current row.
The configuration of the second argument is
optional, and the default argument value is 1 if
the argument is not specified. The third
argument is set to a default value. If the nth
row following the current row is null, the
default value is used. The default value of the
third argument is NULL if the argument is not
specified.

row_numbe
r() over
(order by
col_1[,col_2 .
..])

INT Assign a unique number to each row.

rank() INT Return the rank of a value in a set of values.
When multiple values share the same rank, the
next rank in the sequence is not consecutive.

cume_dist() DOUBLE Calculate the relative position of a value in a
row.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 110

Function Return Type Description

percent_ran
k()

DOUBLE Return the rank of a value from the column
specified by the ORDER BY clause of the
window. The return value is a decimal between
0 and 1, which is calculated using (RANK -
1)/(- 1).

1.28 Basic SELECT Statements

Function

This statement is a basic query statement and is used to return the query results.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM table_reference
 [WHERE where_condition]
 [GROUP BY col_name_list]
 [ORDER BY col_name_list][ASC | DESC]
 [CLUSTER BY col_name_list | DISTRIBUTE BY col_name_list]
 [SORT BY col_name_list]]
 [LIMIT number];

Keyword

Table 1-66 SELECT parameter description

Parameter Description

ALL Returns duplicate rows. By default, all repeated rows
are returned. It is followed by asterisks (*) only.
Otherwise, an error will occur.

DISTINCT Removes duplicate rows from the result set.

WHERE Specifies the filter criteria for a query. Arithmetic
operators, relational operators, and logical operators
are supported.

where_condition Filter criteria.

GROUP BY Specifies the grouping field. Single-field grouping and
multi-field grouping are supported.

col_name_list Field list

ORDER BY Sort the query results.

ASC/DESC ASC sorts from the lowest value to the highest value.
DESC sorts from the highest value to the lowest value.
ASC is the default sort order.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 111

Parameter Description

CLUSTER BY CLUSTER BY is used to bucket the table according to
the bucketing fields and then sort within the bucketed
table. If the field of DISTRIBUTE BY is the same as the
field of SORT BY and the sorting is in descending order,
the combination of DISTRIBUTE BY and SORT BY
achieves the same function as CLUSTER BY.

DISTRIBUTE BY Specifies the bucketing fields without sorting the table.

SORT BY The objects will be sorted in the bucket.

LIMIT LIMIT is used to limit the query results. Only INT type is
supported by the number parameter.

Precautions

The table to be queried must exist. Otherwise, an error is reported.

Example

To filter the record, in which the name is Mike, from the student table and sort
the results in ascending order of score, run the following statement:

SELECT * FROM student
 WHERE name = 'Mike'
 ORDER BY score;

1.29 Filtering

1.29.1 WHERE Filtering Clause

Function

This statement is used to filter the query results using the WHERE clause.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM table_reference
 WHERE where_condition;

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.

● DISTINCT is used to remove the repeated line from the result.

● WHERE is used to filter out records that do not meet the condition and return
records that meet the condition.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 112

Precautions

The to-be-queried table must exist.

Example

To filter the records in which the scores are higher than 90 and lower than 95 in
the student table, run the following statement:

SELECT * FROM student
 WHERE score > 90 AND score < 95;

1.29.2 HAVING Filtering Clause

Function

This statement is used to filter the query results using the HAVING clause.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM table_reference
 [WHERE where_condition]
 [GROUP BY col_name_list]
 HAVING having_condition;

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.

● DISTINCT is used to remove the repeated line from the result.

● Generally, HAVING and GROUP BY are used together. GROUP BY applies first
for grouping and HAVING then applies for filtering. The arithmetic operation
and aggregate function are supported by the HAVING clause.

Precautions
● The to-be-queried table must exist.

● If the filtering condition is subject to the query results of GROUP BY, the
HAVING clause, rather than the WHERE clause, must be used for filtering.

Example

Group the student table according to the name field and filter the records in
which the maximum score is higher than 95 based on groups.

SELECT name, max(score) FROM student
 GROUP BY name
 HAVING max(score) >95;

1.30 Sorting

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 113

1.30.1 ORDER BY

Function

This statement is used to order the result set of a query by the specified field.

Syntax
SELECT attr_expr_list FROM table_reference
 ORDER BY col_name
 [ASC | DESC] [,col_name [ASC | DESC],...];

Keyword
● ASC/DESC: ASC sorts from the lowest value to the highest value. DESC sorts

from the highest value to the lowest value. ASC is the default sort order.

● ORDER BY: specifies that the values in one or more columns should be sorted
globally. When ORDER BY is used with GROUP BY, ORDER BY can be
followed by the aggregate function.

Precautions

The to-be-sorted table must exist. If this statement is used to sort a table that
does not exist, an error is reported.

Example

To sort table student in ascending order according to field score and return the
sorting result, run the following statement:

SELECT * FROM student
 ORDER BY score;

1.30.2 SORT BY

Function

This statement is used to achieve the partial sorting of tables according to fields.

Syntax
SELECT attr_expr_list FROM table_reference
 SORT BY col_name
 [ASC | DESC] [,col_name [ASC | DESC],...];

Keyword
● ASC/DESC: ASC sorts from the lowest value to the highest value. DESC sorts

from the highest value to the lowest value. ASC is the default sort order.

● SORT BY: Used together with GROUP BY to perform local sorting of a single
column or multiple columns for PARTITION.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 114

Precautions

The to-be-sorted table must exist. If this statement is used to sort a table that
does not exist, an error is reported.

Example

To sort the student table in ascending order of the score field in Reducer, run the
following statement:

SELECT * FROM student
 SORT BY score;

1.30.3 CLUSTER BY

Function

This statement is used to bucket a table and sort the table within buckets.

Syntax
SELECT attr_expr_list FROM table_reference
 CLUSTER BY col_name [,col_name ,...];

Keyword

CLUSTER BY: Buckets are created based on specified fields. Single fields and
multiple fields are supported, and data is sorted in buckets.

Precautions

The to-be-sorted table must exist. If this statement is used to sort a table that
does not exist, an error is reported.

Example

To bucket the student table according to the score field and sort tables within
buckets in descending order, run the following statement:

SELECT * FROM student
 CLUSTER BY score;

1.30.4 DISTRIBUTE BY

Function

This statement is used to bucket a table according to the field.

Syntax
SELECT attr_expr_list FROM table_reference
 DISTRIBUTE BY col_name [,col_name ,...];

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 115

Keyword

DISTRIBUTE BY: Buckets are created based on specified fields. A single field or
multiple fields are supported, and the fields are not sorted in the bucket. This
parameter is used together with SORT BY to sort data after bucket division.

Precautions

The to-be-sorted table must exist. If this statement is used to sort a table that
does not exist, an error is reported.

Example Value

To bucket the student table according to the score field, run the following
statement:

SELECT * FROM student
 DISTRIBUTE BY score;

1.31 Grouping

1.31.1 Column-Based GROUP BY

Function

This statement is used to group a table based on columns.

Syntax
SELECT attr_expr_list FROM table_reference
 GROUP BY col_name_list;

Keyword

Column-based GROUP BY can be categorized into single-column GROUP BY and
multi-column GROUP BY.

● Single-column GROUP BY indicates that the GROUP BY clause contains only
one column. The fields in col_name_list must exist in attr_expr_list. The
aggregate function, count() and sum() for example, is supported in
attr_expr_list. The aggregate function can contain other fields.

● Multi-column GROUP BY indicates that there is more than one column in the
GROUP BY clause. The query statement is grouped according to all the fields
in the GROUP BY clause. The records with the same fields are put in the same
group. Similarly, the fields in the GROUP BY clause must be in the fields in
attr_expr_list. The attr_expr_list field can also use the aggregate function.

Precautions

The to-be-grouped table must exist. Otherwise, an error is reported.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 116

Example
Group the student table according to the score and name fields and return the
grouping results.

SELECT score, count(name) FROM student
 GROUP BY score,name;

1.31.2 Expression-Based GROUP BY

Function
This statement is used to group a table according to expressions.

Syntax
SELECT attr_expr_list FROM table_reference
 GROUP BY groupby_expression [, groupby_expression, ...];

Keyword
The groupby_expression can contain a single field or multiple fields, and also can
call aggregate functions or string functions.

Precautions
● The to-be-grouped table must exist. Otherwise, an error is reported.
● In the same single-column group, built-in functions and self-defined functions

are supported in the expression in the GRUOP BY fields that must exit in
attr_expr_list.

Example
To use the substr function to obtain the character string from the name field,
group the student table according to the obtained character string, and return
each sub character string and the number of records, run the following statement:

SELECT substr(name,6),count(name) FROM student
 GROUP BY substr(name,6);

1.31.3 GROUP BY Using HAVING

Function
This statement filters a table after grouping it using the HAVING clause.

Syntax
SELECT attr_expr_list FROM table_reference
 GROUP BY groupby_expression [, groupby_expression...]
 HAVING having_expression;

Keyword
The groupby_expression can contain a single field or multiple fields, and can also
call aggregate functions or string functions.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 117

Precautions
● The to-be-grouped table must exist. Otherwise, an error is reported.
● If the filtering condition is subject to the query results of GROUP BY, the

HAVING clause, rather than the WHERE clause, must be used for filtering. If
HAVING and GROUP BY are used together, GROUP BY applies first for
grouping and HAVING then applies for filtering. The arithmetic operation and
aggregate function are supported by the HAVING clause.

Example
Group the transactions according to num, use the HAVING clause to filter the
records in which the maximum value derived from multiplying price with amount
is higher than 5000, and return the filtered results.

SELECT num, max(price*amount) FROM transactions
 WHERE time > '2016-06-01'
 GROUP BY num
 HAVING max(price*amount)>5000;

1.31.4 ROLLUP

Function
This statement is used to generate the aggregate row, super-aggregate row, and
the total row. The statement can achieve multi-layer statistics from right to left
and display the aggregation of a certain layer.

Syntax
SELECT attr_expr_list FROM table_reference
 GROUP BY col_name_list
 WITH ROLLUP;

Keyword
ROLLUP is the expansion of GROUP BY. For example, SELECT a, b, c,
SUM(expression) FROM table GROUP BY a, b, c WITH ROLLUP; can be
transformed into the following query statements:
● Counting the (a, b, c) combinations

SELECT a, b, c, sum(expression) FROM table
 GROUP BY a, b, c;

● Counting the (a, b) combinations
SELECT a, b, NULL, sum(expression) FROM table
 GROUP BY a, b;

● Counting the (a) combinations
SELECT a, NULL, NULL, sum(expression) FROM table
 GROUP BY a;

● Total
SELECT NULL, NULL, NULL, sum(expression) FROM table;

Precautions
The to-be-grouped table must exist. If this statement is used to group a table that
does not exist, an error is reported.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 118

Example

To generate the aggregate row, super-aggregate row, and total row according to
the group_id and job fields and return the total salary on each aggregation
condition, run the following statement:

SELECT group_id, job, SUM(salary) FROM group_test
 GROUP BY group_id, job
 WITH ROLLUP;

1.31.5 GROUPING SETS

Function

This statement is used to generate the cross-table row and achieve the cross-
statistics of the GROUP BY field.

Syntax
SELECT attr_expr_list FROM table_reference
 GROUP BY col_name_list
 GROUPING SETS(col_name_list);

Keyword

GROUPING SETS is the expansion of GROUP BY. For example:

● SELECT a, b, sum(expression) FROM table GROUP BY a, b GROUPING
SETS((a,b));
It can be converted to the following query:
SELECT a, b, sum(expression) FROM table
 GROUP BY a, b;

● SELECT a, b, sum(expression) FROM table GROUP BY a, b GROUPING
SETS(a,b);
It can be converted to the following two queries:
SELECT a, NULL, sum(expression) FROM table GROUP BY a;
UNION
SELECT NULL, b, sum(expression) FROM table GROUP BY b;

● SELECT a, b, sum(expression) FROM table GROUP BY a, b GROUPING
SETS((a,b), a);
It can be converted to the following two queries:
SELECT a, b, sum(expression) FROM table GROUP BY a, b;
UNION
SELECT a, NULL, sum(expression) FROM table GROUP BY a;

● SELECT a, b, sum(expression) FROM table GROUP BY a, b GROUPING
SETS((a,b), a, b, ());
It can be converted to the following four queries:
SELECT a, b, sum(expression) FROM table GROUP BY a, b;
UNION
SELECT a, NULL, sum(expression) FROM table GROUP BY a, NULL;
UNION
SELECT NULL, b, sum(expression) FROM table GROUP BY NULL, b;
UNION
SELECT NULL, NULL, sum(expression) FROM table;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 119

Precautions
● The to-be-grouped table must exist. Otherwise, an error is reported.
● Different from ROLLUP, there is only one syntax for GROUPING SETS.

Example
To generate the cross-table row according to the group_id and job fields and
return the total salary on each aggregation condition, run the following
statement:

SELECT group_id, job, SUM(salary) FROM group_test
 GROUP BY group_id, job
 GROUPING SETS (group_id, job);

1.32 JOIN

1.32.1 INNER JOIN

Function
This statement is used to join and return the rows that meet the JOIN conditions
from two tables as the result set.

Syntax
SELECT attr_expr_list FROM table_reference
 {JOIN | INNER JOIN} table_reference ON join_condition;

Keyword
JOIN/INNER JOIN: Only the records that meet the JOIN conditions in joined tables
will be displayed.

Precautions
● The to-be-joined table must exist. Otherwise, an error is reported.
● INNER JOIN can join more than two tables at one query.

Example
To join the course IDs from the student_info and course_info tables and check
the mapping between student names and courses, run the following statement:

SELECT student_info.name, course_info.courseName FROM student_info
 JOIN course_info ON (student_info.courseId = course_info.courseId);

1.32.2 LEFT OUTER JOIN

Function
Join the left table with the right table and return all joined records of the left
table. If no joined record is found, NULL will be returned.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 120

Syntax
SELECT attr_expr_list FROM table_reference
 LEFT OUTER JOIN table_reference ON join_condition;

Keyword

LEFT OUTER JOIN: Returns all joined records of the left table. If no record is
matched, NULL is returned.

Precautions

The to-be-joined table must exist. Otherwise, an error is reported.

Example

To join the courseId from the student_info table to the courseId from the
course_info table for inner join and return the name of the students who have
selected course, run the following statement. If no joined record is found, NULL
will be returned.

SELECT student_info.name, course_info.courseName FROM student_info
 LEFT OUTER JOIN course_info ON (student_info.courseId = course_info.courseId);

1.32.3 RIGHT OUTER JOIN

Function

Match the right table with the left table and return all matched records of the
right table. If no matched record is found, NULL will be returned.

Syntax
SELECT attr_expr_list FROM table_reference
 RIGHT OUTER JOIN table_reference ON join_condition;

Keyword

RIGHT OUTER JOIN: Return all matched records of the right table. If no record is
matched, NULL is returned.

Precautions

The to-be-joined table must exist. Otherwise, an error is reported.

Example

To join the courseId from the course_info table to the courseId from the
student_info table for inner join and return the records in the course_info table,
run the following statement. If no joined record is found, NULL will be returned.

SELECT student_info.name, course_info.courseName FROM student_info
 RIGHT OUTER JOIN course_info ON (student_info.courseId = course_info.courseId);

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 121

1.32.4 FULL OUTER JOIN

Function
Join all records from the right table and the left table and return all joined records.
If no joined record is found, NULL will be returned.

Syntax
SELECT attr_expr_list FROM table_reference
 FULL OUTER JOIN table_reference ON join_condition;

Keyword
FULL OUTER JOIN: Matches all records in the left and right tables. If no record is
matched, NULL is returned.

Precautions
The to-be-joined table must exist. Otherwise, an error is reported.

Example
To join all records from the right table and the left table and return all joined
records, run the following statement. If no joined record is found, NULL will be
returned.

SELECT student_info.name, course_info.courseName FROM student_info
 FULL OUTER JOIN course_info ON (student_info.courseId = course_info.courseId);

1.32.5 IMPLICIT JOIN

Function
This statement has the same function as INNER JOIN, that is, the result set that
meet the WHERE condition is returned. However, IMPLICIT JOIN does not use the
condition specified by JOIN.

Syntax
SELECT table_reference.col_name, table_reference.col_name, ... FROM table_reference, table_reference
 WHERE table_reference.col_name = table_reference.col_name;

Keyword
The keyword WHERE achieves the same function as JOIN...ON... and the mapped
records will be returned. Syntax shows the WHERE filtering according to an
equation. The WHERE filtering according to an inequation is also supported.

Precautions
● The to-be-joined table must exist. Otherwise, an error is reported.
● The statement of IMPLICIT JOIN does not contain keywords JOIN...ON....

Instead, the WHERE clause is used as the condition to join two tables.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 122

Example
To return the student names and course names that match courseId, run the
following statement:
SELECT student_info.name, course_info.courseName FROM student_info,course_info
 WHERE student_info.courseId = course_info.courseId;

1.32.6 Cartesian JOIN

Function
Cartesian JOIN joins each record of table A with all records in table B. For
example, if there are m records in table A and n records in table B, m x n records
will be generated by Cartesian JOIN.

Syntax
SELECT attr_expr_list FROM table_reference
 CROSS JOIN table_reference ON join_condition;

Keyword
The join_condition is the condition for joining. If join_condition is always true, for
example 1=1, the join is Cartesian JOIN. Therefore, the number of records output
by Cartesian join is equal to the product of the number of records in the joined
table. If Cartesian join is required, use the special keyword CROSS JOIN. CROSS
JOIN is the standard way to calculate Cartesian product.

Precautions
The to-be-joined table must exist. Otherwise, an error is reported.

Example
To return all the JOIN results of the student name and course name from the
student_info and course_info tables, run the following statement:
SELECT student_info.name, course_info.courseName FROM student_info
 CROSS JOIN course_info ON (1 = 1);

1.32.7 LEFT SEMI JOIN

Function
This statement is used to query the records that meet the JOIN condition from the
left table.

Syntax
SELECT attr_expr_list FROM table_reference
 LEFT SEMI JOIN table_reference ON join_condition;

Keyword
LEFT SEMI JOIN: Indicates to only return the records from the left table. LEFT SEMI
JOIN can be achieved by nesting subqueries in LEFT SEMI JOIN, WHERE...IN, or

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 123

WHERE EXISTS. LEFT SEMI JOIN returns the records that meet the JOIN condition
from the left table, while LEFT OUTER JOIN returns all the records from the left
table or NULL if no records that meet the JOIN condition are found.

Precautions
● The to-be-joined table must exist. Otherwise, an error is reported.

● he fields in attr_expr_list must be the fields in the left table. Otherwise, an
error is reported.

Example

To return the names of students who select the courses and the course IDs, run
the following statement:

SELECT student_info.name, student_info.courseId FROM student_info
 LEFT SEMI JOIN course_info ON (student_info.courseId = course_info.courseId);

1.32.8 NON-EQUIJOIN

Function

This statement is used to join multiple tables using unequal values and return the
result set that meet the condition.

Syntax
SELECT attr_expr_list FROM table_reference
 JOIN table reference ON non_equi_join_condition;

Keyword

The non_equi_join_condition is similar to join_condition. The only difference is
that the JOIN condition is inequation.

Precautions

The to-be-joined table must exist. Otherwise, an error is reported.

Example

To return all the pairs of different student names from the student_info_1 and
student_info_2 tables, run the following statement:

SELECT student_info_1.name, student_info_2.name FROM student_info_1
 JOIN student_info_2 ON (student_info_1. name <> student_info_2. name);

1.33 Subquery

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 124

1.33.1 Subquery Nested by WHERE

Function

Subqueries are nested in the WHERE clause, and the subquery result is used as the
filtering condition.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM table_reference
 WHERE {col_name operator (sub_query) | [NOT] EXISTS sub_query};

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.
● DISTINCT is used to remove the repeated line from the result.
● The subquery results are used as the filter condition in the subquery nested by

WHERE.
● The operator includes the equation and inequation operators, and IN, NOT IN,

EXISTS, and NOT EXISTS operators.
– If the operator is IN or NOT IN, the returned records are in a single

column.
– If the operator is EXISTS or NOT EXISTS, the subquery must contain

WHERE. If any a field in the subquery is the same as that in the external
query, add the table name before the field in the subquery.

Precautions

The to-be-queried table must exist. If this statement is used to query a table that
does not exist, an error is reported.

Example

To query the courseId of Biology from the course_info table, and then query the
student name matched the courseId from the student_info table, run the following
statement:

SELECT name FROM student_info
 WHERE courseId = (SELECT courseId FROM course_info WHERE courseName = 'Biology');

1.33.2 Subquery Nested by FROM

Function

This statement is used to nest subquery by FROM and use the subquery results as
the data source of the external SELECT statement.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM (sub_query) [alias];

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 125

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.
● DISTINCT is used to remove the repeated line from the result.

Precautions
● The to-be-queried table must exist. If this statement is used to query a table

that does not exist, an error is reported.
● The subquery nested in FROM must have an alias. The alias must be specified

before the running of the statement. Otherwise, an error is reported. It is
advised to specify a unique alias.

● The subquery results sequent to FROM must be followed by the specified
alias. Otherwise, an error is reported.

Example

To return the names of students who select the courses in the course_info table
and remove the repeated records using DISTINCT, run the following statement:

SELECT DISTINCT name FROM (SELECT name FROM student_info
 JOIN course_info ON student_info.courseId = course_info.courseId) temp;

1.33.3 Subquery Nested by HAVING

Function

This statement is used to embed a subquery in the HAVING clause. The subquery
result is used as a part of the HAVING clause.

Syntax
SELECT [ALL | DISTINCT] attr_expr_list FROM table_reference
 GROUP BY groupby_expression
 HAVING aggregate_func(col_name) operator (sub_query);

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.
● DISTINCT is used to remove the repeated line from the result.
● The groupby_expression can contain a single field or multiple fields, and also

can call aggregate functions or string functions.
● The operator includes the equation and inequation operators, and IN and

NOT IN operators.

Precautions
● The to-be-queried table must exist. If this statement is used to query a table

that does not exist, an error is reported.
● The sequence of sub_query and the aggregate function cannot be changed.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 126

Example

To group the student_info table according to the name field, count the records of
each group, and return the number of records in which the name fields in the
student_info table equal to the name fields in the course_info table if the two
tables have the same number of records, run the following statement:

SELECT name FROM student_info
 GROUP BY name
 HAVING count(name) = (SELECT count(*) FROM course_info);

1.33.4 Multi-Layer Nested Subquery

Function

This statement is used to nest queries in the subquery.

Syntax
SELECT attr_expr FROM (SELECT attr_expr FROM (SELECT attr_expr FROM... ...) [alias]) [alias];

Keyword
● All is used to return repeated rows. By default, all repeated rows are returned.

It is followed by asterisks (*) only. Otherwise, an error will occur.
● DISTINCT is used to remove the repeated line from the result.

Precautions
● The to-be-queried table must exist. If this statement is used to query a table

that does not exist, an error is reported.
● The alias of the subquery must be specified in the nested query. Otherwise, an

error is reported.
● The alias must be specified before the running of the statement. Otherwise,

an error is reported. It is advised to specify a unique alias.

Example

To return the name field from the user_info table after three queries, run the
following statement:

SELECT name FROM (SELECT name, acc_num FROM (SELECT name, acc_num, password FROM (SELECT
name, acc_num, password, bank_acc FROM user_info) a) b) c;

1.34 Alias

1.34.1 AS for Table

Function

This statement is used to specify an alias for a table or the subquery result.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 127

Syntax
SELECT attr_expr_list FROM table_reference [AS] alias;

Keyword
● table_reference: Can be a table, view, or subquery.
● As: Is used to connect to table_reference and alias. Whether this keyword is

added or not does not affect the command execution result.

Precautions
● The to-be-queried table must exist. Otherwise, an error is reported.
● The alias must be specified before execution of the statement. Otherwise, an

error is reported. You are advised to specify a unique alias.

Example
● To specify alias n for table simple_table and visit the name field in table

simple_table by using n.name, run the following statement:
SELECT n.score FROM simple_table n WHERE n.name = "leilei";

● To specify alias m for the subquery result and return all the query results
using SELECT * FROM m, run the following statement:
SELECT * FROM (SELECT * FROM simple_table WHERE score > 90) AS m;

1.34.2 AS for Column

Function

This statement is used to specify an alias for a column.

Syntax
SELECT attr_expr [AS] alias, attr_expr [AS] alias, ... FROM table_reference;

Keyword
● alias: gives an alias for the attr_expr field.
● AS: Whether to add AS does not affect the result.

Precautions
● The to-be-queried table must exist. Otherwise, an error is reported.
● The alias must be specified before execution of the statement. Otherwise, an

error is reported. You are advised to specify a unique alias.

Example

Run SELECT name AS n FROM simple_table WHERE score > 90 to obtain the
subquery result. The alias n for name can be used by external SELECT statement.

SELECT n FROM (SELECT name AS n FROM simple_table WHERE score > 90) m WHERE n = "xiaoming";

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 128

1.35 Set Operations

1.35.1 UNION

Function

This statement is used to return the union set of multiple query results.

Syntax
select_statement UNION [ALL] select_statement;

Keyword

UNION: The set operation is used to join the head and tail of a table based on
certain conditions. The number of columns returned by each SELECT statement
must be the same. The column type and column name may not be the same.

Precautions
● By default, the repeated records returned by UNION are removed. The

repeated records returned by UNION ALL are not removed.
● Do not add brackets between multiple set operations, such as UNION,

INTERSECT, and EXCEPT. Otherwise, an error is reported.

Example

To return the union set of the query results of the SELECT * FROM student _1 and
SELECT * FROM student _2 commands with the repeated records removed, run
the following statement:

SELECT * FROM student_1 UNION SELECT * FROM student_2;

1.35.2 INTERSECT

Function

This statement is used to return the intersection set of multiple query results.

Syntax
select_statement INTERSECT select_statement;

Keyword

INTERSECT returns the intersection of multiple query results. The number of
columns returned by each SELECT statement must be the same. The column type
and column name may not be the same. By default, INTERSECT deduplication is
used.

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 129

Precautions
Do not add brackets between multiple set operations, such as UNION, INTERSECT,
and EXCEPT. Otherwise, an error is reported.

Example
To return the intersection set of the query results of the SELECT * FROM student
_1 and SELECT * FROM student _2 commands with the repeated records
removed, run the following statement:

SELECT * FROM student _1 INTERSECT SELECT * FROM student _2;

1.35.3 EXCEPT

Function
This statement is used to return the difference set of two query results.

Syntax
select_statement EXCEPT select_statement;

Keyword
EXCEPT minus the sets. A EXCEPT B indicates to remove the records that exist in
both A and B from A and return the results. The repeated records returned by
EXCEPT are not removed by default. The number of columns returned by each
SELECT statement must be the same. The types and names of columns do not
have to be the same.

Precautions
Do not add brackets between multiple set operations, such as UNION, INTERSECT,
and EXCEPT. Otherwise, an error is reported.

Example
To remove the records that exist in both SELECT * FROM student_1 and SELECT *
FROM student_2 from SELECT * FROM student_1 and return the results, run the
following statement:

SELECT * FROM student_1 EXCEPT SELECT * FROM student_2;

1.36 WITH...AS

Function
This statement is used to define the common table expression (CTE) using
WITH...AS to simplify the query and make the result easier to read and maintain.

Syntax
WITH cte_name AS (select_statement) sql_containing_cte_name;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 130

Keyword
● cte_name: Name of a public expression. The name must be unique.
● select_statement: complete SELECT clause.
● sql_containing_cte_name: SQL statement containing the defined common

expression.

Precautions
● A CTE must be used immediately after it is defined. Otherwise, the definition

becomes invalid.
● Multiple CTEs can be defined by WITH at a time. The CTEs are separated by

commas and the CTEs defined later can quote the CTEs defined earlier.

Example

Define SELECT courseId FROM course_info WHERE courseName = 'Biology' as
CTE nv and use nv as the SELECT statement in future queries.

WITH nv AS (SELECT courseId FROM course_info WHERE courseName = 'Biology') SELECT DISTINCT
courseId FROM nv;

1.37 CASE...WHEN

1.37.1 Basic CASE Statement

Function

This statement is used to display result_expression according to the joined results
of input_expression and when_expression.

Syntax
CASE input_expression WHEN when_expression THEN result_expression [...n] [ELSE else_result_expression]
END;

Keyword

CASE: Subquery is supported in basic CASE statement. However, input_expression
and when_expression must be joinable.

Precautions

If there is no input_expression = when_expression with the TRUE value,
else_result_expression will be returned when the ELSE clause is specified. If the
ELSE clause is not specified, NULL will be returned.

Example

To return the name field and the character that is matched to id from the student
table with the following matching rules, run the following statement:

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 131

● If id is 1, 'a' is returned.
● If id is 2, 'b' is returned.
● If id is 3, 'c' is returned.
● Otherwise, NULL is returned.
SELECT name, CASE id WHEN 1 THEN 'a' WHEN 2 THEN 'b' WHEN 3 THEN 'c' ELSE NULL END FROM
student;

1.37.2 CASE Query Statement

Function
This statement is used to obtain the value of boolean_expression for each WHEN
statement in a specified order. Then return the first result_expression with the
value TRUE of boolean_expression.

Syntax
CASE WHEN boolean_expression THEN result_expression [...n] [ELSE else_result_expression] END;

Keyword
boolean_expression: can include subquery. However, the return value of
boolean_expression can only be of Boolean type.

Precautions
If there is no Boolean_expression with the TRUE value, else_result_expression will
be returned when the ELSE clause is specified. If the ELSE clause is not specified,
NULL will be returned.

Example
To query the student table and return the related results for the name and score
fields: EXCELLENT if the score is higher than 90, GOOD if the score ranges from 80
to 90, and BAD if the score is lower than 80, run the following statement:

SELECT name, CASE WHEN score >= 90 THEN 'EXCELLENT' WHEN 80 < score AND score < 90 THEN 'GOOD'
ELSE 'BAD' END AS level FROM student;

1.38 OVER Clause

Function
This statement is used together with the window function. The OVER statement is
used to group data and sort the data within the group. The window function is
used to generate serial numbers for values within the group.

Syntax
SELECT window_func(args) OVER
 ([PARTITION BY col_name, col_name, ...]
 [ORDER BY col_name, col_name, ...]
 [ROWS | RANGE BETWEEN (CURRENT ROW | (UNBOUNDED |[num]) PRECEDING)
 AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)]);

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 132

Keyword
● PARTITION BY: used to partition a table with one or multiple fields. Similar to

GROUP BY, PARTITION BY is used to partition table by fields and each
partition is a window. The window function can apply to the entire table or
specific partitions. A maximum of 7,000 partitions can be created in a single
table.

● ORDER BY: used to specify the order for the window function to obtain the
value. ORDER BY can be used to sort table with one or multiple fields. The
sorting order can be ascending (specified by ASC) or descending (specified by
DESC). The window is specified by WINDOW. If the window is not specified,
the default window is ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW. In other words, the window starts from the head of the table
or partition (if PARTITION BY is used in the OVER clause) to the current row.

● WINDOW: used to define the window by specifying a range of rows.
● CURRENT ROW: indicates the current row.
● num PRECEDING: used to specify the start of the defined window. The

window starts from the num row precedes the current row.
● UNBOUNDED PRECEDING: used to indicate that there is no start of the

window.
● num FOLLOWING: used to specify the end of the defined window. The

window ends from the num row following the current row.
● UNBOUNDED FOLLOWING: used to indicate that there is no end of the

window.
● The differences between ROWS BETWEEN... and RANGE BETWEEN... are as

follows:
– ROWS refers to the physical window. After the data is sorted, the physical

window starts at the nth row in front of the current row and ends at the
mth row following the current row.

– RANGE refers to the logic window. The column of the logic window is
determined by the values rather than the location of rows.

● The scenarios of the window are as follows:
– The window only contains the current row.

ROWS BETWEEN CURRENT ROW AND CURRENT ROW

– The window starts from three rows precede the current row and ends at
the fifth row follows the current row.
ROWS BETWEEN 3 PRECEDING AND 5 FOLLOWING

– The window starts from the beginning of the table or partition and ends
at the current row.
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

– The window starts from the current window and ends at the end of the
table or partition.
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

– The window starts from the beginning of the table or partition and ends
at the end of the table or partition.
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 133

Precautions
The three options of the OVER clause are PARTITION BY, ORDER BY, and
WINDOW. They are optional and can be used together. If the OVER clause is
empty, the window is the entire table.

Example
To start the window from the beginning of the table or partition and end the
window at the current row, sort the over_test table according to the id field, and
return the sorted id fields and corresponding serial numbers, run the following
statement:

SELECT id, count(id) OVER (ORDER BY id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW) FROM over_test;

Data Lake Insight
SQL Syntax Reference 1 Spark SQL Syntax Reference

2023-03-06 134

2 Flink SQL Syntax

2.1 SQL Syntax Constraints and Definitions

Syntax Constraints
● Currently, Flink SQL only supports the following operations: SELECT, FROM,

WHERE, UNION, aggregation, window, JOIN between stream and table data,
and JOIN between streams.

● Data cannot be inserted into the source stream.
● The sink stream cannot be used to perform query operations.

Data Types Supported by Syntax
● Basic data types: VARCHAR, STRING, BOOLEAN, TINYINT, SMALLINT,

INTEGER/INT, BIGINT, REAL/FLOAT, DOUBLE, DECIMAL, DATE, TIME, and
TIMESTAMP

● Array: Square brackets ([]) are used to quote fields. The following is an
example:
insert into temp select CARDINALITY(ARRAY[1,2,3]) FROM OrderA;

Syntax Definition
INSERT INTO stream_name query;
query:
 values
 | {
 select
 | selectWithoutFrom
 | query UNION [ALL] query
 }

orderItem:
 expression [ASC | DESC]

select:
 SELECT
 { * | projectItem [, projectItem]* }
 FROM tableExpression [JOIN tableExpression]
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression]

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 135

selectWithoutFrom:
 SELECT [ALL | DISTINCT]
 { * | projectItem [, projectItem]* }

projectItem:
 expression [[AS] columnAlias]
 | tableAlias . *

tableExpression:
 tableReference

tableReference:
 tablePrimary
 [[AS] alias ['(' columnAlias [, columnAlias]* ')']]

tablePrimary:
 [TABLE] [[catalogName .] schemaName .] tableName
 | LATERAL TABLE '(' functionName '(' expression [, expression]* ')' ')'
 | UNNEST '(' expression ')'

values:
 VALUES expression [, expression]*

groupItem:
 expression
 | '(' ')'
 | '(' expression [, expression]* ')'
 | CUBE '(' expression [, expression]* ')'
 | ROLLUP '(' expression [, expression]* ')'
 | GROUPING SETS '(' groupItem [, groupItem]* ')'

2.2 SQL Syntax Overview of Stream Jobs
This section describes the Flink SQL syntax list provided by DLI. For details about
the parameters and examples, see the syntax description.

Table 2-1 SQL Syntax of stream jobs

Classification Function

Creating a Source Stream DIS Source Stream

DMS Source Stream

Creating a Source Stream MRS Kafka Source Stream

Open-Source Kafka Source Stream

OBS Source Stream

Creating a Sink Stream CSS Elasticsearch Sink Stream

DCS Sink Stream

DDS Sink Stream

DIS Sink Stream

DMS Sink Stream

DWS Sink Stream (JDBC Mode)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 136

Classification Function

DWS Sink Stream (OBS-based Dumping)

Creating a Sink Stream MRS HBase Sink Stream

MRS Kafka Sink Stream

Open-Source Kafka Sink Stream

OBS Sink Stream

RDS Sink Stream

Creating a Sink Stream SMN Sink Stream

File System Sink Stream (Recommended)

Creating a Temporary
Stream

Creating a Temporary Stream

Creating a Dimension
Table

Creating a Redis Table

Creating an RDS Table

Custom Stream
Ecosystem

Custom Source Stream

Custom Sink Stream

2.3 Creating a Source Stream

2.3.1 DIS Source Stream

Function

Create a source stream to read data from DIS. DIS accesses user data and Flink job
reads data from the DIS stream as input data for jobs. Flink jobs can quickly
remove data from producers using DIS source sources for continuous processing.
Flink jobs are applicable to scenarios where data outside the cloud service is
imported to the cloud service for filtering, real-time analysis, monitoring reports,
and dumping.

DIS addresses the challenge of transmitting data outside cloud services to cloud
services. DIS builds data intake streams for custom applications capable of
processing or analyzing streaming data. DIS continuously captures, transmits, and
stores terabytes of data from hundreds of thousands of sources every hour, such
as logs, Internet of Things (IoT) data, social media feeds, website clickstreams, and
location-tracking events. For more information about DIS, see the .

Syntax
CREATE SOURCE STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "dis",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 137

 region = "",
 channel = "",
 partition_count = "",
 encode = "",
 field_delimiter = "",
 offset= "");

Keyword

Table 2-2 Keyword description

Paramete
r

Man
dato
ry

Description

type Yes Data source type. dis indicates that the data source is DIS.

region Yes Region where DIS for storing the data is located.

ak No Access Key ID (AK).

sk No Specifies the secret access key used together with the ID of
the access key.

channel Yes Name of the DIS stream where data is located.

partition_
count

No Number of partitions of the DIS stream where data is
located. This parameter and partition_range cannot be
configured at the same time. If this parameter is not
specified, data of all partitions is read by default.

partition_
range

No Range of partitions of a DIS stream, data in which is
ingested by the DLI job. This parameter and
partition_count cannot be configured at the same time. If
this parameter is not specified, data of all partitions is read
by default.
If you set this parameter to [0:2], data will be read from
partitions 1, 2, and 3.

encode Yes Data encoding format. The value can be csv, json, xml,
email, blob, or user_defined.
● field_delimiter must be specified if this parameter is set

to csv.
● json_config must be specified if this parameter is set to

json.
● xml_config must be specified if this parameter is set to

xml.
● email_key must be specified if this parameter is set to

email.
● If this parameter is set to blob, the received data is not

parsed, only one stream attribute exists, and the data
format is ARRAY[TINYINT].

● encode_class_name and encode_class_parameter must
be specified if this parameter is set to user_defined.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 138

Paramete
r

Man
dato
ry

Description

field_deli
miter

No Attribute delimiter. This parameter is mandatory only when
the CSV encoding format is used. You can set this
parameter, for example, to a comma (,).

quote No Quoted symbol in a data format. The attribute delimiters
between two quoted symbols are treated as common
characters.
● If double quotation marks are used as the quoted

symbol, set this parameter to \u005c\u0022 for
character conversion.

● If a single quotation mark is used as the quoted symbol,
set this parameter to a single quotation mark (').

NOTE
● Currently, only the CSV format is supported.
● After this parameter is specified, ensure that each field does not

contain quoted symbols or contains an even number of quoted
symbols. Otherwise, parsing will fail.

json_confi
g

No When the encoding format is JSON, you need to use this
parameter to specify the mapping between JSON fields and
stream definition fields. The format is
field1=data_json.field1; field2=data_json.field2; field3=$,
where field3=$ indicates that the content of field3 is the
entire JSON string.

xml_confi
g

No If encode is set to xml, you need to set this parameter to
specify the mapping between the xml field and the stream
definition field. An example of the format is as follows:
field1=data_xml.field1; field2=data_xml.field2.

email_key No If encode is set to email, you need to set the parameter to
specify the information to be extracted. You need to list the
key values that correspond to stream definition fields.
Multiple key values are separated by commas (,), for
example, "Message-ID, Date, Subject, body". There is no
keyword in the email body and DLI specifies "body" as the
keyword.

encode_cl
ass_name

No If encode is set to user_defined, you need to set this
parameter to the name of the user-defined decoding class
(including the complete package path). The class must
inherit the DeserializationSchema class.

encode_cl
ass_para
meter

No If encode is set to user_defined, you can set this parameter
to specify the input parameter of the user-defined decoding
class. Only one parameter of the string type is supported.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 139

Paramete
r

Man
dato
ry

Description

offset No ● If data is imported to the DIS stream after the job is
started, this parameter will become invalid.

● If the job is started after data is imported to the DIS
stream, you can set the parameter as required.
For example, if offset is set to 100, DLI starts from the
100th data record in DIS.

start_time No Start time for reading DIS data.
● If this parameter is specified, DLI reads data read from

the specified time. The format is yyyy-MM-dd
HH:mm:ss.

● If neither start_time nor offset is specified, DLI reads the
latest data.

● If start_time is not specified but offset is specified, DLI
reads data from the data record specified by offset.

enable_ch
eckpoint

No Whether to enable the checkpoint function. The value can
be true (enabled) or false (disabled). The default value is
false.

checkpoin
t_app_na
me

No ID of a DIS consumer. If a DIS stream is consumed by
different jobs, you need to configure the consumer ID for
each job to avoid checkpoint confusion.

checkpoin
t_interval

No Interval of checkpoint operations on the DIS source
operator. The value is in the unit of seconds. The default
value is 60.

Precautions
When creating a source stream, you can specify a time model for subsequent
calculation. Currently, DLI supports two time models: Processing Time and Event
Time. For details about the syntax, see Configuring Time Models.

Example
● In CSV encoding format, DLI reads data from the DIS stream and records it as

codes in CSV format. The codes are separated by commas (,).
CREATE SOURCE STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_age INT,
 average_speed INT,
 total_miles INT,
 car_timestamp LONG
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dliinput",
 encode = "csv",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 140

 field_delimiter = ","
);

● In JSON encoding format, DLI reads data from the DIS stream and records it
as codes in JSON format. For example, {"car":{"car_id":"ZJA710XC",
"car_owner":"coco", "car_age":5, "average_speed":80, "total_miles":15000,
"car_timestamp":1526438880}}
CREATE SOURCE STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_age INT,
 average_speed INT,
 total_miles INT,
 car_timestamp LONG
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dliinput",
 encode = "json",
 json_config = "car_id=car.car_id;car_owner =car.car_owner;car_age=car.car_age;average_speed
=car.average_speed ;total_miles=car.total_miles;"
);

● In XML encoding format, DLI reads data from the DIS stream and records it as
codes in XML format.
CREATE SOURCE STREAM person_infos (
 pid BIGINT,
 pname STRING,
 page int,
 plocation STRING,
 pbir DATE,
 phealthy BOOLEAN,
 pgrade ARRAY[STRING]
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dis-dli-input",
 encode = "xml",
 field_delimiter = ",",
 xml_config =
"pid=person.pid;page=person.page;pname=person.pname;plocation=person.plocation;pbir=person.pbir;
pgrade=person.pgrade;phealthy=person.phealthy"
);

An example of XML data is as follows:
<?xml version="1.0" encoding="utf-8"?>

<root>
 <person>
 <pid>362305199010025042</pid>
 <pname>xiaoming</pname>
 <page>28</page>
 <plocation>xxx</plocation>
 <pbir>1990-10-02</pbir>
 <phealthy>true</phealthy>
 <pgrade>[A,B,C]</pgrade>
 </person>
</root>

● In EMAIL encoding format, DLI reads data from the DIS stream and records it
as a complete Email.
CREATE SOURCE STREAM email_infos (
 Event_ID String,
 Event_Time Date,
 Subject String,
 From_Email String,
 To_EMAIL String,

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 141

 CC_EMAIL Array[String],
 BCC_EMAIL String,
 MessageBody String,
 Mime_Version String,
 Content_Type String,
 charset String,
 Content_Transfer_Encoding String
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dliinput",
 encode = "email",
 email_key = "Message-ID, Date, Subject, From, To, CC, BCC, Body, Mime-Version, Content-Type,
charset, Content_Transfer_Encoding"
);

An example of email data is as follows:
Message-ID: <200906291839032504254@sample.com>
Date: Fri, 11 May 2001 09:54:00 -0700 (PDT)
From: zhangsan@sample.com
To: lisi@sample.com, wangwu@sample.com
Subject: "Hello World"
Cc: lilei@sample.com, hanmei@sample.com
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Bcc: jack@sample.com, lily@sample.com
X-From: Zhang San
X-To: Li Si, Wang Wu
X-cc: Li Lei, Han Mei
X-bcc:
X-Folder: \Li_Si_June2001\Notes Folders\Notes inbox
X-Origin: Lucy
X-FileName: sample.nsf

Dear Associate / Analyst Committee:

Hello World!

Thank you,

Associate / Analyst Program
zhangsan

2.3.2 DMS Source Stream
DMS (Distributed Message Service) is a message middleware service based on
distributed, high-availability clustering technology. It provides reliable, scalable,
fully managed queues for sending, receiving, and storing messages. DMS for Kafka
is a message queuing service based on Apache Kafka. This service provides Kafka
premium instances.

The source stream can read data from a Kafka instance as the input data of jobs.
The syntax for creating a Kafka source stream is the same as that for creating an
open source Apache Kafka source stream. For details, see Open-Source Kafka
Source Stream.

2.3.3 MRS Kafka Source Stream

Function

Create a source stream to obtain data from Kafka as input data for jobs.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 142

Apache Kafka is a fast, scalable, and fault-tolerant distributed message publishing
and subscription system. It delivers high throughput and built-in partitions and
provides data replicas and fault tolerance. Apache Kafka is applicable to scenarios
of handling massive messages. Kafka clusters are deployed and hosted on MRS
that is powered on Apache Kafka.

Prerequisites
● Kafka is an offline cluster. You need to use the enhanced datasource

connection function to connect Flink jobs to Kafka. You can also set security
group rules as required.

Syntax
CREATE SOURCE STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "kafka",
 kafka_bootstrap_servers = "",
 kafka_group_id = "",
 kafka_topic = "",
 encode = "json"
);

Keyword

Table 2-3 Keyword description

Parameter Mandat
ory

Description

type Yes Data source type. Kafka indicates that the data
source is Kafka.

kafka_bootstrap
_servers

Yes Port that connects DLI to Kafka. Use enhanced
datasource connections to connect DLI queues with
Kafka clusters.

kafka_group_id No Group ID

kafka_topic Yes Kafka topic to be read. Currently, only one topic
can be read at a time.

encode Yes Data encoding format. The value can be csv, json,
blob, or user_defined.
● field_delimiter must be specified if this

parameter is set to csv.
● json_config must be specified if this parameter

is set to json.
● If this parameter is set to blob, the received

data is not parsed, only one stream attribute
exists, and the stream attribute is of the
Array[TINYINT] type.

● encode_class_name and
encode_class_parameter must be specified if
this parameter is set to user_defined.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 143

Parameter Mandat
ory

Description

encode_class_n
ame

No If encode is set to user_defined, you need to set
this parameter to the name of the user-defined
decoding class (including the complete package
path). The class must inherit the Deserialization-
Schema class.

encode_class_p
arameter

No If encode is set to user_defined, you can set this
parameter to specify the input parameter of the
user-defined decoding class. Only one parameter of
the string type is supported.

krb_auth No The authentication name for creating a datasource
connection authentication. This parameter is
mandatory when Kerberos authentication is
enabled.
NOTE

Ensure that the /etc/hosts information of the master
node in the MRS cluster is added to the host file of the
DLI queue.

json_config No If encode is set to json, you can use this parameter
to specify the mapping between JSON fields and
stream attributes.
The format is field1=json_field1;field2=json_field2.
field1 and field2 indicate the names of the created
table fields. json_field1 and json_field2 are key
fields of the JSON strings in the Kafka input data.
For details, see the example.

field_delimiter No If encode is set to csv, you can use this parameter
to specify the separator between CSV fields. By
default, the comma (,) is used.

quote No Quoted symbol in a data format. The attribute
delimiters between two quoted symbols are treated
as common characters.
● If double quotation marks are used as the

quoted symbol, set this parameter to \u005c
\u0022 for character conversion.

● If a single quotation mark is used as the quoted
symbol, set this parameter to a single quotation
mark (').

NOTE
● Currently, only the CSV format is supported.
● After this parameter is specified, ensure that each field

does not contain quoted symbols or contains an even
number of quoted symbols. Otherwise, parsing will
fail.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 144

Parameter Mandat
ory

Description

start_time No Start time when Kafka data is ingested.
If this parameter is specified, DLI reads data read
from the specified time. The format is yyyy-MM-dd
HH:mm:ss. Ensure that the value of start_time is
not later than the current time. Otherwise, no data
will be obtained.

kafka_propertie
s

No This parameter is used to configure the native
attributes of Kafka. The format is
key1=value1;key2=value2.

kafka_certificat
e_name

No Specifies the name of the datasource
authentication information. This parameter is valid
only when the datasource authentication type is
set to Kafka_SSL.
NOTE

● If this parameter is specified, the service loads only
the specified file and password under the
authentication. The system automatically sets this
parameter to kafka_properties.

● Other configuration information required for Kafka
SSL authentication needs to be manually configured
in the kafka_properties attribute.

Precautions
When creating a source stream, you can specify a time model for subsequent
calculation. Currently, DLI supports two time models: Processing Time and Event
Time. For details about the syntax, see Configuring Time Models.

Example
● Read data from the Kafka topic test.

CREATE SOURCE STREAM kafka_source (
 name STRING,
 age int
)
 WITH (
 type = "kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_group_id = "sourcegroup1",
 kafka_topic = "test",
 encode = "json"
);

● Read the topic whose object is test from Kafka and use json_config to map
JSON data to table fields.
The data encoding format is non-nested JSON.
{"attr1": "lilei", "attr2": 18}

The table creation statement is as follows:
CREATE SOURCE STREAM kafka_source (name STRING, age int)
WITH (

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 145

 type = "kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_group_id = "sourcegroup1",
 kafka_topic = "test",
 encode = "json",
 json_config = "name=attr1;age=attr2"
);

2.3.4 Open-Source Kafka Source Stream

Function

Create a source stream to obtain data from Kafka as input data for jobs.

Apache Kafka is a fast, scalable, and fault-tolerant distributed message publishing
and subscription system. It delivers high throughput and built-in partitions and
provides data replicas and fault tolerance. Apache Kafka is applicable to scenarios
of handling massive messages.

Prerequisites
● Kafka is an offline cluster. You need to use the enhanced datasource

connection function to connect Flink jobs to Kafka. You can also set security
group rules as required.

Syntax
CREATE SOURCE STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "kafka",
 kafka_bootstrap_servers = "",
 kafka_group_id = "",
 kafka_topic = "",
 encode = "json",
 json_config=""
);

Keywords

Table 2-4 Keyword description

Parameter Mandat
ory

Description

type Yes Data source type. Kafka indicates that the data
source is Kafka.

kafka_bootstrap
_servers

Yes Port that connects DLI to Kafka. Use enhanced
datasource connections to connect DLI queues with
Kafka clusters.

kafka_group_id No Group ID.

kafka_topic Yes Kafka topic to be read. Currently, only one topic
can be read at a time.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 146

Parameter Mandat
ory

Description

encode Yes Data encoding format. The value can be csv, json,
blob, or user_defined.
● field_delimiter must be specified if this

parameter is set to csv.
● json_config must be specified if this parameter

is set to json.
● If this parameter is set to blob, the received

data will not be parsed, and only one
Array[TINYINT] field exists in the table.

● encode_class_name and
encode_class_parameter must be specified if
this parameter is set to user_defined.

encode_class_n
ame

No If encode is set to user_defined, you need to set
this parameter to the name of the user-defined
decoding class (including the complete package
path). The class must inherit the Deserialization-
Schema class.

encode_class_p
arameter

No If encode is set to user_defined, you can set this
parameter to specify the input parameter of the
user-defined decoding class. Only one parameter of
the string type is supported.

json_config No If encode is set to json, you can use this parameter
to specify the mapping between JSON fields and
stream attributes.
The format is field1=json_field1;field2=json_field2.
field1 and field2 indicate the names of the created
table fields. json_field1 and json_field2 are key
fields of the JSON strings in the Kafka input data.
For details, see Example.
NOTE

If the attribute names in the source stream are the same
as those in JSON fields, you do not need to set this
parameter.

field_delimiter No If encode is set to csv, you can use this parameter
to specify the separator between CSV fields. By
default, the comma (,) is used.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 147

Parameter Mandat
ory

Description

quote No Quoted symbol in a data format. The attribute
delimiters between two quoted symbols are treated
as common characters.
● If double quotation marks are used as the

quoted symbol, set this parameter to \u005c
\u0022 for character conversion.

● If a single quotation mark is used as the quoted
symbol, set this parameter to a single quotation
mark (').

NOTE
● Currently, only the CSV format is supported.
● After this parameter is specified, ensure that each field

does not contain quoted symbols or contains an even
number of quoted symbols. Otherwise, parsing will
fail.

start_time No Start time when Kafka data is ingested.
If this parameter is specified, DLI reads data read
from the specified time. The format is yyyy-MM-dd
HH:mm:ss. Ensure that the value of start_time is
not later than the current time. Otherwise, no data
will be obtained.
If you set this parameter, only the data generated
after the specified time for the Kafka topic will be
read.

kafka_propertie
s

No Native properties of Kafka. The format is
key1=value1;key2=value2. For details about the
property values, see the description in Apache
Kafka.

kafka_certificat
e_name

No Name of the datasource authentication
information. This parameter is valid only when the
datasource authentication type is set to Kafka_SSL.
NOTE

● If this parameter is specified, the service loads only
the specified file and password under the
authentication. The system automatically sets this
parameter to kafka_properties.

● Other configuration information required for Kafka
SSL authentication needs to be manually configured
in the kafka_properties attribute.

Precautions
When creating a source stream, you can specify a time model for subsequent
calculation. Currently, DLI supports two time models: Processing Time and Event
Time. For details about the syntax, see Configuring Time Models.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 148

https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration

Example
● Read Kafka topic test. The data encoding format is non-nested JSON, for

example, {"attr1": "lilei", "attr2": 18}.
CREATE SOURCE STREAM kafka_source (name STRING, age int)
WITH (
 type = "kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_group_id = "sourcegroup1",
 kafka_topic = "test",
 encode = "json",
 json_config = "name=attr1;age=attr2"
);

● Read Kafka topic test. The data is encoded in JSON format and nested. This
example uses the complex data type ROW. For details about the syntax of
ROW, see Data Type.
The test data is as follows:
{
 "id":"1",
 "type2":"online",
 "data":{
 "patient_id":1234,
 "name":"bob1234"
 }
}

An example of the table creation statements is as follows:
CREATE SOURCE STREAM kafka_source
(
 id STRING,
 type2 STRING,
 data ROW<
 patient_id STRING,
 name STRING>
)
WITH (
 type = "kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_group_id = "sourcegroup1",
 kafka_topic = "test",
 encode = "json"
);

CREATE SINK STREAM kafka_sink
(
 id STRING,
 type2 STRING,
 patient_id STRING,
 name STRING
)
 WITH (
 type="kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_topic = "testsink",
 encode = "csv"
);

INSERT INTO kafka_sink select id, type2, data.patient_id, data.name from kafka_source;

2.3.5 OBS Source Stream

Function
Create a source stream to obtain data from OBS. DLI reads data stored by users in
OBS as input data for jobs. OBS applies to various scenarios, such as big data

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 149

analysis, cloud-native application program data, static website hosting, backup/
active archive, and deep/cold archive.

OBS is an object-based storage service. It provides massive, secure, highly reliable,
and low-cost data storage capabilities. For more information about OBS, see the .

Syntax
CREATE SOURCE STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "obs",
 region = "",
 bucket = "",
 object_name = "",
 row_delimiter = "\n",
 field_delimiter = '',
 version_id = ""
);

Keyword

Table 2-5 Keyword description

Parameter Mand
atory

Description

type Yes Data source type. obs indicates that the data source is
OBS.

region Yes Region to which OBS belongs.

encode No Data encoding format. The value can be csv or json. The
default value is csv.

ak No Access Key ID (AK).

sk No Secret access key used together with the ID of the access
key.

bucket Yes Name of the OBS bucket where data is located.

object_na
me

Yes Name of the object stored in the OBS bucket where data
is located. If the object is not in the OBS root directory,
you need to specify the folder name, for example, test/
test.csv. For the object file format, see the encode
parameter.

row_delimi
ter

Yes Separator used to separate every two rows.

field_delim
iter

No Separator used to separate every two attributes.
● This parameter is mandatory when encode is csv. You

use custom attribute separators.
● If encode is json, you do not need to set this

parameter.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 150

Parameter Mand
atory

Description

quote No Quoted symbol in a data format. The attribute delimiters
between two quoted symbols are treated as common
characters.
● If double quotation marks are used as the quoted

symbol, set this parameter to \u005c\u0022 for
character conversion.

● If a single quotation mark is used as the quoted
symbol, set this parameter to a single quotation mark
(').

NOTE
● Currently, only the CSV format is supported.
● After this parameter is specified, ensure that each field does

not contain quoted symbols or contains an even number of
quoted symbols. Otherwise, parsing will fail.

version_id No Version number. This parameter is optional and required
only when the OBS bucket or object has version settings.

Precautions

When creating a source stream, you can specify a time model for subsequent
calculation. Currently, DLI supports two time models: Processing Time and Event
Time. For details about the syntax, see Configuring Time Models.

Example
● The input.csv file is read from the OBS bucket. Rows are separated by '\n'

and columns are separated by ','.

To use the test data, create an input.txt file, copy and paste the following
text data, and save the file as input.csv. Upload the input.csv file to the
target OBS bucket directory. For example, upload the file to the dli-test-
obs01 bucket directory.
1,2,3,4,1403149534
5,6,7,8,1403149535

The following is an example for creating the table:
CREATE SOURCE STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT,
 car_timestamp LONG
)
 WITH (
 type = "obs",
 bucket = "dli-test-obs01",
 region = "xxx",
 object_name = "input.csv",
 row_delimiter = "\n",
 field_delimiter = ","
);

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 151

● The input.json file is read from the OBS bucket. Rows are separated by '\n'.
CREATE SOURCE STREAM obs_source (
 str STRING
)
 WITH (
 type = "obs",
 bucket = "obssource",
 region = "xxx",
 encode = "json",
 row_delimiter = "\n",
 object_name = "input.json"
);

2.4 Creating a Sink Stream

2.4.1 MRS OpenTSDB Sink Stream

Function

DLI exports the output data of the Flink job to OpenTSDB of MRS.

Prerequisites
● OpenTSDB has been installed in the MRS cluster.

● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI
must interconnect with the enhanced datasource connection that has been
connected with MRS clusters. You can also set the security group rules as
required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "opentsdb",
 region = "",
 tsdb_metrics = "",
 tsdb_timestamps = "",
 tsdb_values = "",
 tsdb_tags = "",
 batch_insert_data_num = ""
)

Keywords

Table 2-6 Keyword description

Parameter Mand
atory

Description

type Yes Sink channel type. opentsdb indicates that data is
exported to OpenTSDB of MRS.

region Yes Region where MRS resides.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 152

Parameter Mand
atory

Description

tsdb_link_ad
dress

Yes Service address of the OpenTSDB instance in MRS. The
format is http://ip:port or https://ip:port.
NOTE

If tsd.https.enabled is set to true, HTTPS must be used. Note
that HTTPS does not support certificate authentication.

tsdb_metrics Yes Metric of a data point, which can be specified through
parameter configurations.

tsdb_timesta
mps

Yes Timestamp of a data point. The data type can be
LONG, INT, SHORT, or STRING. Only dynamic columns
are supported.

tsdb_values Yes Value of a data point. The data type can be SHORT,
INT, LONG, FLOAT, DOUBLE, or STRING. Dynamic
columns or constant values are supported.

tsdb_tags Yes Tags of a data point. Each of tags contains at least one
tag value and up to eight tag values. Tags of the data
point can be specified through parameter
configurations.

batch_insert_
data_num

No Number of data records to be written in batches at a
time. The value must be a positive integer. The upper
limit is 65536. The default value is 8.

Precautions
If a configuration item can be specified through parameter configurations, one or
more columns in the record can be used as part of the configuration item. For
example, if the configuration item is set to car_$ {car_brand} and the value of
car_brand in a record is BMW, the value of this configuration item is car_BMW in
the record.

Example
Output data of stream weather_out to OpenTSDB of MRS.

CREATE SINK STREAM weather_out (
 timestamp_value LONG, /* Time */
 temperature FLOAT, /* Temperature value */
 humidity FLOAT, /* Humidity */
 location STRING /* Location */
)
 WITH (
 type = "opentsdb",
 region = "xxx",
 tsdb_link_address = "https://x.x.x.x:4242",
 tsdb_metrics = "weather",
 tsdb_timestamps = "${timestamp_value}",
 tsdb_values = "${temperature}; ${humidity}",
 tsdb_tags = "location:${location},signify:temperature; location:${location},signify:humidity",
 batch_insert_data_num = "10"
);

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 153

2.4.2 CSS Elasticsearch Sink Stream

Function

DLI exports Flink job output data to Elasticsearch of Cloud Search Service (CSS).
Elasticsearch is a popular enterprise-class Lucene-powered search server and
provides the distributed multi-user capabilities. It delivers multiple functions,
including full-text retrieval, structured search, analytics, aggregation, and
highlighting. With Elasticsearch, you can achieve stable, reliable, real-time search.
Elasticsearch applies to diversified scenarios, such as log analysis and site search.

CSS is a fully managed, distributed search service. It is fully compatible with open-
source Elasticsearch and provides DLI with structured and unstructured data
search, statistics, and report capabilities.

NO TE

If the security mode is enabled when you create a CSS cluster, it cannot be undone.

Prerequisites
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with CSS. You can also set the security group rules as required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "es",
 region = "",
 cluster_address = "",
 es_index = "",
 es_type= "",
 es_fields= "",
 batch_insert_data_num= ""
);

Keyword

Table 2-7 Keyword description

Parameter Mand
atory

Description

type Yes Output channel type. es indicates that data is
exported to CSS.

region Yes Region where CSS is located.

cluster_addres
s

Yes Private access address of the CSS cluster, for example:
x.x.x.x:x. Use commas (,) to separate multiple
addresses.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 154

Parameter Mand
atory

Description

es_index Yes Index of the data to be inserted. This parameter
corresponds to CSS index.

es_type Yes Type of the document to which data is to be inserted.
This parameter corresponds to the CSS type.
If the Elasticsearch version is 6.x, the value cannot
start with an underscore (_).
If the Elasticsearch version is 7.x and the type of CSS is
preset, the value must be _doc. Otherwise, the value
must comply with CSS specifications.

es_fields Yes Key of the data field to be inserted. The format is
id,f1,f2,f3,f4. Ensure that the key corresponds to the
data column in the sink. If a random attribute field
instead of a key is used, the keyword id does not need
to be used, for example, f1,f2,f3,f4,f5. This parameter
corresponds to the CSS filed.

batch_insert_d
ata_num

Yes Amount of data to be written in batches at a time.
The value must be a positive integer. The unit is 10
records. The maximum value allowed is 65536, and
the default value is 10.

action No If the value is add, data is forcibly overwritten when
the same ID is encountered. If the value is upsert,
data is updated when the same ID is encountered. (If
upsert is selected, id in the es_fields field must be
specified.) The default value is add.

enable_output
_null

No This parameter is used to configure whether to
generate an empty field. If this parameter is set to
true, an empty field (the value is null) is generated. If
set to false, no empty field is generated. The default
value is false.

max_record_n
um_cache

No Maximum number of records that can be cached.

es_certificate_
name

No Name of the datasource authentication information
If the security mode is enabled and HTTPS is used by
the Elasticsearch cluster, the certificate is required for
access. In this case, set the datasource authentication
type to CSS.
If the security mode is enabled for the Elasticsearch
cluster but HTTPS is disabled, the certificate and
username and password are required for access. In this
case, set the datasource authentication type to
Password.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 155

Precautions

If a configuration item can be specified through parameter configurations, one or
more columns in the record can be used as part of the configuration item. For
example, if the configuration item is set to car_$ {car_brand} and the value of
car_brand in a record is BMW, the value of this configuration item is car_BMW in
the record.

Example

Data of stream qualified_cars is exported to the cluster on CSS.
CREATE SINK STREAM qualified_cars (
 car_id STRING,
 car_owner STRING,
 car_age INT,
 average_speed INT,
 total_miles INT
)
 WITH (
 type = "es",
 region = "xxx",
 cluster_address = "192.168.0.212:9200",
 es_index = "car",
 es_type = "information",
 es_fields = "id,owner,age,speed,miles",
 batch_insert_data_num = "10"
);

2.4.3 DCS Sink Stream

Function

DLI exports the Flink job output data to Redis of DCS. Redis is a storage system
that supports multiple types of data structures such as key-value. It can be used in
scenarios such as caching, event pub/sub, and high-speed queuing. Redis supports
direct read/write of strings, hashes, lists, queues, and sets. Redis works with in-
memory dataset and provides persistence. For more information about Redis, visit
https://redis.io/.

DCS provides Redis-compatible, secure, reliable, out-of-the-box, distributed cache
capabilities allowing elastic scaling and convenient management. It meets users'
requirements for high concurrency and fast data access.

Prerequisites
● Ensure that You have created a Redis cache instance on DCS using your

account.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must be interconnected with the DCS clusters. You can also set the security
group rules as required.

● If you use a VPC peering connection to access a DCS instance, the following
restrictions also apply:
– If network segment 172.16.0.0/12~24 is used during DCS instance

creation, the DLI queue cannot be in any of the following network
segments: 192.168.1.0/24, 192.168.2.0/24, and 192.168.3.0/24.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 156

https://redis.io/

– If network segment 192.168.0.0/16~24 is used during DCS instance
creation, the DLI queue cannot be in any of the following network
segments: 172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.

– If network segment 10.0.0.0/8~24 is used during DCS instance creation,
the DLI queue cannot be in any of the following network segments:
172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "dcs_redis",
 region = "",
 cluster_address = "",
 password = "",
 value_type= "",key_value= ""
);

Keyword

Table 2-8 Keyword description

Paramet
er

Man
dator
y

Description

type Yes Output channel type. dcs_redis indicates that data is
exported to DCS Redis.

region Yes Region where DCS for storing the data is located.

cluster_a
ddress

Yes Redis instance connection address.

password No Redis instance connection password. This parameter is not
required if password-free access is used.

value_ty
pe

Yes This parameter can be set to any or the combination of the
following options:
● Data types, including string, list, hash, set, and zset
● Commands used to set the expiration time of a key,

including expire, pexpire, expireAt, and pexpireAt
● Commands used to delete a key, including del and hdel
Use commas (,) to separate multiple commands.

key_valu
e

Yes Key and value. The number of key_value pairs must be the
same as the number of types specified by value_type, and
key_value pairs are separated by semicolons (;). Both key
and value can be specified through parameter
configurations. The dynamic column name is represented by
${column name}.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 157

Precautions
● If a configuration item can be specified through parameter configurations,

one or more columns in the record can be used as part of the configuration
item. For example, if the configuration item is set to car_$ {car_brand} and
the value of car_brand in a record is BMW, the value of this configuration
item is car_BMW in the record.

● Characters ":", ",", ";", "$", "{", and "}" have been used as special separators
without the escape function. These characters cannot be used in key and
value as common characters. Otherwise, parsing will be affected and the
program exceptions will occur.

Example

Data of stream qualified_cars is exported to the Redis cache instance on DCS.
CREATE SINK STREAM qualified_cars (
 car_id STRING,
 car_owner STRING,
 car_age INT,
 average_speed DOUBLE,
 total_miles DOUBLE
)
 WITH (
 type = "dcs_redis",
 cluster_address = "192.168.0.34:6379",
 password = "xxxxxxxx",
 value_type = "string; list; hash; set; zset",
 key_value = "${car_id}_str: ${car_owner}; name_list: ${car_owner}; ${car_id}_hash: {name:${car_owner},
age: ${car_age}}; name_set: ${car_owner}; math_zset: {${car_owner}:${average_speed}}"
);

2.4.4 DDS Sink Stream

Function

DLI outputs the job output data to Document Database Service (DDS).

DDS is compatible with the MongoDB protocol and is secure, highly available,
reliable, scalable, and easy to use. It provides DB instance creation, scaling,
redundancy, backup, restoration, monitoring, and alarm reporting functions with
just a few clicks on the DDS console.

Prerequisites
● Ensure that you have created a DDS instance on DDS using your account.

For details about how to create a DDS instance, see Buying a DDS DB
Instance in the .

● Currently, only cluster instances with SSL authentication disabled are
supported. Replica set and single node instances are not supported.

● In this scenario, jobs must run on the dedicated queue of DLI. Ensure that the
dedicated queue of DLI has been created.

● Ensure that a datasource connection has been set up between the DLI
dedicated queue and the DDS cluster, and security group rules have been
configured based on the site requirements.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 158

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "dds",
 username = "",
 password = "",
 db_url = "",
 field_names = ""
);

Keyword

Table 2-9 Keyword description

Parameter Man
dato
ry

Description

type Yes Output channel type. dds indicates that data is
exported to DDS.

username Yes Username for connecting to a database.

password Yes Password for connecting to a database.

db_url Yes DDS instance access address, for example,
ip1:port,ip2:port/database/collection.

field_names Yes Key of the data field to be inserted. The format is
f1,f2,f3. Ensure that the key corresponds to the data
column in the sink stream.

batch_insert_
data_num

No Amount of data to be written in batches at a time. The
value must be a positive integer. The default value is
10.

Example
Output data in the qualified_cars stream to the collectionTest DDS DB.

CREATE SINK STREAM qualified_cars (
 car_id STRING,
 car_owner STRING,
 car_age INT,
 average_speed INT,
 total_miles INT
)
 WITH (
 type = "dds",
 region = "xxx",
 db_url = "192.168.0.8:8635,192.168.0.130:8635/dbtest/collectionTest",
 username = "xxxxxxxxxx",
 password = "xxxxxxxxxx",
 field_names = "car_id,car_owner,car_age,average_speed,total_miles",
 batch_insert_data_num = "10"
);

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 159

2.4.5 DIS Sink Stream

Function
DLI writes the Flink job output data into DIS. This cloud ecosystem is applicable to
scenarios where data is filtered and imported to the DIS stream for future
processing.

DIS addresses the challenge of transmitting data outside cloud services to cloud
services. DIS builds data intake streams for custom applications capable of
processing or analyzing streaming data. DIS continuously captures, transmits, and
stores terabytes of data from hundreds of thousands of sources every hour, such
as logs, Internet of Things (IoT) data, social media feeds, website clickstreams, and
location-tracking events. For more information about DIS, see the .

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "dis",
 region = "",
 channel = "",
 partition_key = "",
 encode= "",
 field_delimiter= ""
);

Keyword

Table 2-10 Keyword description

Parameter Manda
tory

Description

type Yes Output channel type. dis indicates that data is
exported to DIS.

region Yes Region where DIS for storing the data is located.

ak No Access Key ID (AK).

sk No Specifies the secret access key used together with
the ID of the access key.

channel Yes DIS stream.

partition_key No Group primary key. Multiple primary keys are
separated by commas (,). If this parameter is not
specified, data is randomly written to DIS
partitions.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 160

Parameter Manda
tory

Description

encode Yes Data encoding format. The value can be csv, json,
or user_defined.
NOTE

● field_delimiter must be specified if this parameter is
set to csv.

● If the encoding format is json, you need to configure
enable_output_null to determine whether to
generate an empty field. For details, see the
examples.

● encode_class_name and encode_class_parameter
must be specified if this parameter is set to
user_defined.

field_delimiter Yes Separator used to separate every two attributes.
● This parameter needs to be configured if the

CSV encoding format is adopted. It can be user-
defined, for example, a comma (,).

● This parameter is not required if the JSON
encoding format is adopted.

json_config No If encode is set to json, you can set this parameter
to specify the mapping between the JSON field
and the stream definition field. An example of the
format is as follows: field1=data_json.field1;
field2=data_json.field2.

enable_output_n
ull

No If encode is set to json, you need to specify this
parameter to determine whether to generate an
empty field.
If this parameter is set to true, an empty field (the
value is null) is generated. If set to false, no empty
field is generated. The default value is true.

encode_class_na
me

No If encode is set to user_defined, you need to set
this parameter to the name of the user-defined
decoding class (including the complete package
path). The class must inherit the Deserialization-
Schema class.

encode_class_par
ameter

No If encode is set to user_defined, you can set this
parameter to specify the input parameter of the
user-defined decoding class. Only one parameter
of the string type is supported.

Precautions
None

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 161

Example
● CSV: Data is written to the DIS stream and encoded using CSV. CSV fields are

separated by commas (,). If there are multiple partitions, car_owner is used as
the key to distribute data to different partitions. An example is as follows:
"ZJA710XC", "lilei", "BMW", 700000.
CREATE SINK STREAM audi_cheaper_than_30w (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dlioutput",
 encode = "csv",
 field_delimiter = ","
);

● JSON: Data is written to the DIS stream and encoded using JSON. If there are
multiple partitions, car_owner and car_brand are used as the keys to
distribute data to different partitions. If enableOutputNull is set to true, an
empty field (the value is null) is generated. If set to false, no empty field is
generated. An example is as follows: "car_id ":"ZJA710XC", "car_owner ":"lilei",
"car_brand ":"BMW", "car_price ":700000.
CREATE SINK STREAM audi_cheaper_than_30w (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "dis",
 channel = "dlioutput",
 region = "xxx",
 partition_key = "car_owner,car_brand",
 encode = "json",
 enable_output_null = "false"
);

2.4.6 DMS Sink Stream
DMS (Distributed Message Service) is a message middleware service based on
distributed, high-availability clustering technology. It provides reliable, scalable,
fully managed queues for sending, receiving, and storing messages. DMS for Kafka
is a message queuing service based on Apache Kafka. This service provides Kafka
premium instances.

DLI can write the job output data into the Kafka instance. The syntax for creating
a Kafka sink stream is the same as that for creating an open source Apache Kafka
sink stream. For details, see MRS Kafka Sink Stream.

2.4.7 DWS Sink Stream (JDBC Mode)

Function

DLI outputs the Flink job output data to Data Warehouse Service (DWS). DWS
database kernel is compliant with PostgreSQL. The PostgreSQL database can store
data of more complex types and delivers space information services, multi-version

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 162

concurrent control (MVCC), and high concurrency. It applies to location
applications, financial insurance, and e-commerce.

DWS is an online data processing database based on the cloud infrastructure and
platform and helps you mine and analyze massive sets of data. For more
information about DWS, see the .

Prerequisites
● Ensure that you have created a DWS cluster on DWS using your account.

For details about how to create a DWS cluster, see Creating a Cluster in the
Data Warehouse Service Management Guide.

● Ensure that a DWS database table has been created.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with DWS clusters. You can also set the security group rules as
required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "rds",
 username = "",
 password = "",
 db_url = "",
 table_name = ""
);

Keyword

Table 2-11 Keyword description

Param
eter

Man
dator
y

Description

type Yes Output channel type. rds indicates that data is exported to
RDS or DWS.

userna
me

Yes Username for connecting to a database.

passwo
rd

Yes Password for connecting to a database.

db_url Yes Database connection address, for example, postgresql://
ip:port/database.

table_
name

Yes Name of the table where data will be inserted. You need to
create the database table in advance.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 163

Param
eter

Man
dator
y

Description

db_col
umns

No Mapping between attributes in the output stream and those in
the database table. This parameter must be configured based
on the sequence of attributes in the output stream.
Example:
create sink stream a3(student_name string, student_age int)
 with (
 type = "rds",
 username = "root",
 password = "xxxxxxxx",
 db_url = "postgresql://192.168.0.102:8000/test1",
 db_columns = "name,age",
 table_name = "t1"
);

In the example, student_name corresponds to the name
attribute in the database, and student_age corresponds to the
age attribute in the database.
NOTE

● If db_columns is not configured, it is normal that the number of
attributes in the output stream is less than that of attributes in the
database table and the extra attributes in the database table are
all nullable or have default values.

primar
y_key

No To update data in the table in real time by using the primary
key, add the primary_key configuration item (c_timeminute
in the following example) when creating a table. During the
data writing operation, data is updated if the specified
primary_key exists. Otherwise, data is inserted.
Example:
CREATE SINK STREAM test(c_timeminute LONG, c_cnt LONG)
 WITH (
 type = "rds",
 username = "root",
 password = "xxxxxxxx",
 db_url = "postgresql://192.168.0.12:8000/test",
 table_name = "test",
 primary_key = "c_timeminute"
);

Precautions
The stream format defined by stream_id must be the same as the table format.

Example
Data of stream audi_cheaper_than_30w is exported to the
audi_cheaper_than_30w table in the test database.

CREATE SINK STREAM audi_cheaper_than_30w (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 164

 WITH (
 type = "rds",
 username = "root",
 password = "xxxxxx",
 db_url = "postgresql://192.168.1.1:8000/test",
 table_name = "audi_cheaper_than_30w"
);

insert into audi_cheaper_than_30w select "1","2","3",4;

2.4.8 DWS Sink Stream (OBS-based Dumping)

Function
Create a sink stream to export Flink job data to DWS through OBS-based
dumping, specifically, output Flink job data to OBS and then import data from
OBS to DWS. For details about how to import OBS data to DWS, see Concurrently
Importing Data from OBS in the .

DWS is an online data processing database based on the cloud infrastructure and
platform and helps you mine and analyze massive sets of data. For more
information about DWS, see the .

Precautions
● OBS-based dumping supports intermediate files of the following two types:

– ORC: The ORC format does not support array data type. If the ORC
format is used, create a foreign server in DWS. For details, see Creating a
Foreign Server in the .

– CSV: By default, the line break is used as the record separator. If the line
break is contained in the attribute content, you are advised to configure
quote. For details, see Table 2-12.

● If the target table does not exist, a table is automatically created. DLI data of
the SQL type does not support text. If a long text exists, you are advised to
create a table in the database.

● When encode uses the ORC format to create a DWS table, if the field
attribute of the SQL stream is defined as the String type, the field attribute of
the DWS table cannot use the varchar type. Instead, a specific text type must
be used. If the SQL stream field attribute is defined as the Integer type, the
DWS table field must use the Integer type.

Prerequisites
● Ensure that OBS buckets and folders have been created.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with DWS clusters. You can also set the security group rules as
required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "dws",
 region = "",
 ak = "",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 165

 sk = "",
 encode = "",
 field_delimiter = "",
 quote = "",
 db_obs_server = "",
 obs_dir = "",
 username = "",
 password = "",
 db_url = "",
 table_name = "",
 max_record_num_per_file = "",
 dump_interval = ""
);

Keyword

Table 2-12 Keyword description

Parameter Man
dato
ry

Description

type Yes Output channel type. dws indicates that data is
exported to DWS.

region Yes Region where DWS is located.

ak Yes Access Key ID (AK).

sk Yes Secret access key used together with the ID of the AK.

encode Yes Encoding format. Currently, CSV and ORC are
supported.

field_delimiter No Separator used to separate every two attributes. This
parameter needs to be configured if the CSV encoding
mode is used. It is recommended that you use invisible
characters as separators, for example, \u0006\u0002.

quote No Single byte. It is recommended that invisible characters
be used, for example, u0007.

db_obs_server No Foreign server (for example, obs_server) that has been
created in the database.
You need to specify this parameter if the ORC encoding
mode is adopted.

obs_dir Yes Directory for storing intermediate files. The directory is
in the format of {Bucket name}/{Directory name}, for
example, obs-a1/dir1/subdir.

username Yes Username for connecting to a database.

password Yes Password for connecting to a database.

db_url Yes Database connection address. The format is /ip:port/
database, for example, 192.168.1.21:8000/test1.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 166

Parameter Man
dato
ry

Description

table_name Yes Data table name. If no table is available, a table is
automatically created.

max_record_n
um_per_file

Yes Maximum number of records that can be stored in a
file. If the number of records in a file is less than the
maximum value, the file will be dumped to OBS after
one dumping period.

dump_interval Yes Dumping period. The unit is second.

delete_obs_te
mp_file

No Whether to delete temporary files on OBS. The default
value is true. If this parameter is set to false, files on
OBS will not be deleted. You need to manually clear the
files.

max_dump_fil
e_num

No Maximum number of files that can be dumped at a
time. If the number of files to be dumped is less than
the maximum value, the files will be dumped to OBS
after one dumping period.

Example
● Dump files in CSV format.

CREATE SINK STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT,
 car_timestamp LONG
)
 WITH (
 type = "dws",
 region = "xxx",
 ak = "",
 sk = "",
 encode = "csv",
 field_delimiter = "\u0006\u0006\u0002",
 quote = "\u0007",
 obs_dir = "dli-append-2/dws",
 username = "",
 password = "",
 db_url = "192.168.1.12:8000/test1",
 table_name = "table1",
 max_record_num_per_file = "100",
 dump_interval = "10"
);

● Dump files in ORC format.
CREATE SINK STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT,
 car_timestamp LONG
)
 WITH (
 type = "dws",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 167

 region = "xxx",
 ak = "",
 sk = "",
 encode = "orc",
 db_obs_server = "obs_server",
 obs_dir = "dli-append-2/dws",
 username = "",
 password = "",
 db_url = "192.168.1.12:8000/test1",
 table_name = "table1",
 max_record_num_per_file = "100",
 dump_interval = "10"
);

2.4.9 MRS HBase Sink Stream

Function

DLI exports the output data of the Flink job to HBase of MRS.

Prerequisites
● An MRS cluster has been created by using your account. DLI can interconnect

with HBase clusters with Kerberos enabled.
● In this scenario, jobs must run on the dedicated queue of DLI. Ensure that the

dedicated queue of DLI has been created.
● Ensure that a datasource connection has been set up between the DLI

dedicated queue and the MRS cluster, and security group rules have been
configured based on the site requirements.

● If you use MRS HBase, ensure that you have added IP addresses of all
hosts in the MRS cluster for the enhanced datasource connection.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "mrs_hbase",
 region = "",
 cluster_address = "",
 table_name = "",
 table_columns = "",
 illegal_data_table = "",
 batch_insert_data_num = "",
 action = ""
)

Keyword

Table 2-13 Keyword description

Parameter Mandator
y

Description

type Yes Output channel type. mrs_hbase indicates that
data is exported to HBase of MRS.

region Yes Region where MRS resides.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 168

Parameter Mandator
y

Description

cluster_addr
ess

Yes ZooKeeper address of the cluster to which the data
table to be inserted belongs. The format is
ip1,ip2:port.

table_name Yes Name of the table where data is to be inserted.
It can be specified through parameter
configurations. For example, if you want one or
more certain columns as part of the table name,
use car_pass_inspect_with_age_${car_age}, where
car_age is the column name.

table_colum
ns

Yes Columns to be inserted. The format is rowKey,
f1:c1, f1:c2, f2:c1, where rowKey must be
specified. If you do not want to add a column (for
example, the third column) to the database, set
this parameter to rowKey,f1:c1,,f2:c1.

illegal_data_
table

No If this parameter is specified, abnormal data (for
example, rowKey does not exist) will be written
into the table. If not specified, abnormal data will
be discarded. The rowKey value is
taskNo_Timestamp followed by six random digits,
and the schema is info:data, info:reason.

batch_insert
_data_num

No Number of data records to be written in batches at
a time. The value must be a positive integer. The
upper limit is 1000. The default value is 10.

action No Whether data is added or deleted. Available
options include add and delete. The default value
is add.

krb_auth No Authentication name for creating a datasource
connection authentication. This parameter is
mandatory when Kerberos authentication is
enabled. Set this parameter to the corresponding
cross-source authentication name.
NOTE

Ensure that the /etc/hosts information of the master
node in the MRS cluster is added to the host file of the
DLI queue.

Precautions
None

Example
Output data to HBase of MRS.
CREATE SINK STREAM qualified_cars (
 car_id STRING,

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 169

 car_owner STRING,
 car_age INT,
 average_speed INT,
 total_miles INT
)
 WITH (
 type = "mrs_hbase",
 region = "xxx",
 cluster_address = "192.16.0.88,192.87.3.88:2181",
 table_name = "car_pass_inspect_with_age_${car_age}",
 table_columns = "rowKey,info:owner,,car:speed,car:miles",
 illegal_data_table = "illegal_data",
 batch_insert_data_num = "20",
 action = "add",
 krb_auth = "KRB_AUTH_NAME"
);

2.4.10 MRS Kafka Sink Stream

Function

DLI exports the output data of the Flink job to Kafka.

Apache Kafka is a fast, scalable, and fault-tolerant distributed message publishing
and subscription system. It delivers high throughput and built-in partitions and
provides data replicas and fault tolerance. Apache Kafka is applicable to scenarios
of handling massive messages. Kafka clusters are deployed and hosted on MRS
that is powered on Apache Kafka.

Prerequisites
● Kafka is an offline cluster. You need to use the enhanced datasource

connection function to connect Flink jobs to Kafka. You can also set security
group rules as required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH(
 type = "kafka",
 kafka_bootstrap_servers = "",
 kafka_topic = "",
 encode = "json"
)

Keyword

Table 2-14 Keyword description

Parameter Man
dat
ory

Description

type Yes Output channel type. kafka indicates that data is
exported to Kafka.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 170

Parameter Man
dat
ory

Description

kafka_bootstra
p_servers

Yes Port that connects DLI to Kafka. Use enhanced
datasource connections to connect DLI queues with
Kafka clusters.

kafka_topic Yes Kafka topic into which DLI writes data.

encode Yes Encoding format. Currently, json and user_defined are
supported.
encode_class_name and encode_class_parameter
must be specified if this parameter is set to
user_defined.

encode_class_
name

No If encode is set to user_defined, you need to set this
parameter to the name of the user-defined decoding
class (including the complete package path). The class
must inherit the DeserializationSchema class.

encode_class_
parameter

No If encode is set to user_defined, you can set this
parameter to specify the input parameter of the user-
defined decoding class. Only one parameter of the
string type is supported.

krb_auth No Authentication name for creating a datasource
connection authentication. This parameter is mandatory
when Kerberos authentication is enabled. If Kerberos
authentication is not enabled for the created MRS
cluster, ensure that the /etc/hosts information of the
master node in the MRS cluster is added to the host file
of the DLI queue.

kafka_properti
es

No This parameter is used to configure the native attributes
of Kafka. The format is key1=value1;key2=value2.

kafka_certifica
te_name

No Specifies the name of the datasource authentication
information. This parameter is valid only when the
datasource authentication type is set to Kafka_SSL.
NOTE

● If this parameter is specified, the service loads only the
specified file and password under the authentication. The
system automatically sets this parameter to
kafka_properties.

● Other configuration information required for Kafka SSL
authentication needs to be manually configured in the
kafka_properties attribute.

Precautions
None

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 171

Example
Output data to Kafka.

● Example 1:
CREATE SINK STREAM kafka_sink (name STRING)
 WITH (
 type="kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_topic = "testsink",
 encode = "json"
);

● Example 2:
CREATE SINK STREAM kafka_sink (
 a1 string,
 a2 string,
 a3 string,
 a4 INT
) // Output Field
 WITH (
 type="kafka",
 kafka_bootstrap_servers = "192.x.x.x:9093, 192.x.x.x:9093, 192.x.x.x:9093",
kafka_topic = "testflink", // Written topic
 encode = "csv", // Encoding format, which can be JSON or CSV.
 kafka_certificate_name = "Flink",
 kafka_properties_delimiter = ",",
 kafka_properties = "sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required username=\"xxx\" password=\"xxx\";,sasl.mechanism=PLAIN,security.protocol=SASL_SSL"
);

2.4.11 Open-Source Kafka Sink Stream

Function
DLI exports the output data of the Flink job to Kafka.

Apache Kafka is a fast, scalable, and fault-tolerant distributed message publishing
and subscription system. It delivers high throughput and built-in partitions and
provides data replicas and fault tolerance. Apache Kafka is applicable to scenarios
of handling massive messages.

Prerequisites
● Kafka is an offline cluster. You need to use the enhanced datasource

connection function to connect Flink jobs to Kafka. You can also set security
group rules as required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH(
 type = "kafka",
 kafka_bootstrap_servers = "",
 kafka_topic = "",
 encode = "json"
)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 172

Keyword

Table 2-15 Keyword description

Parameter Man
dato
ry

Description

type Yes Output channel type. kafka indicates that data is
exported to Kafka.

kafka_bootstra
p_servers

Yes Port that connects DLI to Kafka. Use enhanced
datasource connections to connect DLI queues with
Kafka clusters.

kafka_topic Yes Kafka topic into which DLI writes data.

encode Yes Data encoding format. The value can be csv, json, or
user_defined.
● field_delimiter must be specified if this parameter is

set to csv.
● encode_class_name and encode_class_parameter

must be specified if this parameter is set to
user_defined.

filed_delimiter No If encode is set to csv, you can use this parameter to
specify the separator between CSV fields. By default,
the comma (,) is used.

encode_class_n
ame

No If encode is set to user_defined, you need to set this
parameter to the name of the user-defined decoding
class (including the complete package path). The class
must inherit the DeserializationSchema class.

encode_class_p
arameter

No If encode is set to user_defined, you can set this
parameter to specify the input parameter of the user-
defined decoding class. Only one parameter of the
string type is supported.

kafka_properti
es

No This parameter is used to configure the native
attributes of Kafka. The format is
key1=value1;key2=value2.

kafka_certificat
e_name

No Name of the datasource authentication information.
This parameter is valid only when the datasource
authentication type is set to Kafka_SSL.
NOTE

● If this parameter is specified, the service loads only the
specified file and password under the authentication. The
system automatically sets this parameter to
kafka_properties.

● Other configuration information required for Kafka SSL
authentication needs to be manually configured in the
kafka_properties attribute.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 173

Precautions
None

Example
Output the data in the kafka_sink stream to Kafka.

CREATE SINK STREAM kafka_sink (name STRING)
 WITH (
 type="kafka",
 kafka_bootstrap_servers = "ip1:port1,ip2:port2",
 kafka_topic = "testsink",
 encode = "json"
);

2.4.12 File System Sink Stream (Recommended)

Function
You can create a sink stream to export data to a file system such as HDFS or OBS.
After the data is generated, a table can be created directly according to the
generated directory. The table can be processed through DLI SQL, and the output
data directory can be stored in partitioned tables. It is applicable to scenarios such
as data dumping, big data analysis, data backup, and active, deep, or cold
archiving.

OBS is an object-based storage service. It provides massive, secure, highly reliable,
and low-cost data storage capabilities.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 [PARTITIONED BY (attr_name (',' attr_name)*]
 WITH (
 type = "filesystem",
 file.path = "obs://bucket/xx",
 encode = "parquet",
 ak = "",
 sk = ""
);

Keywords

Table 2-16 Keyword description

Param
eter

Ma
nda
tory

Description

type Yes Output stream type. If type is set to filesystem, data is
exported to the file system.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 174

Param
eter

Ma
nda
tory

Description

file.pat
h

Yes Output directory in the form: schema://file.path.
Currently, Schema supports only OBS and HDFS.
● If schema is set to obs, data is stored to OBS.
● If schema is set to hdfs, data is exported to HDFS. A proxy

user needs to be configured for HDFS. For details, see HDFS
Proxy User Configuration.
Example: hdfs://node-master1sYAx:9820/user/car_infos,
where node-master1sYAx:9820 is the name of the node
where the NameNode is located.

encode Yes Output data encoding format. Currently, only the parquet and
csv formats are supported.
● When schema is set to obs, the encoding format of the

output data can only be parquet.
● When schema is set to hdfs, the output data can be

encoded in Parquet or CSV format.

ak No Access key. This parameter is mandatory when data is exported
to OBS. Global variables can be used to mask the access key
used for OBS authentication.

sk No Secret access key. This parameter is mandatory when data is
exported to OBS. Secret key for accessing OBS authentication.
Global variables can be used to mask sensitive information.

krb_au
th

No Authentication name for creating a datasource connection
authentication. This parameter is mandatory when Kerberos
authentication is enabled. If Kerberos authentication is not
enabled for the created MRS cluster, ensure that the /etc/hosts
information of the master node in the MRS cluster is added to
the host file of the DLI queue.

field_d
elimite
r

No Separator used to separate every two attributes.
This parameter needs to be configured if the CSV encoding
format is adopted. It can be user-defined, for example, a
comma (,).

Precautions
● To ensure job consistency, enable checkpointing if the Flink job uses the file

system output stream.
● To avoid data loss or data coverage, you need to enable automatic or manual

restart upon job exceptions. Enable the Restore Job from Checkpoint.
● Set the checkpoint interval after weighing between real-time output file, file

size, and recovery time, such as 10 minutes.
● Two modes are supported.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 175

– At least once: Events are processed at least once.
– Exactly once: Events are processed only once.

● When you use sink streams of a file system to write data into OBS, do not use
multiple jobs for the same directory.
– The default behavior of an OBS bucket is overwriting, which may cause

data loss.
– The default behavior of the OBS parallel file system bucket is appending,

which may cause data confusion.
You should carefully select the OBS bucket because of the preceding behavior
differences. Data exceptions may occur after abnormal job restart.

HDFS Proxy User Configuration
1. Log in to the MRS management page.
2. Select the HDFS NameNode configuration of MRS and add configuration

parameters in the Customization area.
In the preceding information, myname in the core-site values
hadoop.proxyuser.myname.hosts and hadoop.proxyuser.myname.groups is
the name of the krb authentication user.

NO TE

Ensure that the permission on the HDFS data write path is 777.

3. After the configuration is complete, click Save.

Example
● Example 1:

The following example dumps the car_info data to OBS, with the buyday
field as the partition field and parquet as the encoding format.
create sink stream car_infos (
 carId string,
 carOwner string,
 average_speed double,
 buyday string
) partitioned by (buyday)
 with (
 type = "filesystem",
 file.path = "obs://obs-sink/car_infos",
 encode = "parquet",
 ak = "{{myAk}}",
 sk = "{{mySk}}"
);

The data is ultimately stored in OBS. Directory: obs://obs-sink/car_infos/
buyday=xx/part-x-x.
After the data is generated, the OBS partitioned table can be established for
subsequent batch processing through the following SQL statements:

a. Create an OBS partitioned table.
create table car_infos (
 carId string,
 carOwner string,
 average_speed double
)
 partitioned by (buyday string)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 176

 stored as parquet
 location 'obs://obs-sink/car_infos';

b. Restore partition information from the associated OBS path.
alter table car_infos recover partitions;

● Example 2:
The following example dumps the car_info data to HDFS, with the buyday
field as the partition field and csv as the encoding format.
create sink stream car_infos (
 carId string,
 carOwner string,
 average_speed double,
 buyday string
) partitioned by (buyday)
 with (
 type = "filesystem",
 file.path = "hdfs://node-master1sYAx:9820/user/car_infos",
 encode = "csv",
 field_delimiter = ","
);

The data is ultimately stored in HDFS. Directory: /user/car_infos/buyday=xx/
part-x-x.

2.4.13 OBS Sink Stream

Function
Create a sink stream to export DLI data to OBS. DLI can export the job analysis
results to OBS. OBS applies to various scenarios, such as big data analysis, cloud-
native application program data, static website hosting, backup/active archive, and
deep/cold archive.

OBS is an object-based storage service. It provides massive, secure, highly reliable,
and low-cost data storage capabilities. For more information about OBS, see the .

NO TE

You are advised to use the File System Sink Stream (Recommended).

Prerequisites
Before data exporting, check the version of the OBS bucket. The OBS sink stream
supports data exporting to an OBS bucket running OBS 3.0 or a later version.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "obs",
 region = "",
 encode = "",
 field_delimiter = "",
 row_delimiter = "",
 obs_dir = "",
 file_prefix = "",
 rolling_size = "",
 rolling_interval = "",
 quote = "",
 array_bracket = "",
 append = "",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 177

 max_record_num_per_file = "",
 dump_interval = "",
 dis_notice_channel = ""
)

Keyword

Table 2-17 Keyword description

Parameter Man
dato
ry

Description

type Yes Output channel type. obs indicates that data is exported
to OBS.

region Yes Region to which OBS belongs.

ak No Access Key ID (AK).

sk No Secret access key used together with the ID of the
access key.

encode Yes Encoding format. Currently, formats CSV, JSON, ORC,
Avro, Avro-Merge, and Parquet are supported.

field_delimiter No Separator used to separate every two attributes.
This parameter is mandatory only when the CSV
encoding format is adopted. If this parameter is not
specified, the default separator comma (,) is used.

row_delimiter No Row delimiter. This parameter does not need to be
configured if the CSV or JSON encoding format is
adopted.

json_config No If encode is set to json, you can set this parameter to
specify the mapping between the JSON field and the
stream definition field. An example of the format is as
follows: field1=data_json.field1;field2=data_json.field2.

obs_dir Yes Directory for storing files. The directory is in the format
of {Bucket name}/{Directory name}, for example, obs-
a1/dir1/subdir. If encode is set to csv (append is false),
json (append is false), avro_merge, or parquet,
parameterization is supported.

file_prefix No Prefix of the data export file name. The generated file is
named in the format of file_prefix.x, for example,
file_prefix.1 and file_prefix.2. If this parameter is not
specified, the file prefix is temp by default.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 178

Parameter Man
dato
ry

Description

rolling_size No Maximum size of a file.
NOTE

● One or both of rolling_size and rolling_interval must be
configured.

● When the size of a file exceeds the specified size, a new file
is generated.

● The unit can be KB, MB, or GB. If no unit is specified, the
byte unit is used.

● This parameter does not need to be configured if the ORC
encoding format is adopted.

rolling_interva
l

No Time mode, in which data is saved to the corresponding
directory.
NOTE

● One or both of rolling_size and rolling_interval must be
configured.

● After this parameter is specified, data is written to the
corresponding directories according to the output time.

● The parameter value can be in the format of
yyyy/MM/dd/HH/mm, which is case sensitive. The minimum
unit is minute. If this parameter is set to yyyy/MM/dd/HH,
data is written to the directory that is generated at the hour
time. For example, data generated at 2018-09-10 16:00 will
be written to the {obs_dir}/2018-09-10_16 directory.

● If both rolling_size and rolling_interval are set, a new file
is generated when the size of a single file exceeds the
specified size in the directory corresponding to each time
point.

quote No Modifier, which is added before and after each attribute
only when the CSV encoding format is adopted. You are
advised to use invisible characters, such as u0007, as
the parameter value.

array_bracket No Array bracket, which can be configured only when the
CSV encoding format is adopted. The available options
are (), {}, and []. For example, if you set this parameter
to {}, the array output format is {a1, a2}.

append No The value can be true or false. The default value is
true.
If OBS does not support the append mode and the
encoding format is CSV or JSON, set this parameter to
false. If Append is set to false,
max_record_num_per_file and dump_interval must be
set.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 179

Parameter Man
dato
ry

Description

max_record_n
um_per_file

No Maximum number of records in a file. This parameter
needs to be set if encode is csv (append is false), json
(append is false), orc, avro, avro_merge, or parquet. If
the maximum number of records has been reached, a
new file is generated.

dump_interval No Triggering period. This parameter needs to be
configured when the ORC encoding format is adopted
or notification to DIS is enabled.
● If the ORC encoding format is specified, this

parameter indicates that files will be uploaded to
OBS when the triggering period arrives even if the
number of file records does not reach the maximum
value.

● In notification to DIS is enabled, this parameter
specifies that a notification is sent to DIS every
period to indicate that no more files will be
generated in the directory.

dis_notice_cha
nnel

No DIS channel where DLI sends the record that contains
the OBS directory DLI periodically sends the DIS channel
a record, which contains the OBS directory, indicating
that no more new files will be generated in the
directory.

encoded_data No Data to be encoded. This parameter is set if encode is
json (append is false), avro_merge, or parquet. The
format is ${field_name}, indicating that the stream
field content is encoded as a complete record.

Precautions
If a configuration item can be specified through parameter configurations, one or
more columns in the record can be used as part of the configuration item. For
example, if the configuration item is set to car_$ {car_brand} and the value of
car_brand in a record is BMW, the value of this configuration item is car_BMW in
the record.

Example
● Export the car_infos data to the obs-sink bucket in OBS. The output directory

is car_infos. The output file uses greater_30 as the file name prefix. The
maximum size of a single file is 100 MB. If the data size exceeds 100 MB,
another new file is generated. The data is encoded in CSV format, the comma
(,) is used as the attribute delimiter, and the line break is used as the line
separator.
CREATE SINK STREAM car_infos (
 car_id STRING,
 car_owner STRING,

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 180

 car_brand STRING,
 car_price INT,
 car_timestamp LONG
)
 WITH (
 type = "obs",
 encode = "csv",
 region = "xxx",
 field_delimiter = ",",
 row_delimiter = "\n",
 obs_dir = "obs-sink/car_infos",
 file_prefix = "greater_30",
 rolling_size = "100m"
);

● Example of the ORC encoding format
CREATE SINK STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT,
 car_timestamp LONG
)
 WITH (
 type = "obs",
 region = "xxx",
 encode = "orc",
 obs_dir = "dli-append-2/obsorc",
 FILE_PREFIX = "es_info",
 max_record_num_per_file = "100000",
 dump_interval = "60"
);

● For details about the parquet encoding example, see the example in File
System Sink Stream (Recommended).

2.4.14 RDS Sink Stream

Function
DLI outputs the Flink job output data to RDS. Currently, PostgreSQL and MySQL
databases are supported. The PostgreSQL database can store data of more
complex types and delivers space information services, multi-version concurrent
control (MVCC), and high concurrency. It applies to location applications, financial
insurance, and e-commerce. The MySQL database reduces IT deployment and
maintenance costs in various scenarios, such as web applications, e-commerce,
enterprise applications, and mobile applications.

RDS is a cloud-based web service.

Prerequisites
● Ensure that you have created a PostgreSQL or MySQL RDS instance in RDS.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with RDS instance. You can also set the security group rules as
required.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 181

 type = "rds",
 username = "",
 password = "",
 db_url = "",
 table_name = ""
);

Keyword

Table 2-18 Keyword description

Param
eter

Man
dato
ry

Description

type Yes Output channel type. rds indicates that data is exported to
RDS.

userna
me

Yes Username for connecting to a database.

passwo
rd

Yes Password for connecting to a database.

db_url Yes Database connection address, for example,
{database_type}://ip:port/database.
Currently, two types of database connections are supported:
MySQL and PostgreSQL.
● MySQL: 'mysql://ip:port/database'
● PostgreSQL: 'postgresql://ip:port/database'

table_n
ame

Yes Name of the table where data will be inserted.

db_col
umns

No Mapping between attributes in the output stream and those in
the database table. This parameter must be configured based
on the sequence of attributes in the output stream.
Example:
create sink stream a3(student_name string, student_age int) with (
type = "rds",
username = "root",
password = "xxxxxxxx",
db_url = "mysql://192.168.0.102:8635/test1",
db_columns = "name,age",
table_name = "t1"
);

In the example, student_name corresponds to the name
attribute in the database, and student_age corresponds to the
age attribute in the database.
NOTE

● If db_columns is not configured, it is normal that the number of
attributes in the output stream is less than that of attributes in the
database table and the extra attributes in the database table are
all nullable or have default values.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 182

Param
eter

Man
dato
ry

Description

primar
y_key

No To update data in the table in real time by using the primary
key, add the primary_key configuration item (c_timeminute
in the following example) when creating a table. During the
data writing operation, data is updated if the specified
primary_key exists. Otherwise, data is inserted.
Example:
CREATE SINK STREAM test(c_timeminute LONG, c_cnt LONG)
WITH (
type = "rds",
username = "root",
password = "xxxxxxxx",
db_url = "mysql://192.168.0.12:8635/test",
table_name = "test",
primary_key = "c_timeminute");

operati
on_fiel
d

No Processing method of specified data in the format of $
{field_name}. The value of field_name must be a string. If
field_name indicates D or DELETE, this record is deleted from
the database and data is inserted by default.

Precautions

The stream format defined by stream_id must be the same as the table format.

Example

Data of stream audi_cheaper_than_30w is exported to the
audi_cheaper_than_30w table in the test database.

CREATE SINK STREAM audi_cheaper_than_30w (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "rds",
 username = "root",
 password = "xxxxxx",
 db_url = "mysql://192.168.1.1:8635/test",
 table_name = "audi_cheaper_than_30w"
);

2.4.15 SMN Sink Stream

Function

DLI exports Flink job output data to SMN.

SMN provides reliable and flexible large-scale message notification services to DLI.
It significantly simplifies system coupling and pushes messages to subscription
endpoints based on requirements. SMN can be connected to other cloud services

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 183

or integrated with any application that uses or generates message notifications to
push messages over multiple protocols.

For more information about SMN, see the .

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH(
 type = "smn",
 region = "",
 topic_urn = "",
 urn_column = "",
 message_subject = "",
 message_column = ""
)

Keyword

Table 2-19 Keyword description

Paramete
r

Man
dato
ry

Description

type Yes Output channel type. smn indicates that data is exported to
SMN.

region Yes Region to which SMN belongs.

topic_urn No URN of an SMN topic, which is used for the static topic URN
configuration. The SMN topic serves as the destination for
short message notification and needs to be created in SMN.
One of topic_urn and urn_column must be configured. If
both of them are configured, the topic_urn setting takes
precedence.

urn_colu
mn

No Field name of the topic URN content, which is used for the
dynamic topic URN configuration.
One of topic_urn and urn_column must be configured. If
both of them are configured, the topic_urn setting takes
precedence.

message_
subject

Yes Message subject sent to SMN. This parameter can be user-
defined.

message_
column

Yes Field name in the sink stream. Contents of the field name
serve as the message contents, which are user-defined.
Currently, only text messages (default) are supported.

Precautions

None

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 184

Example
Data of stream over_speed_warning is exported to SMN.

//Static topic configuration
CREATE SINK STREAM over_speed_warning (
 over_speed_message STRING /* over speed message */
)
 WITH (
 type = "smn",
 region = "xxx",
 topic_Urn = "xxx",
 message_subject = "message title",
 message_column = "over_speed_message"
);
//Dynamic topic configuration
CREATE SINK STREAM over_speed_warning2 (
 over_speed_message STRING, /* over speed message */
 over_speed_urn STRING
)
 WITH (
 type = "smn",
 region = "xxx",
 urn_column = "over_speed_urn",
 message_subject = "message title",
 message_column = "over_speed_message"
);

2.5 Creating a Temporary Stream

Function
The temporary stream is used to simplify SQL logic. If complex SQL logic is
followed, write SQL statements concatenated with temporary streams. The
temporary stream is just a logical concept and does not generate any data.

Syntax
CREATE TEMP STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)

Example
create temp stream a2(attr1 int, attr2 string);

2.6 Creating a Dimension Table

2.6.1 Creating a Redis Table
Create a Redis table to connect to the source stream.

For details about the JOIN syntax, see JOIN Between Stream Data and Table
Data.

Syntax
CREATE TABLE table_id (key_attr_name STRING(, hash_key_attr_name STRING)?, value_attr_name STRING)
 WITH (
 type = "dcs_redis",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 185

 cluster_address = ""(,password = "")?,
 value_type= "",
 key_column= ""(,hash_key_column="")?);

Keyword

Table 2-20 Keyword description

Parameter Mand
atory

Description

type Yes Output channel type. Value dcs_redis indicates that
data is exported to DCS Redis.

cluster_addre
ss

Yes Redis instance connection address.

password No Redis instance connection password. This parameter is
not required if password-free access is used.

value_type Yes Indicates the field data type. Supported data types
include string, list, hash, set, and zset.

key_column Yes Indicates the column name of the Redis key attribute.

hash_key_col
umn

No If value_type is set to hash, this field must be specified
as the column name of the level-2 key attribute.

cache_max_n
um

No Indicates the maximum number of cached query
results. The default value is 32768.

cache_time No Indicates the maximum duration for caching database
query results in the memory. The unit is millisecond.
The default value is 10000. The value 0 indicates that
caching is disabled.

Precautions
● Redis clusters are not supported.
● Ensure that You have created a Redis cache instance on DCS using your

account.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with DCS instance. You can also set the security group rules as
required.

Example
The Redis table is used to connect to the source stream.
CREATE TABLE table_a (attr1 string, attr2 string, attr3 string)
 WITH (
 type = "dcs_redis",
 value_type = "hash",
 key_column = "attr1",
 hash_key_column = "attr2",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 186

 cluster_address = "192.168.1.238:6379",
 password = "xxxxxxxx"
);

2.6.2 Creating an RDS Table
Create an RDS/DWS table to connect to the source stream.

For details about the JOIN syntax, see JOIN.

Prerequisites
● Ensure that you have created a PostgreSQL or MySQL RDS instance in RDS.
● In this scenario, jobs must run on the dedicated queue of DLI. Therefore, DLI

must interconnect with the enhanced datasource connection that has been
connected with RDS instance. You can also set the security group rules as
required.

Syntax
CREATE TABLE table_id (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "rds",
 username = "",
 password = "",
 db_url = "",
 table_name = ""
);

Keyword

Table 2-21 Keyword description

Parameter Manda
tory

Description

type Yes Output channel type. Value rds indicates that data is
stored to RDS.

username Yes Username for connecting to a database.

password Yes Password for connecting to a database.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 187

Parameter Manda
tory

Description

db_url Yes Database connection address, for example,
{database_type}://ip:port/database.
Currently, two types of database connections are
supported: MySQL and PostgreSQL.
● MySQL: 'mysql://ip:port/database'
● PostgreSQL: 'postgresql://ip:port/database'

NOTE
To create a DWS dimension table, set the database
connection address to a DWS database address. If the DWS
database version is later than 8.1.0, the open-source
PostgreSQL driver cannot be used for connection. You need
to use the GaussDB driver for connection.

table_nam
e

Yes Indicates the name of the database table for data query.

db_column
s

No Indicates the mapping of stream attribute fields
between the sink stream and database table. This
parameter is mandatory when the stream attribute
fields in the sink stream do not match those in the
database table. The parameter value is in the format of
dbtable_attr1,dbtable_attr2,dbtable_attr3.

cache_max
_num

No Indicates the maximum number of cached query results.
The default value is 32768.

cache_time No Indicates the maximum duration for caching database
query results in the memory. The unit is millisecond. The
default value is 10000. The value 0 indicates that
caching is disabled.

Example
The RDS table is used to connect to the source stream.
CREATE SOURCE STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "dis",
 region = "",
 channel = "dliinput",
 encode = "csv",
 field_delimiter = ","
);

CREATE TABLE db_info (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 188

 WITH (
 type = "rds",
 username = "root",
 password = "******",
 db_url = "postgresql://192.168.0.0:2000/test1",
 table_name = "car"
);

CREATE SINK STREAM audi_cheaper_than_30w (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_price INT
)
 WITH (
 type = "dis",
 region = "",
 channel = "dlioutput",
 partition_key = "car_owner",
 encode = "csv",
 field_delimiter = ","
);

INSERT INTO audi_cheaper_than_30w
SELECT a.car_id, b.car_owner, b.car_brand, b.car_price
FROM car_infos as a join db_info as b on a.car_id = b.car_id;

NO TE

To create a DWS dimension table, set the database connection address to a DWS database
address. If the DWS database version is later than 8.1.0, the open-source PostgreSQL driver
cannot be used for connection. You need to use the GaussDB driver for connection.

2.7 Custom Stream Ecosystem

2.7.1 Custom Source Stream
Compile code to obtain data from the desired cloud ecosystem or open-source
ecosystem as the input data of Flink jobs.

Syntax
CREATE SOURCE STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "user_defined",
 type_class_name = "",
 type_class_parameter = ""
)
 (TIMESTAMP BY timeindicator (',' timeindicator)?);timeindicator:PROCTIME '.' PROCTIME| ID '.' ROWTIME

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 189

Keyword

Table 2-22 Keyword description

Parameter Man
dato
ry

Description

type Yes Data source type. The value user_defined indicates that
the data source is a user-defined data source.

type_class_
name

Yes Name of the source class for obtaining source data. The
value must contain the complete package path.

type_class_
parameter

Yes Input parameter of the user-defined source class. Only one
parameter of the string type is supported.

Precautions
The user-defined source class needs to inherit the RichParallelSourceFunction
class and specify the data type as Row. For example, define MySource class: public
class MySource extends RichParallelSourceFunction<Row>{}. It aims to
implement the open, run, and close functions.

Dependency pom:

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java_2.11</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>

Example
A data record is generated in each period. The data record contains only one field
of the INT type. The initial value is 1 and the period is 60 seconds. The period is
specified by an input parameter.

CREATE SOURCE STREAM user_in_data (
 count INT
)
 WITH (
 type = "user_defined",
 type_class_name = "mySourceSink.MySource",
 type_class_parameter = "60"
)
 TIMESTAMP BY car_timestamp.rowtime;

NO TE

To customize the implementation of the source class, you need to pack the class in a JAR
package and upload the UDF function on the SQL editing page.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 190

2.7.2 Custom Sink Stream
Compile code to write the data processed by DLI to a specified cloud ecosystem or
open-source ecosystem.

Syntax
CREATE SINK STREAM stream_id (attr_name attr_type (',' attr_name attr_type)*)
 WITH (
 type = "user_defined",
 type_class_name = "",
 type_class_parameter = ""
);

Keyword

Table 2-23 Keyword description

Paramete
r

Mand
atory

Description

type Yes Data source type. The value user_defined indicates that
the data source is a user-defined data source.

type_class
_name

Yes Name of the sink class for obtaining source data. The
value must contain the complete package path.

type_class
_paramete
r

Yes Input parameter of the user-defined sink class. Only one
parameter of the string type is supported.

Precautions
The user-defined sink class needs to inherit the RichSinkFunction class and
specify the data type as Row. For example, define MySink class: public class
MySink extends RichSinkFunction<Row>{}. It aims to implement the open,
invoke, and close functions.

Dependency pom:
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java_2.11</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>

Example
Writing data encoded in CSV format to a DIS stream is used as an example.
CREATE SINK STREAM user_out_data (
 count INT

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 191

)
 WITH (
 type = "user_defined",
 type_class_name = "mySourceSink.MySink",
 type_class_parameter = ""
);

NO TE

To customize the implementation of the sink class, you need to pack the class in a JAR
package and upload the UDF function on the SQL editing page.

2.8 Data Type

Overview

Data type is a basic attribute of data and used to distinguish different types of
data. Different data types occupy different storage space and support different
operations. Data is stored in data tables in the database. Each column of a data
table defines the data type. During storage, data must be stored according to data
types.

Similar to the open source community, Flink SQL of the big data platform
supports both native data types and complex data types.

Primitive Data Types

Table 2-24 lists native data types supported by Flink SQL.

Table 2-24 Primitive Data Types

Data Type Description Storage
Space

Value Range

VARCHAR Character with a
variable length

- -

BOOLEAN Boolean - TRUE/FALSE

TINYINT Signed integer 1 byte -128-127

SMALLINT Signed integer 2 bytes -32768-32767

INT Signed integer 4 bytes –2147483648 to
2147483647

INTEGER Signed integer 4 bytes –2147483648 to
2147483647

BIGINT Signed integer 8 bytes –9223372036854775808
to
9223372036854775807

REAL Single-precision
floating point

4 bytes -

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 192

Data Type Description Storage
Space

Value Range

FLOAT Single-precision
floating point

4 bytes -

DOUBLE Double-precision
floating-point

8 bytes -

DECIMAL Data type of valid fixed
places and decimal
places

- -

DATE Date type in the
format of yyyy-MM-dd,
for example,
2014-05-29

- DATE does not contain
time information. Its
value ranges from
0000-01-01 to
9999-12-31.

TIME Time type in the
format of HH:MM:SS
For example, 20:17:40

- -

TIMESTAMP(3) Timestamp of date and
time
For example,
1969-07-20 20:17:40

- -

INTERVAL
timeUnit [TO
timeUnit]

Time interval
For example,
INTERVAL '1:5' YEAR
TO MONTH, INTERVAL
'45' DAY

- -

Complex Data Types
Flink SQL supports complex data types and complex type nesting. Table 2-25
describes complex data types.

Table 2-25 Complex Data Types

Data
Type

Description Declaratio
n Method

Reference
Method

Construction
Method

ARRAY Indicates a group
of ordered fields
that are of the
same data type.

ARRAY[TY
PE]

Variable name
[subscript]. The
subscript starts
from 1, for
example, v1[1].

Array[value1,
value2, ...] as
v1

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 193

Data
Type

Description Declaratio
n Method

Reference
Method

Construction
Method

MAP Indicates a group
of unordered key/
value pairs. The
key must be
native data type,
but the value can
be either native
data type or
complex data
type. The type of
the same MAP
key, as well as the
MAP value, must
be the same.

MAP
[TYPE,
TYPE]

Variable name
[key], for
example,
v1[key]

Map[key, value,
key2, value2,
key3,
value3.......] as
v1

ROW Indicates a group
of named fields.
The data types of
the fields can be
different.

ROW<a1
TYPE1, a2
TYPE2>

Variable name.
Field name, for
example, v1.a1.

Row('1',2) as
v1

Here is a sample code:
CREATE SOURCE STREAM car_infos (
 car_id STRING,
 address ROW<city STRING, province STRING, country STRING>,
 average_speed MAP[STRING, LONG],
 speeds ARRAY[LONG]
)
 WITH (
 type = "dis",
 region = "xxx",
 channel = "dliinput",
 encode = "json"
);

CREATE temp STREAM car_speed_infos (
 car_id STRING,
 province STRING,
 average_speed LONG,
 start_speed LONG
);

INSERT INTO car_speed_infos SELECT
 car_id,
 address.province,
 average_speed[address.city],
 speeds[1]
FROM car_infos;

Complex Type Nesting
● JSON format enhancement

The following uses Source as an example. The method of using Sink is the
same.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 194

– json_schema can be configured.
After json_schema is configured, fields in DDL can be automatically
generated from json_schema without declaration. Here is a sample code:
CREATE SOURCE STREAM data_with_schema WITH (
 type = "dis",
 region = "xxx",
 channel = "dis-in",
 encode = "json",
 json_schema = '{"definitions":{"address":{"type":"object","properties":{"street_address":
{"type":"string"},"city":{"type":"string"},"state":{"type":"string"}},"required":
["street_address","city","state"]}},"type":"object","properties":{"billing_address":{"$ref":"#/
definitions/address"},"shipping_address":{"$ref":"#/definitions/address"},"optional_address":
{"oneOf":[{"type":"null"},{"$ref":"#/definitions/address"}]}}}'
);

 CREATE SINK STREAM buy_infos (
 billing_address_city STRING,
 shipping_address_state string
) WITH (
 type = "obs",
 encode = "csv",
 region = "xxx" ,
 field_delimiter = ",",
 row_delimiter = "\n",
 obs_dir = "bucket/car_infos",
 file_prefix = "over",
 rolling_size = "100m"
);

 insert into buy_infos select billing_address.city, shipping_address.state from
data_with_schema;

Example data
{
 "billing_address":
 {
 "street_address":"xxx",
 "city":"xxx",
 "state":"xxx"
 },
 "shipping_address":
 {
 "street_address":"xxx",
 "city":"xxx",
 "state":"xxx"
 }
}

– The json_schema and json_config parameters can be left empty. For
details about how to use json_config, see the example in Open-Source
Kafka Source Stream.
In this case, the attribute name in the DDL is used as the JSON key for
parsing by default.
The following is example data. It contains nested JSON fields, such as
billing_address and shipping_address, and non-nested fields id and
type2.
{
 "id":"1",
 "type2":"online",
 "billing_address":
 {
 "street_address":"xxx",
 "city":"xxx",
 "state":"xxx"
 },

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 195

 "shipping_address":
 {
 "street_address":"xxx",
 "city":"xxx",
 "state":"xxx"
 }
}

The table creation and usage examples are as follows:
CREATE SOURCE STREAM car_info_data (
 id STRING,
 type2 STRING,
 billing_address Row<street_address string, city string, state string>,
 shipping_address Row<street_address string, city string, state string>,
 optional_address Row<street_address string, city string, state string>
) WITH (
 type = "dis",
 region = "xxx",
 channel = "dis-in",
 encode = "json"
);

 CREATE SINK STREAM buy_infos (
 id STRING,
 type2 STRING,
 billing_address_city STRING,
 shipping_address_state string
) WITH (
 type = "obs",
 encode = "csv",
 region = "xxx",
 field_delimiter = ",",
 row_delimiter = "\n",
 obs_dir = "bucket/car_infos",
 file_prefix = "over",
 rolling_size = "100m"
);

 insert into buy_infos select id, type2, billing_address.city, shipping_address.state from
car_info_data;

● Complex data types supported by sink serialization
– Currently, only the CSV and JSON formats support complex data types.
– For details about the JSON format, see Json format enhancement.
– There is no standard format for CSV files. Therefore, only sink parsing is

supported.
– Output format: It is recommended that the output format be the same as

that of the native Flink.
Map: {key1=Value1, key2=Value2}
Row: Attributes are separated by commas (,), for example, Row(1,'2') =>
1,'2'.

2.9 Built-In Functions

2.9.1 Mathematical Operation Functions

Relational Operators
All data types can be compared by using relational operators and the result is
returned as a BOOLEAN value.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 196

Relationship operators are binary operators. Two compared data types must be of
the same type or they must support implicit conversion.

Table 2-26 lists all relational operators supported by Flink SQL.

Table 2-26 Relational Operators

Operator Returned
Data Type

Description

A = B BOOLEAN If A is equal to B, then TRUE is returned.
Otherwise, FALSE is returned. This operator is
used for value assignment.

A <> B BOOLEAN If A is not equal to B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned. This operator follows the
standard SQL syntax.

A < B BOOLEAN If A is less than B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned.

A <= B BOOLEAN If A is less than or equal to B, then TRUE is
returned. Otherwise, FALSE is returned. If A or B is
NULL, then NULL is returned.

A > B BOOLEAN If A is greater than B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned.

A >= B BOOLEAN If A is greater than or equal to B, then TRUE is
returned. Otherwise, FALSE is returned. If A or B is
NULL, then NULL is returned.

A IS NULL BOOLEAN If A is NULL, then TRUE is returned. Otherwise,
FALSE is returned.

A IS NOT
NULL

BOOLEAN If A is not NULL, then TRUE is returned.
Otherwise, FALSE is returned.

A IS
DISTINCT
FROM B

BOOLEAN If A is not equal to B, TRUE is returned. NULL
indicates A equals B.

A IS NOT
DISTINCT
FROM B

BOOLEAN If A is equal to B, TRUE is returned. NULL
indicates A equals B.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 197

Operator Returned
Data Type

Description

A BETWEEN
[ASYMMETR
IC |
SYMMETRIC
] B AND C

BOOLEAN If A is greater than or equal to B but less than or
equal to C, TRUE is returned.
● ASYMMETRIC: indicates that B and C are

location-related.
For example, "A BETWEEN ASYMMETRIC B
AND C" is equivalent to "A BETWEEN B AND
C".

● SYMMETRIC: indicates that B and C are not
location-related.
For example, "A BETWEEN SYMMETRIC B AND
C" is equivalent to "A BETWEEN B AND C) OR
(A BETWEEN C AND B".

A NOT
BETWEEN B
AND C

BOOLEAN If A is less than B or greater than C, TRUE is
returned.

A LIKE B
[ESCAPE
C]

BOOLEAN If A matches pattern B, TRUE is returned. The
escape character C can be defined as required.

A NOT LIKE
B [ESCAPE
C]

BOOLEAN If A does not match pattern B, TRUE is returned.
The escape character C can be defined as required.

A SIMILAR
TO B
[ESCAPE
C]

BOOLEAN If A matches regular expression B, TRUE is
returned. The escape character C can be defined
as required.

A NOT
SIMILAR TO
B [ESCAPE
C]

BOOLEAN If A does not match regular expression B, TRUE is
returned. The escape character C can be defined
as required.

value IN
(value [,
value]*)

BOOLEAN If the value is equal to any value in the list, TRUE
is returned.

value NOT
IN (value [,
value]*)

BOOLEAN If the value is not equal to any value in the list,
TRUE is returned.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 198

NO TE

● Values of the double, real, and float types may be different in precision. The equal sign
(=) is not recommended for comparing two values of the double type. You are advised
to obtain the absolute value by subtracting these two values of the double type and
determine whether they are the same based on the absolute value. If the absolute value
is small enough, the two values of the double data type are regarded equal. For
example:
abs(0.9999999999 - 1.0000000000) < 0.000000001 //The precision decimal places of 0.9999999999
and 1.0000000000 are 10, while the precision decimal place of 0.000000001 is 9. Therefore,
0.9999999999 can be regarded equal to 1.0000000000.

● Comparison between data of the numeric type and character strings is allowed. During
comparison using relational operators, including >, <, ≤, and ≥, data of the string type is
converted to numeric type by default. No characters other than numeric characters are
allowed.

● Character strings can be compared using relational operators.

Logical Operators
Common logical operators are AND, OR, and NOT. Their priority order is NOT >
AND > OR.

Table 2-27 lists the calculation rules. A and B indicate logical expressions.

Table 2-27 Logical Operators

Operator Result
Type

Description

A OR B BOOLEAN If A or B is TRUE, TRUE is returned. Three-valued logic
is supported.

A AND B BOOLEAN If both A and B are TRUE, TRUE is returned. Three-
valued logic is supported.

NOT A BOOLEAN If A is not TRUE, TRUE is returned. If A is UNKNOWN,
UNKNOWN is returned.

A IS
FALSE

BOOLEAN If A is TRUE, TRUE is returned. If A is UNKNOWN,
FALSE is returned.

A IS NOT
FALSE

BOOLEAN If A is not FALSE, TRUE is returned. If A is
UNKNOWN, TRUE is returned.

A IS
TRUE

BOOLEAN If A is TRUE, TRUE is returned. If A is UNKNOWN,
FALSE is returned.

A IS NOT
TRUE

BOOLEAN If A is not TRUE, TRUE is returned. If A is UNKNOWN,
TRUE is returned.

A IS
UNKNO
WN

BOOLEAN If A is UNKNOWN, TRUE is returned.

A IS NOT
UNKNO
WN

BOOLEAN If A is not UNKNOWN, TRUE is returned.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 199

NO TE

Only data of the Boolean type can be used for calculation using logical operators. Implicit
type conversion is not supported.

Arithmetic Operators

Arithmetic operators include binary operators and unary operators, for all of
which, the returned results are of the numeric type. Table 2-28 lists arithmetic
operators supported by Flink SQL.

Table 2-28 Arithmetic Operators

Opera
tor

Result Type Description

+
numer
ic

All numeric
types

Returns numbers.

-
numer
ic

All numeric
types

Returns negative numbers.

A + B All numeric
types

A plus B. The result type is associated with the
operation data type. For example, if floating-point
number is added to an integer, the result will be a
floating-point number.

A - B All numeric
types

A minus B. The result type is associated with the
operation data type.

A * B All numeric
types

Multiply A and B. The result type is associated with the
operation data type.

A / B All numeric
types

Divide A by B. The result is a number of the double
type (double-precision number).

POWE
R(A,
B)

All numeric
types

Returns the value of A raised to the power B.

ABS(n
umeri
c)

All numeric
types

Returns the absolute value of a specified value.

MOD(
A, B)

All numeric
types

Returns the remainder (modulus) of A divided by B. A
negative value is returned only when A is a negative
value.

SQRT(
A)

All numeric
types

Returns the square root of A.

LN(A) All numeric
types

Returns the nature logarithm of A (base e).

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 200

Opera
tor

Result Type Description

LOG1
0(A)

All numeric
types

Returns the base 10 logarithms of A.

EXP(A
)

All numeric
types

Return the value of e raised to the power of a.

CEIL(
A)
CEILI
NG(A)

All numeric
types

Return the smallest integer that is greater than or
equal to a. For example: ceil(21.2) = 22.

FLOO
R(A)

All numeric
types

Return the largest integer that is less than or equal to
a. For example: floor(21.2) = 21.

SIN(A
)

All numeric
types

Returns the sine value of A.

COS(
A)

All numeric
types

Returns the cosine value of A.

TAN(A
)

All numeric
types

Returns the tangent value of A.

COT(
A)

All numeric
types

Returns the cotangent value of A.

ASIN(
A)

All numeric
types

Returns the arc sine value of A.

ACO
S(A)

All numeric
types

Returns the arc cosine value of A.

ATAN(
A)

All numeric
types

Returns the arc tangent value of A.

DEGR
EES(A
)

All numeric
types

Convert the value of a from radians to degrees.

RADIA
NS(A)

All numeric
types

Convert the value of a from degrees to radians.

SIGN(
A)

All numeric
types

Returns the sign of A. 1 is returned if A is positive. –1 is
returned if A is negative. Otherwise, 0 is returned.

ROUN
D(A,
d)

All numeric
types

Round A to d places right to the decimal point. d is an
int type. For example: round(21.263,2) = 21.26.

PI() All numeric
types

Return the value of pi.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 201

NO TE

Data of the string type is not allowed in arithmetic operations.

2.9.2 String Functions
The common character string functions of DLI are as follows:

Table 2-29 String Operators

Operator Returne
d Data
Type

Description

|| VARCHA
R

Concatenates two strings.

CHAR_LENGTH INT Returns the number of characters in a string.

CHARACTER_LE
NGTH

INT Returns the number of characters in a string.

CONCAT VARCHA
R

Concatenates two or more string values to form a
new string. If the value of any parameter is NULL,
skip this parameter.

CONCAT_WS VARCHA
R

Concatenates each parameter value and the
separator specified by the first parameter
separator to form a new string. The length and
type of the new string depend on the input value.

HASH_CODE INT Returns the absolute value of HASH_CODE() of a
string. In addition to string, int, bigint, float, and
double are also supported.

INITCAP VARCHA
R

Returns a string whose first letter is in uppercase
and the other letters in lowercase. Words are
sequences of alphanumeric characters separated
by non-alphanumeric characters.

IS_ALPHA BOOLEA
N

Checks whether a string contains only letters.

IS_DIGITS BOOLEA
N

Checks whether a string contains only digits.

IS_NUMBER BOOLEA
N

Checks whether a string is numeric.

IS_URL BOOLEA
N

Checks whether a string is a valid URL.

JSON_VALUE VARCHA
R

Obtains the value of a specified path in a JSON
string.

KEY_VALUE VARCHA
R

Obtains the value of a key in a key-value pair
string.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 202

Operator Returne
d Data
Type

Description

LOWER VARCHA
R

Returns a string of lowercase characters.

LPAD VARCHA
R

Concatenates the pad string to the left of the str
string until the length of the new string reaches
the specified length len.

MD5 VARCHA
R

Returns the MD5 value of a string. If the
parameter is an empty string (that is, the
parameter is "), an empty string is returned.

OVERLAY VARCHA
R

Replaces the substring of x with y. Replace length
+1 characters starting from start_position.

POSITION INT Returns the position of the first occurrence of the
target string x in the queried string y. If the target
string x does not exist in the queried string y, 0 is
returned.

REPLACE VARCHA
R

Replaces all str2 in the str1 string with str3.
● str1: original character.
● str2: target character.
● str3: replacement character.

RPAD VARCHA
R

Concatenates the pad string to the right of the str
string until the length of the new string reaches
the specified length len.

SHA1 STRING Returns the SHA1 value of the expr string.

SHA256 STRING Returns the SHA256 value of the expr string.

STRING_TO_AR
RAY

ARRAY[S
TRING]

Separates the value string as string arrays by
using the delimiter.

SUBSTRING VARCHA
R

Returns the substring starting from a fixed
position of A. The start position starts from 1.

TRIM STRING Removes A at the start position, or end position,
or both the start and end positions from B. By
default, string expressions A at both the start and
end positions are removed.

UPPER VARCHA
R

Returns a string converted to uppercase
characters.

||
● Function

Concatenates two character strings.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 203

● Syntax
VARCHAR VARCHAR a || VARCHAR b

● Parameter description
– a: character string.
– b: character string.

● Example
– Test statement

SELECT "hello" || "world";

– Test result
"helloworld"

CHAR_LENGTH
● Function

Returns the number of characters in a string.
● Syntax

INT CHAR_LENGTH(a)

● Parameter description
– a: character string.

● Example
– Test statement

SELECT CHAR_LENGTH(var1) as aa FROM T1;

– Test data and result

Table 2-30 Test data and result

Test Data (var1) Test Result (aa)

abcde123 8

CHARACTER_LENGTH
● Function

Returns the number of characters in a string.
● Syntax

INT CHARACTER_LENGTH(a)

● Parameter description
– a: character string.

● Example
– Test statement

SELECT CHARACTER_LENGTH(var1) as aa FROM T1;

– Test data and result

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 204

Table 2-31 Test data and result

Test Data (var1) Test Result (aa)

abcde123 8

CONCAT
● Function

Concatenates two or more string values to form a new string. If the value of
any parameter is NULL, skip this parameter.

● Syntax
VARCHAR CONCAT(VARCHAR var1, VARCHAR var2, ...)

● Parameter description
– var1: character string
– var2: character string

● Example
– Test statement

SELECT CONCAT("abc", "def", "ghi", "jkl");

– Test result
"abcdefghijkl"

CONCAT_WS
● Function

Concatenates each parameter value and the separator specified by the first
parameter separator to form a new string. The length and type of the new
string depend on the input value.

NO TE

If the value of separator is null, separator is combined with an empty string. If other
parameters are set to null, the parameters whose values are null are skipped during
combination.

● Syntax
VARCHAR CONCAT_WS(VARCHAR separator, VARCHAR var1, VARCHAR var2, ...)

● Parameter description
– separator: separator.
– var1: character string
– var2: character string

● Example
– Test statement

SELECT CONCAT_WS("-", "abc", "def", "ghi", "jkl");

– Test result
"abc-def-ghi-jkl"

HASH_CODE
● Function

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 205

Returns the absolute value of HASH_CODE() of a string. In addition to string,
int, bigint, float, and double are also supported.

● Syntax
INT HASH_CODE(VARCHAR str)

● Parameter description

– str: character string.

● Example

– Test statement
SELECT HASH_CODE("abc");

– Test result
96354

INITCAP
● Function

Return the string whose first letter is in uppercase and the other letters in
lowercase. Strings are sequences of alphanumeric characters separated by
non-alphanumeric characters.

● Syntax
VARCHAR INITCAP(a)

● Parameter description

– a: character string.

● Example

– Test statement
SELECT INITCAP(var1)as aa FROM T1;

– Test data and result

Table 2-32 Test data and result

Test Data (var1) Test Result (aa)

aBCde Abcde

IS_ALPHA
● Function

Checks whether a character string contains only letters.

● Syntax
BOOLEAN IS_ALPHA(VARCHAR content)

● Parameter description

– content: Enter a character string.

● Example

– Test statement
SELECT IS_ALPHA(content) AS case_result FROM T1;

– Test data and results

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 206

Table 2-33 Test data and results

Test Data (content) Test Result (case_result)

Abc true

abc1#$ false

null false

Empty string false

IS_DIGITS
● Function

Checks whether a character string contains only digits.
● Syntax

BOOLEAN IS_DIGITS(VARCHAR content)

● Parameter description
– content: Enter a character string.

● Example
– Test statement

SELECT IS_DIGITS(content) AS case_result FROM T1;

– Test data and results

Table 2-34 Test data and results

Test Data (content) Test Result (case_result)

78 true

78.0 false

78a false

null false

Empty string false

IS_NUMBER
● Function

This function is used to check whether a character string is a numeric string.
● Syntax

BOOLEAN IS_NUMBER(VARCHAR content)

● Parameter description
– content: Enter a character string.

● Example
– Test statement

SELECT IS_NUMBER(content) AS case_result FROM T1;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 207

– Test data and results

Table 2-35 Test data and results

Test Data (content) Test Result (case_result)

78 true

78.0 true

78a false

null false

Empty string false

IS_URL
● Function

This function is used to check whether a character string is a valid URL.
● Syntax

BOOLEAN IS_URL(VARCHAR content)

● Parameter description
– content: Enter a character string.

● Example
– Test statement

SELECT IS_URL(content) AS case_result FROM T1;

– Test data and results

Table 2-36 Test data and results

Test Data (content) Test Result (case_result)

https://www.testweb.com true

https://www.testweb.com:443 true

www.testweb.com:443 false

null false

Empty string false

JSON_VALUE
● Function

Obtains the value of a specified path in a JSON character string.
● Syntax

VARCHAR JSON_VALUE(VARCHAR content, VARCHAR path)

● Parameter description

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 208

– content: Enter a character string.
– path: path to be obtained.

● Example
– Test statement

SELECT JSON_VALUE(content, path) AS case_result FROM T1;

– Test data and results

Table 2-37 Test data and results

Test Data (content and path) Test Result (case_result)

{ "a1":"v1","a2":7,"a3":
8.0,"a4": {"a41":"v41","a42":
["v1","v2"]}}

$ { "a1":"v1","a2":7,"a3":8.0,"a4":
{"a41":"v41","a42":
["v1","v2"]}}

{ "a1":"v1","a2":7,"a3":
8.0,"a4": {"a41":"v41","a42":
["v1","v2"]}}

$.a1 v1

{ "a1":"v1","a2":7,"a3":
8.0,"a4": {"a41":"v41","a42":
["v1","v2"]}}

$.a4 {"a41":"v41","a42": ["v1","v2"]}

{ "a1":"v1","a2":7,"a3":
8.0,"a4": {"a41":"v41","a42":
["v1","v2"]}}

$.a4.
a42

["v1","v2"]

{ "a1":"v1","a2":7,"a3":
8.0,"a4": {"a41":"v41","a42":
["v1","v2"]}}

$.a4.
a42[
0]

v1

KEY_VALUE
● Function

This function is used to obtain the value of a key in a key-value pair string.
● Syntax

VARCHAR KEY_VALUE(VARCHAR content, VARCHAR split1, VARCHAR split2, VARCHAR key_name)

● Parameter description
– content: Enter a character string.
– split1: separator of multiple key-value pairs.
– split2: separator between the key and value.
– key_name: name of the key to be obtained.

● Example
– Test statement

SELECT KEY_VALUE(content, split1, split2, key_name) AS case_result FROM T1;

– Test data and results

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 209

Table 2-38 Test data and results

Test Data (content, split1, split2, and
key_name)

Test Result (case_result)

k1=v1;k2=v2 ; = k1 v1

null ; = k1 null

k1=v1;k2=v2 nul
l

= k1 null

LOWER
● Function

Returns a string of lowercase characters.
● Syntax

VARCHAR LOWER(A)

● Parameter description
– A: character string.

● Example
– Test statement

SELECT LOWER(var1) AS aa FROM T1;

– Test data and result

Table 2-39 Test data and result

Test Data (var1) Test Result (aa)

ABc abc

LPAD
● Function

Concatenates the pad string to the left of the str string until the length of the
new string reaches the specified length len.

● Syntax
VARCHAR LPAD(VARCHAR str, INT len, VARCHAR pad)

● Parameter description
– str: character string before concatenation.
– len: length of the concatenated character string.
– pad: character string to be concatenated.

NO TE

● If any parameter is null, null is returned.
● If the value of len is a negative number, value null is returned.
● If the value of len is less than the length of str, the first chunk of str characters in

len length is returned.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 210

● Example

– Test statement
SELECT
 LPAD("adc", 2, "hello"),
 LPAD("adc", -1, "hello"),
 LPAD("adc", 10, "hello");

– Test result
"ad",,"helloheadc"

MD5
● Function

Returns the MD5 value of a string. If the parameter is an empty string (that
is, the parameter is "), an empty string is returned.

● Syntax
VARCHAR MD5(VARCHAR str)

● Parameter description

– str: character string

● Example

– Test statement
SELECT MD5("abc");

– Test result
"900150983cd24fb0d6963f7d28e17f72"

OVERLAY
● Function

Replaces the substring of x with y. Replaces length+1 characters starting from
start_position.

● Syntax
VARCHAR OVERLAY ((VARCHAR x PLACING VARCHAR y FROM INT start_position [FOR INT
length]))

● Parameter description

– x: character string

– y: character string.

– start_position: start position.

– length (optional): indicates the character length.

● Example

– Test statement
OVERLAY('abcdefg' PLACING 'xyz' FROM 2 FOR 2) AS result FROM T1;

– Test result

Table 2-40 Test result

result

axyzdefg

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 211

POSITION
● Function

Returns the position of the first occurrence of the target string x in the
queried string y. If the target character string x does not exist in the queried
character string y, 0 is returned.

● Syntax
INTEGER POSITION(x IN y)

● Parameter description
– x: character string
– y: character string.

● Example
– Test statement

POSITION('in' IN 'chin') AS result FROM T1;

– Test result

Table 2-41 Test result

result

3

REPLACE
● Function

The character string replacement function is used to replace all str2 in the
str1 string with str3.

● Syntax
VARCHAR REPLACE(VARCHAR str1, VARCHAR str2, VARCHAR str3)

● Parameter description
– str1: original character.
– str2: target character.
– str3: replacement character.

● Example
– Test statement

SELECT
 replace(
 "hello world hello world hello world",
 "world",
 "hello"
);

– Test result
"hello hello hello hello hello hello"

RPAD
● Function

Concatenates the pad string to the right of the str string until the length of
the new string reaches the specified length len.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 212

– If any parameter is null, null is returned.
– If the value of len is a negative number, value null is returned.
– The value of pad is an empty string. If the value of len is less than the

length of str, the string whose length is the same as the length of str is
returned.

● Syntax
VARCHAR RPAD(VARCHAR str, INT len, VARCHAR pad)

● Parameter description
– str: start character string.
– len: indicates the length of the new character string.
– pad: character string that needs to be added repeatedly.

● Example
– Test statement

SELECT
 RPAD("adc", 2, "hello"),
 RPAD("adc", -1, "hello"),
 RPAD("adc", 10, "hello");

– Test result
"ad",,"adchellohe"

SHA1
● Function

Returns the SHA1 value of the expr string.
● Syntax

STRING SHA1(STRING expr)

● Parameter description
– expr: character string.

● Example
– Test statement

SELECT SHA1("abc");

– Test result
"a9993e364706816aba3e25717850c26c9cd0d89d"

SHA256
● Function

Returns the SHA256 value of the expr string.
● Syntax

STRING SHA256(STRING expr)

● Parameter description
– expr: character string.

● Example
– Test statement

SELECT SHA256("abc");

– Test result
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 213

STRING_TO_ARRAY
● Function

Separates the value string as character string arrays by using the delimiter.

NO TE

delimiter uses the Java regular expression. If special characters are used, they need to
be escaped.

● Syntax
ARRAY[String] STRING_TO_ARRAY(STRING value, VARCHAR delimiter)

● Parameter description
– value: character string.
– delimiter: specifies the delimiter.

● Example
– Test statement

SELECT
 string_to_array("127.0.0.1", "\\."),
 string_to_array("red-black-white-blue", "-");

– Test result
[127,0,0,1],[red,black,white,blue]

SUBSTRING
● Function

Returns the substring that starts from a fixed position of A. The start position
starts from 1.
– If len is not specified, the substring from the start position to the end of

the string is truncated.
– If len is specified, the substring starting from the position specified by

start is truncated. The length is specified by len.

NO TE

The value of start starts from 1. If the value is 0, it is regarded as 1. If the value of
start is a negative number, the position is calculated from the end of the character
string in reverse order.

● Syntax
VARCHAR SUBSTRING(STRING A FROM INT start)

Or
VARCHAR SUBSTRING(STRING A FROM INT start FOR INT len)

● Parameter description
– A: specified character string.
– start: start position for truncating the character string A.
– len: intercepted length.

● Example
– Test statement 1

SELECT SUBSTRING("123456" FROM 2);

– Test result 1
"23456"

– Test statement 2

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 214

SELECT SUBSTRING("123456" FROM 2 FOR 4);

– Test result 2
"2345"

TRIM
● Function

Remove A at the start position, or end position, or both the start and end
positions from B. By default, string expressions A at both the start and end
positions are removed.

● Syntax
STRING TRIM({ BOTH | LEADING | TRAILING } STRING a FROM STRING b)

● Parameter description

– a: character string.

– b: character string.

● Example

– Test statement
SELECT TRIM(BOTH " " FROM " hello world ");

– Test result
"hello world"

UPPER
● Function

Returns a string converted to an uppercase character.

● Syntax
VARCHAR UPPER(A)

● Parameter description

– A: character string.

● Example

– Test statement
SELECT UPPER("hello world");

– Test result
"HELLO WORLD"

2.9.3 Temporal Functions
Table 2-42 lists the time functions supported by Flink SQL.

Function Description

Table 2-42 Time Function

Function Return
Type

Description

DATE string DATE Parse the date string (yyyy-MM-dd) to a SQL
date.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 215

Function Return
Type

Description

TIME string TIME Parse the time string (HH:mm:ss) to the SQL
time.

TIMESTAMP string TIMESTA
MP

Convert the time string into timestamp. The
time string format is yyyy-MM-dd
HH:mm:ss.fff.

INTERVAL string
range

INTERVA
L

There are two types of intervals: yyyy-MM
and dd HH:mm:sss.fff'. The range of yyyy-MM
can be YEAR or YEAR TO MONTH, with the
precision of month. The range of dd
HH:mm:sss.fff' can be DAY TO HOUR, DAY TO
MINUTE, DAY TO SECOND, or DAY TO
MILLISECONDS, with the precision of
millisecond. For example, if the range is DAY
TO SECOND, the day, hour, minute, and
second are all valid and the precision is
second. DAY TO MINUTE indicates that the
precision is minute.
The following is an example:
INTERVAL '10 00:00:00.004' DAY TO
milliseconds indicates that the interval is 10
days and 4 milliseconds.
INTERVAL '10' DAY indicates that the interval
is 10 days and INTERVAL '2-10' YEAR TO
MONTH indicates that the interval is 2 years
and 10 months.

CURRENT_DATE DATE Return the SQL date of UTC time zone.

CURRENT_TIME TIME Return the SQL time of UTC time zone.

CURRENT_TIMESTA
MP

TIMESTA
MP

Return the SQL timestamp of UTC time zone.

LOCALTIME TIME Return the SQL time of the current time zone.

LOCALTIMESTAMP TIMESTA
MP

Return the SQL timestamp of the current time
zone.

EXTRACT(timeinter
valunit FROM
temporal)

INT Extract part of the time point or interval.
Return the part in the int type.
For example, 5 is returned from
EXTRACT(DAY FROM DATE "2006-06-05").

FLOOR(timepoint
TO
timeintervalunit)

TIME Round a time point down to the given unit.
For example, 12:44:00 is returned from
FLOOR(TIME '12:44:31' TO MINUTE).

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 216

Function Return
Type

Description

CEIL(timepoint TO
timeintervalunit)

TIME Round a time point up to the given unit.
For example, 12:45:00 is returned from
CEIL(TIME '12:44:31' TO MINUTE).

QUARTER(date) INT Return the quarter from the SQL date.

(timepoint,
temporal)
OVERLAPS
(timepoint,
temporal)

BOOLEA
N

Check whether two intervals overlap. The time
points and time are converted into a time
range with a start point and an end point. The
function is leftEnd >= rightStart && rightEnd
>= leftStart. If leftEnd is greater than or equal
to rightStart and rightEnd is greater than or
equal to leftStart, true is returned. Otherwise,
false is returned.
The following is an example:
● If leftEnd is 3:55:00 (2:55:00+1:00:00),

rightStart is 3:30:00, rightEnd is 5:30:00
(3:30:00+2:00:00), and leftStart is 2:55:00,
true will be returned.
Specifically, true is returned from (TIME
'2:55:00', INTERVAL '1' HOUR) OVERLAPS
(TIME '3:30:00', INTERVAL '2' HOUR).

● If leftEnd is 10:00:00, rightStart is 10:15:00,
rightEnd is 13:15:00 (10:15:00+3:00:00),
and leftStart is 9:00:00, false will be
returned.
Specifically, false is returned from (TIME
'9:00:00', TIME '10:00:00') OVERLAPS (TIME
'10:15:00', INTERVAL '3' HOUR).

TO_TIMESTAMP(lo
ng expr)

TIMESTA
MP

Convert a timestamp to time.
The input parameter this function must be of
the BIGINT type. Other data types, such as
VARCHAR and STRING, are not supported.
For example, TO_TIMESTAMP
(1628765159000) is converted to 2021-08-12
18:45:59.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 217

Function Return
Type

Description

UNIX_TIMESTAMP BIGINT Returns the timestamp of a specified
parameter. The timestamp type is BIGINT and
the unit is second.
The following methods are supported:
● UNIX_TIMESTAMP(): returns the timestamp

of the current time if no parameter is
specified.

● UNIX_TIMESTAMP(STRING datestr): returns
the timestamp indicated by the parameter
if only one parameter is contained. The
format of datestr must be yyyy-MM-dd
HH:mm:ss.

● UNIX_TIMESTAMP(STRING datestr, STRING
format): returns the timestamp indicated by
the first parameter if two parameters are
contained. The second parameter can
specify the format of datestr.

UNIX_TIMESTAMP_
MS

BIGINT Returns the timestamp of a specified
parameter. The timestamp type is BIGINT and
the unit is millisecond.
The following methods are supported:
● UNIX_TIMESTAMP_MS(): returns the

timestamp of the current time if no
parameter is specified.

● UNIX_TIMESTAMP_MS(STRING datestr):
returns the timestamp indicated by the
parameter if only one parameter is
contained. The format of datestr must be
yyyy-MM-dd HH:mm:ss.SSS.

● UNIX_TIMESTAMP_MS(STRING datestr,
STRING format): returns the timestamp
indicated by the first parameter if two
parameters are contained. The second
parameter can specify the format of
datestr.

Precautions

None

Example
insert into temp SELECT Date '2015-10-11' FROM OrderA;//Date is returned
insert into temp1 SELECT Time '12:14:50' FROM OrderA;//Time is returned
insert into temp2 SELECT Timestamp '2015-10-11 12:14:50' FROM OrderA;//Timestamp is returned

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 218

2.9.4 Type Conversion Functions

Syntax
CAST(value AS type)

Syntax Description
This function is used to forcibly convert types.

Precautions
● If the input is NULL, NULL is returned.
● Flink jobs do not support the conversion of bigint to timestamp using CAST.

You can convert it using to_timestamp or to_localtimestamp.

Example
Convert amount into a character string. The specified length of the string is invalid
after the conversion.

insert into temp select cast(amount as VARCHAR(10)) from source_stream;

Common Type Conversion Functions

Table 2-43 Common type conversion functions

Function Description

cast(v1 as varchar) Converts v1 to a string. The value of v1 can be
of the numeric type or of the timestamp, date,
or time type.

cast (v1 as int) Converts v1 to the int type. The value of v1 can
be a number or a character.

cast(v1 as timestamp) Converts v1 to the timestamp type. The value
of v1 can be of the string, date, or time type.

cast(v1 as date) Converts v1 to the date type. The value of v1
can be of the string or timestamp type.

● cast(v1 as varchar)
– Test statement

SELECT cast(content as varchar) FROM T1;

– Test data and result

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 219

Table 2-44 T1

content (INT) varchar

5 "5"

● cast (v1 as int)

– Test statement
SELECT cast(content as int) FROM T1;

– Test data and result

Table 2-45 T1

content (STRING) int

"5" 5

● cast(v1 as timestamp)

– Test statement
SELECT cast(content as timestamp) FROM T1;

– Test data and result

Table 2-46 T1

content (STRING) timestamp

"2018-01-01 00:00:01" 1514736001000

● cast(v1 as date)

– Test statement
SELECT cast(content as date) FROM T1;

– Test data and result

Table 2-47 T1

content (TIMESTAMP) date

1514736001000 "2018-01-01"

Detailed Sample Code
/** source **/
CREATE
SOURCE STREAM car_infos (cast_int_to_varchar int, cast_String_to_int string,
case_string_to_timestamp string, case_timestamp_to_date timestamp) WITH (
 type = "dis",
 region = "xxxxx",
 channel = "dis-input",
 partition_count = "1",
 encode = "json",
 offset = "13",
 json_config =

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 220

"cast_int_to_varchar=cast_int_to_varchar;cast_String_to_int=cast_String_to_int;case_string_to_timestamp=cas
e_string_to_timestamp;case_timestamp_to_date=case_timestamp_to_date"

);
/** sink **/
CREATE
SINK STREAM cars_infos_out (cast_int_to_varchar varchar, cast_String_to_int
int, case_string_to_timestamp timestamp, case_timestamp_to_date date) WITH (
 type = "dis",
 region = "xxxxx",
 channel = "dis-output",
 partition_count = "1",
 encode = "json",
 offset = "4",
 json_config =
"cast_int_to_varchar=cast_int_to_varchar;cast_String_to_int=cast_String_to_int;case_string_to_timestamp=cas
e_string_to_timestamp;case_timestamp_to_date=case_timestamp_to_date",
 enable_output_null="true"
);
/** Statistics on static car information**/
INSERT
INTO
 cars_infos_out
SELECT
 cast(cast_int_to_varchar as varchar),
 cast(cast_String_to_int as int),
 cast(case_string_to_timestamp as timestamp),
 cast(case_timestamp_to_date as date)
FROM
 car_infos;

Returned data

{"case_string_to_timestamp":
1514736001000,"cast_int_to_varchar":"5","case_timestamp_to_date":"2018-01-01","cast_String_to_int":100}

2.9.5 Aggregate Functions
An aggregate function performs a calculation operation on a set of input values
and returns a value. For example, the COUNT function counts the number of rows
retrieved by an SQL statement. Table 2-48 lists aggregate functions.

Sample data: Table T1
|score|
|81 |
|100 |
|60 |
|95 |
|86 |

Common Aggregate Functions

Table 2-48 Common aggregation functions

Function Return Data
Type

Description

COUNT(*) BIGINT Return count of tuples.

COUNT([ALL]
expression...

BIGINT Returns the number of input rows for
which the expression is not NULL. Use
DISTINCT for a unique instance of each
value.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 221

Function Return Data
Type

Description

AVG(numeric) DOUBLE Return average (arithmetic mean) of all
input values.

SUM(numeric) DOUBLE Return the sum of all input numerical
values.

MAX(value) DOUBLE Return the maximum value of all input
values.

MIN(value) DOUBLE Return the minimum value of all input
values.

STDDEV_POP(val
ue)

DOUBLE Return the population standard deviation
of all numeric fields of all input values.

STDDEV_SAMP(v
alue)

DOUBLE Return the sample standard deviation of
all numeric fields of all input values.

VAR_POP(value) DOUBLE Return the population variance (square of
population standard deviation) of numeral
fields of all input values.

VAR_SAMP(valu
e)

DOUBLE Return the sample variance (square of the
sample standard deviation) of numeric
fields of all input values.

Example
● COUNT(*)

– Test statement
SELECT COUNT(score) FROM T1;

– Test data and results

Table 2-49 T1

Test Data (score) Test Result

81 5

100

60

95

86

● COUNT([ALL] expression | DISTINCT expression1 [, expression2]*)

– Test statement
SELECT COUNT(DISTINCT content) FROM T1;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 222

– Test data and results

Table 2-50 T1

content (STRING) Test Result

"hello1 " 2

"hello2 "

"hello2"

null

86

● AVG(numeric)

– Test statement
SELECT AVG(score) FROM T1;

– Test data and results

Table 2-51 T1

Test Data (score) Test Result

81 84.0

100

60

95

86

● SUM(numeric)

– Test statement
SELECT SUM(score) FROM T1;

– Test data and results

Table 2-52 T1

Test Data (score) Test Result

81 422.0

100

60

95

86

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 223

● MAX(value)
– Test statement

SELECT MAX(score) FROM T1;

– Test data and results

Table 2-53 T1

Test Data (score) Test Result

81 100.0

100

60

95

86

● MIN(value)

– Test statement
SELECT MIN(score) FROM T1;

– Test data and results

Table 2-54 T1

Test Data (score) Test Result

81 60.0

100

60

95

86

● STDDEV_POP(value)

– Test statement
SELECT STDDEV_POP(score) FROM T1;

– Test data and results

Table 2-55 T1

Test Data (score) Test Result

81 13.0

100

60

95

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 224

Test Data (score) Test Result

86

● STDDEV_SAMP(value)

– Test statement
SELECT STDDEV_SAMP(score) FROM T1;

– Test data and results

Table 2-56 T1

Test Data (score) Test Result

81 15.0

100

60

95

86

● VAR_POP(value)

– Test statement
SELECT VAR_POP(score) FROM T1;

– Test data and results

Table 2-57 T1

Test Data (score) Test Result

81 193.0

100

60

95

86

● VAR_SAMP(value)

– Test statement
SELECT VAR_SAMP(score) FROM T1;

– Test data and results

Table 2-58 T1

Test Data (score) Test Result

81 241.0

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 225

Test Data (score) Test Result

100

60

95

86

2.9.6 Table-Valued Functions
Table-valued functions can convert one row of records into multiple rows or
convert one column of records into multiple columns. Table-valued functions can
only be used in JOIN LATERAL TABLE.

Table 2-59 Table-valued functions

Function Return Data
Type

Description

split_cursor(value,
delimiter)

cursor Separates the "value" string into
multiple rows of strings by using
the delimiter.

Example
Input one record ("student1", "student2, student3") and output two records
("student1", "student2") and ("student1", "student3").

create source stream s1(attr1 string, attr2 string) with (......);
insert into s2 select attr1, b1 from s1 left join lateral table(split_cursor(attr2, ',')) as T(b1) on true;

2.9.7 Other Functions

Array Functions

Table 2-60 Array functions

Function Return Data
Type

Description

CARDINALITY(AR
RAY)

INT Return the element count of an array.

ELEMENT(ARRAY
)

- Return the sole element of an array with a
single element. If the array contains no
elements, null is returned. If the array
contains multiple elements, an exception is
reported.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 226

Example:

The returned number of elements in the array is 3.

insert into temp select CARDINALITY(ARRAY[TRUE, TRUE, FALSE]) from source_stream;

HELLO WORLD is returned.

insert into temp select ELEMENT(ARRAY['HELLO WORLD']) from source_stream;

Attribute Access Functions

Table 2-61 Attribute access functions

Function Return Data
Type

Description

tableName.comp
ositeType.field

- Select a single field, use the name to access
the field of Apache Flink composite types,
such as Tuple and POJO, and return the
value.

tableName.comp
ositeType.*

- Select all fields, and convert Apache Flink
composite types, such as Tuple and POJO,
and all their direct subtypes into a simple
table. Each subtype is a separate field.

2.10 User-Defined Functions

Overview
DLI supports the following three types of user-defined functions (UDFs):

● Regular UDF: takes in one or more input parameters and returns a single
result.

● User-defined table-generating function (UDTF): takes in one or more input
parameters and returns multiple rows or columns.

● User-defined aggregate function (UDAF): aggregates multiple records into
one value.

NO TE

UDFs can only be used in dedicated queues.

POM Dependency
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table_2.11</artifactId>
 <version>1.7.2</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java_2.11</artifactId>

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 227

 <version>1.7.2</version>
 <scope>provided</scope>
</dependency>

Precautions
● Currently, Python is not supported for programming UDFs, UDTFs, and

UDAFs.
● If you use IntelliJ IDEA to debug the created UDF, select include

dependencies with "Provided" scope. Otherwise, the dependency packages
in the POM file cannot be loaded for local debugging.
The following uses IntelliJ IDEA 2020.2 as an example:

a. On the IntelliJ IDEA page, select the configuration file you need to debug
and click Edit Configurations.

b. On the Run/Debug Configurations page, select include dependencies
with "Provided" scope.

c. Click OK.

Using UDFs
1. Write the code of custom functions. For details about the code examples, see

UDF, UDTF, or UDAF.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 228

2. Compile the UDF code, pack it into a JAR package, and upload the package to
OBS.

3. In the left navigation pane of the DLI management console, click Job
Management > Flink Jobs. Locate the row where the target resides and click
Edit in the Operation column to switch to the page where you can edit the
job.

4. On the Running Parameters tab page, select an exclusive queue for Queue.
The UDF Jar parameter is displayed. Select the JAR file stored on OBS and
click Save.

NO TE

Before selecting a user-defined function JAR package, upload the JAR package to the
created OBS bucket.

After the JAR package is selected, add the UDF statement to the SQL
statement.

UDF
The regular UDF must inherit the ScalarFunction function and implement the eval
method. The open and close functions are optional.

Example code

import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.ScalarFunction;
public class UdfScalarFunction extends ScalarFunction {
 private int factor = 12;
 public UdfScalarFunction() {
 this.factor = 12;
 }
 /**
 * (optional) Initialization
 * @param context
 */
 @Override
 public void open(FunctionContext context) {}
 /**
 * Custom logic
 * @param s
 * @return
 */
 public int eval(String s) {
 return s.hashCode() * factor;
 }
 /**
 * Optional
 */
 @Override
 public void close() {}
}

Example

CREATE FUNCTION udf_test AS 'com.xxx.udf.UdfScalarFunction';
INSERT INTO sink_stream select udf_test(attr) FROM source_stream;

UDTF
The UDTF must inherit the TableFunction function and implement the eval
method. The open and close functions are optional. If the UDTF needs to return
multiple columns, you only need to declare the returned value as Tuple or Row. If

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 229

Row is used, you need to overload the getResultType method to declare the
returned field type.

Example code

import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class UdfTableFunction extends TableFunction<Row> {
 private Logger log = LoggerFactory.getLogger(TableFunction.class);
 /**
 * (optional) Initialization
 * @param context
 */
 @Override
 public void open(FunctionContext context) {}
 public void eval(String str, String split) {
 for (String s : str.split(split)) {
 Row row = new Row(2);
 row.setField(0, s);
 row.setField(1, s.length());
 collect(row);
 }
 }
 /**
 * Declare the type returned by the function
 * @return
 */
 @Override
 public TypeInformation<Row> getResultType() {
 return Types.ROW(Types.STRING, Types.INT);
 }
 /**
 * Optional
 */
 @Override
 public void close() {}
 }

Example

The UDTF supports CROSS JOIN and LEFT JOIN. When the UDTF is used, the
LATERAL and TABLE keywords must be included.

● CROSS JOIN: does not output the data of a row in the left table if the UDTF
does not output the result for the data of the row.

● LEFT JOIN: outputs the data of a row in the left table even if the UDTF does
not output the result for the data of the row, but pads null with UDTF-related
fields.

CREATE FUNCTION udtf_test AS 'com.xxx.udf.TableFunction';
// CROSS JOIN
INSERT INTO sink_stream select subValue, length FROM source_stream, LATERAL
TABLE(udtf_test(attr, ',')) as T(subValue, length);
// LEFT JOIN
INSERT INTO sink_stream select subValue, length FROM source_stream LEFT JOIN LATERAL
TABLE(udtf_test(attr, ',')) as T(subValue, length) ON TRUE;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 230

UDAF
The UDAF must inherit the AggregateFunction function. You need to create an
accumulator for storing the computing result, for example, WeightedAvgAccum
in the following example code.

Example code

public class WeightedAvgAccum {
public long sum = 0;
public int count = 0;
}

import org.apache.flink.table.functions.AggregateFunction;
import java.util.Iterator;
/**
* The first type variable is the type returned by the aggregation function, and the second type variable is of
the Accumulator type.
* Weighted Average user-defined aggregate function.
*/
public class UdfAggFunction extends AggregateFunction<Long, WeightedAvgAccum> {
// Initialize the accumulator.
 @Override
 public WeightedAvgAccum createAccumulator() {
 return new WeightedAvgAccum();
 }
// Return the intermediate computing value stored in the accumulator.
 @Override
 public Long getValue(WeightedAvgAccum acc) {
 if (acc.count == 0) {
 return null;
 } else {
 return acc.sum / acc.count;
 }
}
// Update the intermediate computing value according to the input.
public void accumulate(WeightedAvgAccum acc, long iValue) {
acc.sum += iValue;
acc.count += 1;
}
// Perform the retraction operation, which is opposite to the accumulate operation.
public void retract(WeightedAvgAccum acc, long iValue) {
acc.sum -= iValue;
acc.count -= 1;
}
// Combine multiple accumulator values.
public void merge(WeightedAvgAccum acc, Iterable<WeightedAvgAccum> it) {
Iterator<WeightedAvgAccum> iter = it.iterator();
while (iter.hasNext()) {
WeightedAvgAccum a = iter.next();
acc.count += a.count;
acc.sum += a.sum;
}
}
// Reset the intermediate computing value.
public void resetAccumulator(WeightedAvgAccum acc) {
acc.count = 0;
acc.sum = 0L;
}
}

Example

CREATE FUNCTION udaf_test AS 'com.xxx.udf.UdfAggFunction';
INSERT INTO sink_stream SELECT udaf_test(attr2) FROM source_stream GROUP BY attr1;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 231

2.11 Geographical Functions

Function description
Table 2-62 describes the basic geospatial geometric elements.

Table 2-62 Basic geospatial geometric element table

Geospatial geometric
elements

Description Example Value

ST_POINT(latitude,
longitude)

Indicates a geographical point,
including the longitude and
latitude.

ST_POINT(1.12012,
1.23401)

ST_LINE(array[point1...
pointN])

Indicates a geographical line
formed by connecting multiple
geographical points (ST_POINT)
in sequence. The line can be a
polygonal line or a straight line.

ST_LINE(ARRAY[ST_
POINT(1.12, 2.23),
ST_POINT(1.13,
2.44),
ST_POINT(1.13,
2.44)])

ST_POLYGON(array[poi
nt1...point1])

Indicates a geographical
polygon, which is a closed
polygon area formed by
connecting multiple
geographical points (ST_POINT)
with the same start and end
points in sequence.

ST_POLYGON(ARRA
Y[ST_POINT(1.0,
1.0), ST_POINT(2.0,
1.0), ST_POINT(2.0,
2.0), ST_POINT(1.0,
1.0)])

ST_CIRCLE(point,
radius)

Indicates a geographical circle
that consists of ST_POINT and a
radius.

ST_CIRCLE(ST_POIN
T(1.0, 1.0), 1.234)

You can build complex geospatial geometries based on basic geospatial geometric
elements. Table 2-63 describes the related transformation methods.

Table 2-63 Transformation methods for building complex geometric elements
based on basic geospatial geometric elements

Transformation
Method

Description Example Value

ST_BUFFER(geometry,
distance)

Creates a polygon that
surrounds the geospatial
geometric elements at a given
distance. Generally, this function
is used to build the road area of
a certain width for yaw
detection.

ST_BUFFER(ST_LIN
E(ARRAY[ST_POIN
T(1.12, 2.23),
ST_POINT(1.13,
2.44),
ST_POINT(1.13,
2.44)]),1.0)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 232

Transformation
Method

Description Example Value

ST_INTERSECTION(geo
metry, geometry)

Creates a polygon that delimits
the overlapping area of two
given geospatial geometric
elements.

ST_INTERSECTION(
ST_CIRCLE(ST_POIN
T(1.0, 1.0), 2.0),
ST_CIRCLE(ST_POIN
T(3.0, 1.0), 1.234))

ST_ENVELOPE(geometr
y)

Creates the minimal rectangle
polygon including the given
geospatial geometric elements.

ST_ENVELOPE(ST_C
IRCLE(ST_POINT(1.
0, 1.0), 2.0))

DLI provides multiple functions used for performing operations on and
determining locations of geospatial geometric elements. Table 2-64 describes the
SQL scalar functions.

Table 2-64 SQL scalar function table

Function Return
Type

Description

ST_DISTANCE(point
_1, point_2)

DOUBLE Calculates the Euclidean distance between the
two geographical points.
The following provides an example:
Select ST_DISTANCE(ST_POINT(x1, y1),
ST_POINT(x2, y2)) FROM input

ST_GEODESIC_DIST
ANCE(point_1,
point_2)

DOUBLE Calculates the shortest distance along the
surface between two geographical points.
The following provides an example:
Select ST_GEODESIC_DISTANCE(ST_POINT(x1,
y1), ST_POINT(x2, y2)) FROM input

ST_PERIMETER(pol
ygon)

DOUBLE Calculates the circumference of a polygon.
The following provides an example:
Select
ST_PERIMETER(ST_POLYGON(ARRAY[ST_POIN
T(x11, y11), ST_POINT(x12, y12),
ST_POINT(x11, y11)]) FROM input

ST_AREA(polygon) DOUBLE Calculates the area of a polygon.
The following provides an example:
Select
ST_AREA(ST_POLYGON(ARRAY[ST_POINT(x11,
y11), ST_POINT(x12, y12), ST_POINT(x11,
y11)]) FROM input

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 233

Function Return
Type

Description

ST_OVERLAPS(poly
gon_1, polygon_2)

BOOLEA
N

Checks whether one polygon overlaps with
another.
The following provides an example:
SELECT
ST_OVERLAPS(ST_POLYGON(ARRAY[ST_POIN
T(x11, y11), ST_POINT(x12, y12),
ST_POINT(x11, y11)]),
ST_POLYGON(ARRAY[ST_POINT(x21, y21),
ST_POINT(x22, y22), ST_POINT(x23, y23),
ST_POINT(x21, y21)])) FROM input

ST_INTERSECT(line
1, line2)

BOOLEA
N

Checks whether two line segments, rather
than the two straight lines where the two line
segments are located, intersect each other.
The following provides an example:
SELECT
ST_INTERSECT(ST_LINE(ARRAY[ST_POINT(x11,
y11), ST_POINT(x12, y12)]),
ST_LINE(ARRAY[ST_POINT(x21, y21),
ST_POINT(x22, y22), ST_POINT(x23, y23)]))
FROM input

ST_WITHIN(point,
polygon)

BOOLEA
N

Checks whether one point is contained inside
a geometry (polygon or circle).
The following provides an example:
SELECT ST_WITHIN(ST_POINT(x11, y11),
ST_POLYGON(ARRAY[ST_POINT(x21, y21),
ST_POINT(x22, y22), ST_POINT(x23, y23),
ST_POINT(x21, y21)])) FROM input

ST_CONTAINS(poly
gon_1, polygon_2)

BOOLEA
N

Checks whether the first geometry contains
the second geometry.
The following provides an example:
SELECT
ST_CONTAINS(ST_POLYGON(ARRAY[ST_POIN
T(x11, y11), ST_POINT(x12, y12),
ST_POINT(x11, y11)]),
ST_POLYGON(ARRAY[ST_POINT(x21, y21),
ST_POINT(x22, y22), ST_POINT(x23, y23),
ST_POINT(x21, y21)])) FROM input

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 234

Function Return
Type

Description

ST_COVERS(polygo
n_1, polygon_2)

BOOLEA
N

Checks whether the first geometry covers the
second geometry. This function is similar to
ST_CONTAINS except the situation when
judging the relationship between a polygon
and the boundary line of polygon, for which
ST_COVER returns TRUE and ST_CONTAINS
returns FALSE.
The following provides an example:
SELECT
ST_COVERS(ST_POLYGON(ARRAY[ST_POINT(x
11, y11), ST_POINT(x12, y12), ST_POINT(x11,
y11)]), ST_POLYGON([ST_POINT(x21, y21),
ST_POINT(x22, y22), ST_POINT(x23, y23),
ST_POINT(x21, y21)])) FROM input

ST_DISJOINT(polyg
on_1, polygon_2)

BOOLEA
N

Checks whether one polygon is disjoint (not
overlapped) with the other polygon.
The following provides an example:
SELECT
ST_DISJOINT(ST_POLYGON(ARRAY[ST_POINT(
x11, y11), ST_POINT(x12, y12), ST_POINT(x11,
y11)]), ST_POLYGON(ARRAY[ST_POINT(x21,
y21), ST_POINT(x22, y22), ST_POINT(x23,
y23), ST_POINT(x21, y21)])) FROM input

The World Geodetic System 1984 (WGS84) is used as the reference coordinate
system for geographical functions. Due to offsets, the GPS coordinates cannot be
directly used in the Baidu Map (compliant with BD09) and the Google Map
(compliant with GCJ02). To implement switchover between different geographical
coordinate systems, DLI provides a series of functions related to coordinate system
conversion as well as functions related to conversion between geographical
distances and the unit meter. For details, see Table 2-65.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 235

Table 2-65 Functions for geographical coordinate system conversion and distance-
unit conversion

Function Return Type Description

WGS84_TO_BD09(geome
try)

Geospatial geometric
elements in the Baidu
Map coordinate system

Converts the geospatial
geometric elements in
the GPS coordinate
system into those in the
Baidu Map coordinate
system. The following
provides an example:
WGS84_TO_BD09(ST_CIR
CLE(ST_POINT(x, y), r))

WGS84_TO_CJ02(geomet
ry)

Geospatial geometric
elements in the Google
Map coordinate system

Converts the geospatial
geometric elements in
the GPS coordinate
system into those in the
Google Map coordinate
system. The following
provides an example:
WGS84_TO_CJ02(ST_CIR
CLE(ST_POINT(x, y), r))

BD09_TO_WGS84(geome
try)

Geospatial geometric
elements in the GPS
coordinate system

Converts the geospatial
geometric elements in
the Baidu Map
coordinate system into
those in the GPS
coordinate system. The
following provides an
example:
BD09_TO_WGS84(ST_CIR
CLE(ST_POINT(x, y), r))

BD09_TO_CJ02(geometry
)

Geospatial geometric
elements in the Google
Map coordinate system

Converts the geospatial
geometric elements in
the Baidu Map
coordinate system into
those in the Google Map
coordinate system. The
following provides an
example:
BD09_TO_CJ02(ST_CIRCL
E(ST_POINT(x, y), r))

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 236

Function Return Type Description

CJ02_TO_WGS84(geomet
ry)

Geospatial geometric
elements in the GPS
coordinate system

Converts the geospatial
geometric elements in
the Google Map
coordinate system into
those in the GPS
coordinate system. The
following provides an
example:
CJ02_TO_WGS84(ST_CIR
CLE(ST_POINT(x, y), r))

CJ02_TO_BD09(geometry
)

Geospatial geometric
elements in the Baidu
Map coordinate system

Converts the geospatial
geometric elements in
the Google Map
coordinate system into
those in the Baidu Map
coordinate system. The
following provides an
example:
CJ02_TO_BD09(ST_CIRCL
E(ST_POINT(x, y), r))

DEGREE_TO_METER(dist
ance)

DOUBLE Converts the distance
value of the
geographical function to
a value in the unit of
meter. In the following
example, you calculate
the circumference of a
triangle in the unit of
meter.
DEGREE_TO_METER(ST_
PERIMETER(ST_POLYGO
N(ARRAY[ST_POINT(x1,y
1), ST_POINT(x2,y2),
ST_POINT(x3,y3),
ST_POINT(x1,y1)])))

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 237

Function Return Type Description

METER_TO_DEGREE(nu
merical_value)

DOUBLE Convert the value in the
unit of meter to the
distance value that can
be calculated using the
geographical function. In
the following example,
you draw a circle which
takes a specified
geographical point as
the center and has a
radius of 1 km.
ST_CIRCLE(ST_POINT(x,y
),
METER_TO_DEGREE(100
0))

DLI also provides window-based SQL geographical aggregation functions specific
for scenarios where SQL logic involves windows and aggregation. For details about
the functions, see Table 2-66.

Table 2-66 Time-related SQL geographical aggregation function table

Function Description Example Value

AGG_DISTANCE(point) Distance aggregation
function, which is used to
calculate the total distance
of all adjacent geographical
points in the window.

SELECT
AGG_DISTANCE(ST_POI
NT(x,y)) FROM input
GROUP BY
HOP(rowtime,
INTERVAL '1' HOUR,
INTERVAL '1' DAY)

AVG_SPEED(point) Average speed aggregation
function, which is used to
calculate the average speed
of moving tracks formed by
all geographical points in a
window. The average speed
is in the unit of m/s.

SELECT
AVG_SPEED(ST_POINT(
x,y)) FROM input
GROUP BY
TUMBLE(proctime,
INTERVAL '1' DAY)

Precautions
None

Example
Example of yaw detection:

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 238

INSERT INTO yaw_warning
SELECT "The car is yawing"
FROM driver_behavior
WHERE NOT ST_WITHIN(ST_POINT(cast(Longitude as DOUBLE), cast(Latitude as DOUBLE)),
ST_BUFFER(ST_LINE(ARRAY[ST_POINT(34.585555,105.725221),ST_POINT(34.586729,105.735974),ST_POINT(
34.586492,105.740538),ST_POINT(34.586388,105.741651),ST_POINT(34.586135,105.748712),ST_POINT(34.5
88691,105.74997)]),0.001));

IP Functions
NO TE

Currently, only IPv4 addresses are supported.

Table 2-67 IP functions

Function Return
Type

Description

IP_TO_COUN
TRY

STRING Obtains the name of the country where the IP
address is located.

IP_TO_PROVI
NCE

STRING Obtains the province where the IP address is
located.
Usage:
● IP_TO_PROVINCE(STRING ip): Determines the

province where the IP address is located and
returns the province name.

● IP_TO_PROVINCE(STRING ip, STRING lang):
Determines the province where the IP is located
and returns the province name of the specified
language.
NOTE

● If the province where the IP address is located
cannot be obtained through IP address parsing, the
country where the IP address is located is returned.
If the IP address cannot be parsed, Unknown is
returned.

● The name returned by the function for the province
is the short name.

IP_TO_CITY STRING Obtains the name of the city where the IP address
is located.
NOTE

If the city where the IP address is located cannot be
obtained through IP address parsing, the province or the
country where the IP address is located is returned. If the
IP address cannot be parsed, Unknown is returned.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 239

Function Return
Type

Description

IP_TO_CITY_G
EO

STRING Obtains the longitude and latitude of the city
where the IP address is located. The parameter
value is in the following format: Latitude,
Longitude.
Usage:
IP_TO_CITY_GEO(STRING ip): Returns the longitude
and latitude of the city where the IP address is
located.

2.12 SELECT

SELECT
Syntax

SELECT [ALL | DISTINCT] { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression]

Description

The SELECT statement is used to select data from a table or insert constant data
into a table.

Precautions

● The table to be queried must exist. Otherwise, an error is reported.
● WHERE is used to specify the filtering condition, which can be the arithmetic

operator, relational operator, or logical operator.
● GROUP BY is used to specify the grouping field, which can be one or more

multiple fields.

Example

Select the order which contains more than 3 pieces of data.

insert into temp SELECT * FROM Orders WHERE units > 3;

Insert a group of constant data.

insert into temp select 'Lily', 'male', 'student', 17;

WHERE Filtering Clause
Syntax

SELECT { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 240

Description

This statement is used to filter the query results using the WHERE clause.

Precautions

● The to-be-queried table must exist.
● WHERE filters the records that do not meet the requirements.

Example

Filter orders which contain more than 3 pieces and fewer than 10 pieces of data.

insert into temp SELECT * FROM Orders
 WHERE units > 3 and units < 10;

HAVING Filtering Clause
Function

This statement is used to filter the query results using the HAVING clause.

Syntax

SELECT [ALL | DISTINCT] { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression]

Description

Generally, HAVING and GROUP BY are used together. GROUP BY applies first for
grouping and HAVING then applies for filtering. The arithmetic operation and
aggregate function are supported by the HAVING clause.

Precautions

If the filtering condition is subject to the query results of GROUP BY, the HAVING
clause, rather than the WHERE clause, must be used for filtering.

Example

Group the student table according to the name field and filter the records in
which the maximum score is higher than 95 based on groups.

insert into temp SELECT name, max(score) FROM student
 GROUP BY name
 HAVING max(score) >95

Column-Based GROUP BY
Function

This statement is used to group a table based on columns.

Syntax

SELECT [ALL | DISTINCT] { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]

Description

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 241

Column-based GROUP BY can be categorized into single-column GROUP BY and
multi-column GROUP BY.

● Single-column GROUP BY indicates that the GROUP BY clause contains only
one column.

● Multi-column GROUP BY indicates that the GROUP BY clause contains
multiple columns. The table will be grouped according to all fields in the
GROUP BY clause. The records whose fields are the same are grouped into
one group.

Precautions

None

Example

Group the student table according to the score and name fields and return the
grouping results.

insert into temp SELECT name,score, max(score) FROM student
 GROUP BY name,score;

Expression-Based GROUP BY
Function

This statement is used to group a table according to expressions.

Syntax

SELECT [ALL | DISTINCT] { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]

Description

groupItem can have one or more fields. The fields can be called by string
functions, but cannot be called by aggregate functions.

Precautions

None

Example

Use the substring function to obtain the character string from the name field,
group the student table according to the obtained character string, and return
each sub character string and the number of records.

insert into temp SELECT substring(name,6),count(name) FROM student
 GROUP BY substring(name,6);

GROUP BY Using HAVING
Function

This statement filters a table after grouping it using the HAVING clause.

Syntax

SELECT [ALL | DISTINCT] { * | projectItem [, projectItem]* }
 FROM tableExpression

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 242

 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression]

Description

Generally, HAVING and GROUP BY are used together. GROUP BY applies first for
grouping and HAVING then applies for filtering.

Precautions

● If the filtering condition is subject to the query results of GROUP BY, the
HAVING clause, rather than the WHERE clause, must be used for filtering.
HAVING and GROUP BY are used together. GROUP BY applies first for
grouping and HAVING then applies for filtering.

● Fields used in HAVING, except for those used for aggregate functions, must
exist in GROUP BY.

● The arithmetic operation and aggregate function are supported by the
HAVING clause.

Example

Group the transactions according to num, use the HAVING clause to filter the
records in which the maximum value derived from multiplying price with amount
is higher than 5000, and return the filtered results.

insert into temp SELECT num, max(price*amount) FROM transactions
 WHERE time > '2016-06-01'
 GROUP BY num
 HAVING max(price*amount)>5000;

UNION

Syntax

query UNION [ALL] query

Description

This statement is used to return the union set of multiple query results.

Precautions

● Set operation is to join tables from head to tail under certain conditions. The
quantity of columns returned by each SELECT statement must be the same.
Column types must be the same. Column names can be different.

● By default, the repeated records returned by UNION are removed. The
repeated records returned by UNION ALL are not removed.

Example

Output the union set of Orders1 and Orders2 without duplicate records.

insert into temp SELECT * FROM Orders1
 UNION SELECT * FROM Orders2;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 243

2.13 Condition Expression

CASE Expression
Syntax

CASE value WHEN value1 [, value11]* THEN result1
 [WHEN valueN [, valueN1]* THEN resultN]* [ELSE resultZ]
 END

or

CASE WHEN condition1 THEN result1
 [WHEN conditionN THEN resultN]* [ELSE resultZ]
 END

Description

● If the value of value is value1, result1 is returned. If the value is not any of
the values listed in the clause, resultZ is returned. If no else statement is
specified, null is returned.

● If the value of condition1 is true, result1 is returned. If the value does not
match any condition listed in the clause, resultZ is returned. If no else
statement is specified, null is returned.

Precautions

● All results must be of the same type.
● All conditions must be of the Boolean type.
● If the value does not match any condition, the value of ELSE is returned when

the else statement is specified, and null is returned when no else statement is
specified.

Example

If the value of units equals 5, 1 is returned. Otherwise, 0 is returned.

Example 1:

insert into temp SELECT CASE units WHEN 5 THEN 1 ELSE 0 END FROM Orders;

Example 2:

insert into temp SELECT CASE WHEN units = 5 THEN 1 ELSE 0 END FROM Orders;

NULLIF Expression
Syntax

NULLIF(value, value)

Description

If the values are the same, NULL is returned. For example, NULL is returned from
NULLIF (5,5) and 5 is returned from NULLIF (5,0).

Precautions

None

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 244

Example

If the value of units equals 3, null is returned. Otherwise, the value of units is
returned.

insert into temp SELECT NULLIF(units, 3) FROM Orders;

COALESCE Expression

Syntax

COALESCE(value, value [, value]*)

Description

Return the first value that is not NULL, counting from left to right.

Precautions

All values must be of the same type.

Example

5 is returned from the following example:

insert into temp SELECT COALESCE(NULL, 5) FROM Orders;

2.14 Window

GROUP WINDOW

Description

Group Window is defined in GROUP BY. One record is generated from each group.
Group Window involves the following functions:

NO TE

● time_attr can be processing-time or event-time.

● event-time: Specify the data type to bigint or timestamp.

● processing-time: No need to specify the type.

● interval specifies the window period.

● Array functions

Table 2-68 Array functions

Function Name Description

TUMBLE(time_attr, interval) Indicates the tumble window.

HOP(time_attr, interval, interval) Indicates the extended tumble
window (similar to the datastream
sliding window). You can set the
output triggering cycle and window
period.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 245

Function Name Description

SESSION(time_attr, interval) Indicates the session window. A
session window will be closed if no
response is returned within a
duration specified by interval.

● Window functions

Table 2-69 Window functions

Function Name Description

TUMBLE_START(time_attr, interval) Indicates the start time of returning
to the tumble window. The
parameter is a UTC time zone.

TUMBLE_END(time_attr, interval) Indicates the end time of returning
to the tumble window. The
parameter is a UTC time zone.

HOP_START(time_attr, interval,
interval)

Indicates the start time of returning
to the extended tumble window. The
parameter is a UTC time zone.

HOP_END(time_attr, interval,
interval)

Indicates the end time of returning
to the extended tumble window. The
parameter is a UTC time zone.

SESSION_START(time_attr, interval) Indicates the start time of returning
to the session window. The
parameter is a UTC time zone.

SESSION_END(time_attr, interval) Indicates the end time of returning
to the session window. The
parameter is a UTC time zone.

Example

//Calculate the SUM every day (event time).
insert into temp SELECT name,
 TUMBLE_START(ts, INTERVAL '1' DAY) as wStart,
 SUM(amount)
 FROM Orders
 GROUP BY TUMBLE(ts, INTERVAL '1' DAY), name;

//Calculate the SUM every day (processing time).
insert into temp SELECT name,
 SUM(amount)
 FROM Orders
 GROUP BY TUMBLE(proctime, INTERVAL '1' DAY), name;

//Calculate the SUM over the recent 24 hours every hour (event time).
insert into temp SELECT product,
 SUM(amount)
 FROM Orders
 GROUP BY HOP(ts, INTERVAL '1' HOUR, INTERVAL '1' DAY), product;

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 246

//Calculate the SUM of each session and an inactive interval every 12 hours (event time).
insert into temp SELECT name,
 SESSION_START(ts, INTERVAL '12' HOUR) AS sStart,
 SESSION_END(ts, INTERVAL '12' HOUR) AS sEnd,
 SUM(amount)
 FROM Orders
 GROUP BY SESSION(ts, INTERVAL '12' HOUR), name;

OVER WINDOW
The difference between Over Window and Group Window is that one record is
generated from one row in Over Window.

Syntax

OVER (
 [PARTITION BY partition_name]
 ORDER BY proctime|rowtime(ROWS number PRECEDING) |(RANGE (BETWEEN INTERVAL '1' SECOND
PRECEDING AND CURRENT ROW | UNBOUNDED preceding))
)

Description

Table 2-70 Parameter description

Parameter Parameter Description

PARTITION BY Indicates the primary key of the
specified group. Each group separately
performs calculation.

ORDER BY Indicates the processing time or event
time as the timestamp for data.

ROWS Indicates the count window.

RANGE Indicates the time window.

Precautions

● In the same SELECT statement, windows defined by aggregate functions must
be the same.

● Currently, Over Window only supports forward calculation (preceding).
● The value of ORDER BY must be specified as processing time or event time.
● Constants do not support aggregation, such as sum(2).

Example

//Calculate the count and total number from syntax rules enabled to now (in proctime).
insert into temp SELECT name,
 count(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as
cnt1,
 sum(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as cnt2
 FROM Orders;

//Calculate the count and total number of the recent four records (in proctime).
insert into temp SELECT name,
 count(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 247

CURRENT ROW) as cnt1,
 sum(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND
CURRENT ROW) as cnt2
 FROM Orders;

//Calculate the count and total number last 60s (in eventtime). Process the events based on event time,
which is the timeattr field in Orders.
insert into temp SELECT name,
 count(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60'
SECOND PRECEDING AND CURRENT ROW) as cnt1,
 sum(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60' SECOND
PRECEDING AND CURRENT ROW) as cnt2
 FROM Orders;

2.15 JOIN Between Stream Data and Table Data
The JOIN operation allows you to query data from a table and write the query
result to the sink stream. Currently, only RDSs and DCS Redis tables are supported.
The ON keyword describes the Key used for data query and then writes the Value
field to the sink stream.

For details about the data definition statements of RDS tables, see Creating an
RDS Table.

For details about the data definition statements of Redis tables, see Creating a
Redis Table.

Syntax
FROM tableExpression JOIN tableExpression
 ON value11 = value21 [AND value12 = value22]

Syntax Description
The ON keyword only supports equivalent query of table attributes. If level-2 keys
exist (specifically, the Redis value type is HASH), the AND keyword needs to be
used to express the equivalent query between Key and Hash Key.

Precautions
None

Example
Perform equivalent JOIN between the vehicle information source stream and the
vehicle price table, get the vehicle price data, and write the price data into the
vehicle information sink stream.

CREATE SOURCE STREAM car_infos (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_detail_type STRING
)
WITH (
 type = "dis",
 region = "",
 channel = "dliinput",
 partition_count = "1",

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 248

 encode = "csv",
 field_delimiter = ","
);

/** Create a data dimension table to connect to the source stream to fulfill field backfill.
 *
 * Reconfigure the following options according to actual conditions:
 * value_type: indicates the value type of the Redis key value. The value can be STRING, HASH, SET, ZSET,
or LIST. For the HASH type, you need to specify hash_key_column as the layer-2 primary key. For the SET
type, you need to concatenate all queried values using commas (,).
 * key_column: indicates the column name corresponding to the primary key of the dimension table.
 * hash_key_column: indicates the column name corresponding to the KEY of the HASHMAP when
value_type is HASH. If value_type is not HASH, you do not need to set this option.
 * cluster_address: indicates the DCS Redis cluster address.
 * password: indicates the DCS Redis cluster password.
 **/
CREATE TABLE car_price_table (
 car_brand STRING,
 car_detail_type STRING,
 car_price STRING
)
WITH (
 type = "dcs_redis",
 value_type = "hash",
 key_column = "car_brand",
 hash_key_column = "car_detail_type",
 cluster_address = "192.168.1.238:6379",
 password = "xxxxxxxx"
);

CREATE SINK STREAM audi_car_owner_info (
 car_id STRING,
 car_owner STRING,
 car_brand STRING,
 car_detail_type STRING,
 car_price STRING
)
WITH (
 type = "dis",
 region = "",
 channel = "dlioutput",
 partition_key = "car_owner",
 encode = "csv",
 field_delimiter = ","
);

INSERT INTO audi_car_owner_info
SELECT t1.car_id, t1.car_owner, t2.car_brand, t1.car_detail_type, t2.car_price
FROM car_infos as t1 join car_price_table as t2
ON t2.car_brand = t1.car_brand and t2.car_detail_type = t1.car_detail_type
WHERE t1.car_brand = "audi";

2.16 Configuring Time Models
Flink provides two time models: processing time and event time.

DLI allows you to specify the time model during creation of the source stream and
temporary stream.

Configuring Processing Time

Processing time refers to the system time, which is irrelevant to the data
timestamp.

Syntax

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 249

CREATE SOURCE STREAM stream_name(...) WITH (...)
TIMESTAMP BY proctime.proctime;
CREATE TEMP STREAM stream_name(...)
TIMESTAMP BY proctime.proctime;

Description

To set the processing time, you only need to add proctime.proctime following
TIMESTAMP BY. You can directly use the proctime field later.

Precautions

None

Example

CREATE SOURCE STREAM student_scores (
 student_number STRING, /* Student ID */
 student_name STRING, /* Name */
 subject STRING, /* Subject */
 score INT /* Score */
)
WITH (
 type = "dis",
 region = "",
 channel = "dliinput",
 partition_count = "1",
 encode = "csv",
 field_delimiter=","
)TIMESTAMP BY proctime.proctime;

INSERT INTO score_greate_90
SELECT student_name, sum(score) over (order by proctime RANGE UNBOUNDED PRECEDING)
FROM student_scores;

Configuring Event Time

Event Time refers to the time when an event is generated, that is, the timestamp
generated during data generation.

Syntax

CREATE SOURCE STREAM stream_name(...) WITH (...)
TIMESTAMP BY {attr_name}.rowtime
SET WATERMARK (RANGE {time_interval} | ROWS {literal}, {time_interval});

Description

To set the event time, you need to select a certain attribute in the stream as the
timestamp and set the watermark policy.

Out-of-order events or late events may occur due to network faults. The
watermark must be configured to trigger the window for calculation after waiting
for a certain period of time. Watermarks are mainly used to process out-of-order
data before generated events are sent to DLI during stream processing.

The following two watermark policies are available:

● By time interval
SET WATERMARK(range interval {time_unit}, interval {time_unit})

● By event quantity
SET WATERMARK(rows literal, interval {time_unit})

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 250

NO TE

Parameters are separated by commas (,). The first parameter indicates the watermark
sending interval and the second indicates the maximum event delay.

Precautions

None

Example

● Send a watermark every 10s the time2 event is generated. The maximum
event latency is 20s.
CREATE SOURCE STREAM student_scores (
 student_number STRING, /* Student ID */
 student_name STRING, /* Name */
 subject STRING, /* Subject */
 score INT, /* Score */
 time2 TIMESTAMP
)
WITH (
 type = "dis",
 region = "",
 channel = "dliinput",
 partition_count = "1",
 encode = "csv",
 field_delimiter=","
)
TIMESTAMP BY time2.rowtime
SET WATERMARK (RANGE interval 10 second, interval 20 second);

INSERT INTO score_greate_90
SELECT student_name, sum(score) over (order by time2 RANGE UNBOUNDED PRECEDING)
FROM student_scores;

● Send the watermark every time when 10 pieces of data are received, and the
maximum event latency is 20s.
CREATE SOURCE STREAM student_scores (
 student_number STRING, /* Student ID */
 student_name STRING, /* Name */
 subject STRING, /* Subject */
 score INT, /* Score */
 time2 TIMESTAMP
)
WITH (
 type = "dis",
 region = "",
 channel = "dliinput",
 partition_count = "1",
 encode = "csv",
 field_delimiter=","
)
TIMESTAMP BY time2.rowtime
SET WATERMARK (ROWS 10, interval 20 second);

INSERT INTO score_greate_90
SELECT student_name, sum(score) over (order by time2 RANGE UNBOUNDED PRECEDING)
FROM student_scores;

2.17 Pattern Matching
Complex event processing (CEP) is used to detect complex patterns in endless data
streams so as to identify and search patterns in various data rows. Pattern
matching is a powerful aid to complex event handling.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 251

CEP is used in a collection of event-driven business processes, such as abnormal
behavior detection in secure applications and the pattern of searching for prices,
transaction volume, and other behavior in financial applications. It also applies to
fraud detection and sensor data analysis.

Syntax
MATCH_RECOGNIZE (
 [PARTITION BY expression [, expression]*]
 [ORDER BY orderItem [, orderItem]*]
 [MEASURES measureColumn [, measureColumn]*]
 [ONE ROW PER MATCH | ALL ROWS PER MATCH]
 [AFTER MATCH
 (SKIP TO NEXT ROW
 | SKIP PAST LAST ROW
 | SKIP TO FIRST variable
 | SKIP TO LAST variable
 | SKIP TO variable)
]
 PATTERN (pattern)
 [WITHIN intervalLiteral]
 DEFINE variable AS condition [, variable AS condition]*
) MR

NO TE

Pattern matching in SQL is performed using the MATCH_RECOGNIZE clause.
MATCH_RECOGNIZE enables you to do the following tasks:
● Logically partition and order the data that is used in the MATCH_RECOGNIZE clause

with its PARTITION BY and ORDER BY clauses.
● Define patterns of rows to seek using the PATTERN clause of the MATCH_RECOGNIZE

clause. These patterns use regular expression syntax.
● Specify the logical conditions required to map a row to a row pattern variable in the

DEFINE clause.
● Define measures, which are expressions usable in other parts of the SQL query, in the

MEASURES clause.

Syntax description

Table 2-71 Syntax description

Parameter Manda
tory

Description

PARTITION BY No Logically divides the rows into groups.

ORDER BY No Logically orders the rows in a partition.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 252

Parameter Manda
tory

Description

[ONE ROW | ALL
ROWS] PER MATCH

No Chooses summaries or details for each match.
● ONE ROW PER MATCH: Each match

produces one summary row.
● ALL ROWS PER MATCH: A match spanning

multiple rows will produce one output row
for each row in the match.

The following provides an example:
 SELECT * FROM MyTable MATCH_RECOGNIZE
 (
 MEASURES AVG(B.id) as Bid
 ALL ROWS PER MATCH
 PATTERN (A B C)
 DEFINE
 A AS A.name = 'a',
 B AS B.name = 'b',
 C as C.name = 'c'
) MR

Example description
Assume that the format of MyTable is (id,
name) and there are three data records: (1, a),
(2, b), and (3, c).
ONE ROW PER MATCH outputs the average
value 2 of B.
ALL ROWS PER MATCH outputs each record
and the average value of B, specifically, (1,a,
null), (2,b,2), (3,c,2).

MEASURES No Defines calculations for export from the pattern
matching.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 253

Parameter Manda
tory

Description

PATTERN Yes Defines the row pattern that will be matched.
● PATTERN (A B C) indicates to detect

concatenated events A, B, and C.
● PATTERN (A | B) indicates to detect A or B.
● Modifiers

– *: 0 or more iterations. For example, A*
indicates to match A for 0 or more times.

– +: 1 or more iterations. For example, A+
indicates to match A for 1 or more times.

– ? : 0 or 1 iteration. For example, A?
indicates to match A for 0 times or once.

– {n}: n iterations (n > 0). For example,
A{5} indicates to match A for five times.

– {n,}: n or more iterations (n ≥ 0). For
example, A{5,} indicates to match A for
five or more times.

– {n, m}: between n and m (inclusive)
iterations (0 ≤ n ≤ m, 0 < m). For
example, A{3,6} indicates to match A for
3 to 6 times.

– {, m}: between 0 and m (inclusive)
iterations (m > 0). For example, A{,4}
indicates to match A for 0 to 4 times.

DEFINE Yes Defines primary pattern variables.

AFTER MATCH SKIP No Defines where to restart the matching process
after a match is found.
● SKIP TO NEXT ROW: Resumes pattern

matching at the row after the first row of
the current match.

● SKIP PAST LAST ROW: Resumes pattern
matching at the next row after the last row
of the current match.

● SKIP TO FIRST variable: Resumes pattern
matching at the first row that is mapped to
the pattern variable.

● SKIP TO LAST variable: Resumes pattern
matching at the last row that is mapped to
the pattern variable.

● SKIP TO variable: Same as SKIP TO LAST
variable.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 254

Functions Supported by CEP

Table 2-72 Function description

Function Description

MATCH_NUM
BER()

Finds which rows are in which match. It can be used in the
MEASURES and DEFINE clauses.

CLASSIFIER() Finds which pattern variable applies to which rows. It can be
used in the MEASURES and DEFINE clauses.

FIRST()/LAST() FIRST returns the value of an expression evaluated in the first
row of the group of rows mapped to a pattern variable. LAST
returns the value of an expression evaluated in the last row of
the group of rows mapped to a pattern variable. In PATTERN
(A B+ C), FIRST (B.id) indicates the ID of the first B in the
match, and LAST (B.id) indicates the ID of the last B in the
match.

NEXT()/PREV() Relative offset, which can be used in DEFINE. For example,
PATTERN (A B+) DEFINE B AS B.price > PREV(B.price)

RUNNING/
FINAL

RUNNING indicates to match the middle value, while FINAL
indicates to match the final result value. Generally, RUNNING/
FINAL is valid only in ALL ROWS PER MATCH. For example, if
there are three records (a, 2), (b, 6), and (c, 12), then the
values of RUNNING AVG (A.price) and FINAL AVG (A.price)
are (2,6), (4,6), (6,6).

Aggregate
functions
(COUNT, SUM,
AVG, MAX,
MIN)

Aggregation operations. These functions can be used in the
MEASURES and DEFINE clauses. For details, see Aggregate
Functions.

Example
● Fake plate vehicle detection

CEP conducts pattern matching based on license plate switchover features on the
data of vehicles collected by cameras installed on urban roads or high-speed roads
in different areas within 5 minutes.

INSERT INTO fake_licensed_car
SELECT * FROM camera_license_data MATCH_RECOGNIZE
(
 PARTITION BY car_license_number
 ORDER BY proctime
 MEASURES A.car_license_number as car_license_number, A.camera_zone_number as first_zone,
B.camera_zone_number as second_zone
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST C
 PATTERN (A B+ C)
 WITHIN interval '5' minute
 DEFINE
 B AS B.camera_zone_number <> A.camera_zone_number,

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 255

 C AS C.camera_zone_number = A.camera_zone_number
) MR;

According to this rule, if a vehicle of a license plate number drives from area A to
area B but another vehicle of the same license plate number is detected in area A
within 5 minutes, then the vehicle in area A is considered to carry a fake license
plate.

Input data:

Zhejiang B88888, zone_A
Zhejiang AZ626M, zone_A
Zhejiang B88888, zone_A
Zhejiang AZ626M, zone_A
Zhejiang AZ626M, zone_A
Zhejiang B88888, zone_B
Zhejiang B88888, zone_B
Zhejiang AZ626M, zone_B
Zhejiang AZ626M, zone_B
Zhejiang AZ626M, zone_C
Zhejiang B88888, zone_A
Zhejiang B88888, zone_A

The output is as follows:

Zhejiang B88888, zone_A, zone_B

2.18 StreamingML

2.18.1 Anomaly Detection
Anomaly detection applies to various scenarios, including intrusion detection,
financial fraud detection, sensor data monitoring, medical diagnosis, natural data
detection, and more. The typical algorithms for anomaly detection include the
statistical modeling method, distance-based calculation method, linear model, and
nonlinear model.

DLI uses an anomaly detection method based on the random forest, which has the
following characteristics:

● The one-pass algorithm is used with O(1) amortized time complexity and
O(1) space complexity.

● The random forest structure is constructed only once. The model update
operation only updates the node data distribution values.

● The node stores data distribution information of multiple windows, and the
algorithm can detect data distribution changes.

● Anomaly detection and model updates are completed in the same code
framework.

Syntax
SRF_UNSUP(ARRAY[Field 1, Field 2, ...], 'Optional parameter list')

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 256

NO TE

● The anomaly score returned by the function is a DOUBLE value in the range of [0, 1].
● The field names must be of the same type. If the field types are different, you can use

the CAST function to escape the field names, for example, [a, CAST(b as DOUBLE)].
● The syntax of the optional parameter list is as follows: "key1=value,key2=value2,..."

Parameter Description

Table 2-73 Parameter Description

Parameter Mand
atory

Description Defa
ult
Valu
e

transientThreshold No Threshold for which the histogram change
is indicating a change in the data.

5

numTrees No Number of trees composing the random
forest.

15

maxLeafCount No Maximum number of leaf nodes one tree
can have.

15

maxTreeHeight No Maximum height of the tree. 12

seed No Random seed value used by the
algorithm.

4010

numClusters No Number of types of data to be detected.
By default, the following two data types
are available: anomalous and normal
data.

2

dataViewMode No Algorithm learning mode.
● Value history indicates that all

historical data is considered.
● Value horizon indicates that only

historical data of a recent time period
(typically a size of 4 windows) is
considered.

histor
y

Example
Anomaly detection is conducted on the c field in data stream MyTable. If the
anomaly score is greater than 0.8, then the detection result is considered to be
anomaly.

SELECT c,
 CASE WHEN SRF_UNSUP(ARRAY[c], "numTrees=15,seed=4010") OVER (ORDER BY proctime RANGE
BETWEEN INTERVAL '99' SECOND PRECEDING AND CURRENT ROW) > 0.8
 THEN 'anomaly'
 ELSE 'not anomaly'

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 257

 END
FROM MyTable

2.18.2 Time Series Forecasting
Modeling and forecasting time series is a common task in many business verticals.
Modeling is used to extract meaningful statistics and other characteristics of the
data. Forecasting is the use of a model to predict future data. DLI provides a series
of stochastic linear models to help users conduct online modeling and forecasting
in real time.

ARIMA (Non-Seasonal)
Auto-Regressive Integrated Moving Average (ARIMA) is a classical model used for
time series forecasting and is closely correlated with the AR, MA, and ARMA
models.

● The AR, MA, and ARMA models are applicable to stationary sequences.
– AR(p) is an autoregressive model. An AR(p) is a linear combination of p

consecutive values from immediate past. The model can predict the next
value by using the weight of linear combination.

– MA(q) is a moving average model. An MA(q) is a linear combination of q
white noise values from the past plus the average value. The model can
also predict the next value by using the weight of linear combination.

– ARMA(p, q) is an autoregressive moving average model, which integrates
the advantages of both AR and MA models. In the ARMA model, the
autoregressive process is responsible for quantizing the relationship
between the current data and the previous data, and the moving average
process is responsible for solving problems of random variables.
Therefore, the ARMA model is more effective than AR/MA.

● ARIMA is suitable for non-stationary series. In ARIMA(p, q, d), p indicates the
autoregressive order, q indicates the moving average order, and d indicates
the difference order.

Syntax

AR_PRED(field, degree): Use the AR model to forecast new data.
AR_COEF(field, degree): Return the weight of the AR model.
ARMA_PRED(field, degree): Use the ARMA model to forecast new data.
ARMA_COEF(field, degree): Return the weight of the ARMA model.
ARIMA_PRED(field, degree, derivativeOrder): Use ARIMA to forecast new data.

Table 2-74 Parameter Description

Parameter Manda
tory

Description Def
ault
Valu
e

field Yes Name of the field, data in which is used for
prediction, in the data stream.

-

degree No Defines how many steps in the past are going to
be considered for the next prediction. Currently,
only "p = q = degree" is allowed.

5

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 258

Parameter Manda
tory

Description Def
ault
Valu
e

derivativeOr
der

No Derivative order. Generally, this parameter is set
to 1 or 2.

1

Example

Separately use AR, ARMA, and ARIMA to forecast the time series ordered by
rowtime.

SELECT b,
 AR_PRED(b) OVER (ORDER BY rowtime ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS ar,
 ARMA_PRED(b) OVER (ORDER BY rowtime ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS
arma,
 ARIMA_PRED(b) OVER (ORDER BY rowtime ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS
arima
FROM MyTable

Holt Winters
The Holt-Winters algorithm is one of the Exponential smoothing methods used to
forecast seasonal data in time series.

Syntax

HOLT_WINTERS(field, seasonality, forecastOrder)

Table 2-75 Parameter Description

Parameter Mandat
ory

Description

field Yes Name of the field, data in which is used for
prediction, in the data stream.

seasonality Yes Seasonality space used to perform the prediction.
For example, if data samples are collected daily, and
the season space to consider is a week, then
seasonality is 7.

forecastOrder No Value to be forecast, specifically, the number of
steps to be considered in the future for producing
the forecast.
If forecastOrder is set to 1, the algorithm forecasts
the next value.
If forecastOrder is set to 2, the algorithm forecasts
the value of 2 steps ahead in the future. The default
value is 1.
When using this parameter, ensure that the OVER
window size is greater than the value of this
parameter.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 259

Example

Use Holt-Winters to forecast time series ordered by rowtime.

SELECT b,
 HOLT_WINTERS(b, 5) OVER (ORDER BY rowtime ROWS BETWEEN 5 PRECEDING AND CURRENT ROW)
AS a1,
 HOLT_WINTERS(b, 5, 2) OVER (ORDER BY rowtime ROWS BETWEEN 5 PRECEDING AND CURRENT
ROW) AS a2
FROM MyTable

2.18.3 Real-Time Clustering
Clustering algorithms belong to unsupervised algorithms. K-Means, a clustering
algorithm, partitions data points into related clusters by calculating the distance
between data points based on the predefined cluster quantity. For offline static
datasets, we can determine the clusters based on field knowledge and run K-
Means to achieve a better clustering effect. However, online real-time streaming
data is always changing and evolving, and the cluster quantity is likely to change.
To address clustering issues on online real-time streaming data, DLI provides a
low-delay online clustering algorithm that does not require predefined cluster
quantity.

The algorithm works as follows: Given a distance function, if the distance between
two data points is less than a threshold, both data points will be partitioned into
the same cluster. If the distances between a data point and the central data points
in several cluster centers are less than the threshold, then related clusters will be
merged. When data in a data stream arrives, the algorithm computes the
distances between each data point and the central data points of all clusters to
determine whether the data point can be partitioned into to an existing or new
cluster.

Syntax
CENTROID(ARRAY[field_names], distance_threshold): Compute the centroid of the cluster where the
current data point is assigned.
CLUSTER_CENTROIDS(ARRAY[field_names], distance_threshold): Compute all centroids after the data point
is assigned.
ALL_POINTS_OF_CLUSTER(ARRAY[field_names], distance_threshold): Compute all data points in the cluster
where the current data point is assigned.
ALL_CLUSTERS_POINTS(ARRAY[field_names], distance_threshold): Computers all data points in each cluster
after the current data point is assigned.

NO TE

● Clustering algorithms can be applied in unbounded streams.

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 260

Parameter Description

Table 2-76 Parameter Description

Parameter Manda
tory

Description

field_names Yes Name of the field where the data is located in the data
stream. Multiple fields are separated by commas (,). For
example, ARRAY[a, b, c].

distance_th
reshold

Yes Distance threshold. When the distance between two
data points is less than the threshold, both data points
are placed in the same cluster.

Example

Use four functions to compute information related to clusters over windows.

SELECT
 CENTROID(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE UNBOUNDED PRECEDING) AS centroid,
 CLUSTER_CENTROIDS(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE UNBOUNDED PRECEDING) AS
centroids
FROM MyTable

SELECT
 CENTROID(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60' MINUTE
PRECEDING AND CURRENT ROW) AS centroidCE,
 ALL_POINTS_OF_CLUSTER(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60'
MINUTE PRECEDING AND CURRENT ROW) AS itemList,
 ALL_CLUSTERS_POINTS(ARRAY[c,e], 1.0) OVER (ORDER BY proctime RANGE BETWEEN INTERVAL '60'
MINUTE PRECEDING AND CURRENT ROW) AS listoflistofpoints
FROM MyTable

2.18.4 Deep Learning Model Prediction
Deep learning has a wide range of applications in many industries, such as image
classification, image recognition, and speech recognition. DLI provides several
functions to load deep learning models for prediction.

Currently, models DeepLearning4j and Keras are supported. In Keras, TensorFlow,
CNTK, or Theano can serve as the backend engine. With importing of the neural
network model from Keras, models of mainstream learning frameworks such as
Theano, TensorFlow, Caffe, and CNTK can be imported.

Syntax
-- Image classification: returns the predicted category IDs used for image classification.
DL_IMAGE_MAX_PREDICTION_INDEX(field_name, model_path, is_dl4j_model)
DL_IMAGE_MAX_PREDICTION_INDEX(field_name, keras_model_config_path, keras_weights_path) --
Suitable for the Keras model

--Text classification: returns the predicted category IDs used for text classification.
DL_TEXT_MAX_PREDICTION_INDEX(field_name, model_path, is_dl4j_model) -- Use the default word2vec
model.
DL_TEXT_MAX_PREDICTION_INDEX(field_name, word2vec_path, model_path, is_dl4j_model)

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 261

NO TE

Models and configuration files must be stored on OBS. The path format is obs://
your_ak:your_sk@obs.your_obs_region.xxx.com:443/your_model_path.

Parameter Description

Table 2-77 Parameter description

Parameter Man
dato
ry

Description

field_name Yes Name of the field, data in which is used for
prediction, in the data stream.
In image classification, this parameter needs to
declare ARRAY[TINYINT].
In image classification, this parameter needs to
declare String.

model_path Yes Complete save path of the model on OBS,
including the model structure and model
weight.

is_dl4j_model Yes Whether the model is a Deeplearning4j model
Value true indicates that the model is a
Deeplearning4j model, while value false
indicates that the model is a Keras model.

keras_model_config_p
ath

Yes Complete save path of the model structure on
OBS. In Keras, you can obtain the model
structure by using model.to_json().

keras_weights_path Yes Complete save path of the model weight on
OBS. In Keras, you can obtain the model weight
by using model.save_weights(filepath).

word2vec_path Yes Complete save path of the word2vec model on
OBS.

Example
For prediction in image classification, use the Mnist dataset as the input and load
the pre-trained Deeplearning4j model or Keras model to predict the digit
representing each image in real time.
CREATE SOURCE STREAM Mnist(
 image Array[TINYINT]
)
SELECT DL_IMAGE_MAX_PREDICTION_INDEX(image, 'your_dl4j_model_path', false) FROM Mnist
SELECT DL_IMAGE_MAX_PREDICTION_INDEX(image, 'your_keras_model_path', true) FROM Mnist
SELECT DL_IMAGE_MAX_PREDICTION_INDEX(image, 'your_keras_model_config_path', 'keras_weights_path')
FROM Mnist

For prediction in text classification, use data of a group of news titles as the input
and load the pre-trained Deeplearning4j model or Keras model to predict the

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 262

category of each news title in real time, such as economy, sports, and
entertainment.

CREATE SOURCE STREAM News(
 title String
)
SELECT DL_TEXT_MAX_PREDICTION_INDEX(title, 'your_dl4j_word2vec_model_path','your_dl4j_model_path',
false) FROM News
SELECT DL_TEXT_MAX_PREDICTION_INDEX(title,
'your_keras_word2vec_model_path','your_keras_model_path', true) FROM News
SELECT DL_TEXT_MAX_PREDICTION_INDEX(title, 'your_dl4j_model_path', false) FROM New
SELECT DL_TEXT_MAX_PREDICTION_INDEX(title, 'your_keras_model_path', true) FROM New

2.19 Reserved Keywords
Flink SQL reserves some strings as keywords. If you want to use the following
character strings as field names, ensure that they are enclosed by back quotes, for
example, `value` and `count`.

A
● A
● ABS
● ABSOLUTE
● ACTION
● ADA
● ADD
● ADMIN
● AFTER
● AK
● ALL
● ALLOCATE
● ALLOW
● ALTER
● ALWAYS
● AND
● ANY
● APPEND
● APP_ID
● ARE
● ARRAY
● ARRAY_BRACKET
● AS
● ASC
● ASENSITIVE
● ASSERTION
● ASSIGNMENT

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 263

● ASYMMETRIC
● AT
● AT_LEAST_ONCE
● ATOMIC
● ATTRIBUTE
● ATTRIBUTES
● AUTHORIZATION
● AVG
● AVRO_CONFIG
● AVRO_DATA
● AVRO_SCHEMA

B
● BATCH_INSERT_DATA_NUM
● BEFORE
● BEGIN
● BERNOULLI
● BETWEEN
● BIGINT
● BINARY
● BIT
● BLOB
● BOOL
● BOOLEAN
● BOTH
● BREADTH
● BUCKET
● BY

C
● C
● CACHE_MAX_NUM
● CACHE_TIME
● CALL
● CALLED
● CARDINALITY
● CASCADE
● CASCADED
● CASE
● CAST
● CATALOG

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 264

● CATALOG_NAME
● CEIL
● CEILING
● CENTURY
● CHAIN
● CHANNEL
● CHAR
● CHARACTER
● CHARACTERISTICTS
● CHARACTERS
● CHARACTER_LENGTH
● CHARACTER_SET_CATALOG
● CHARACTER_SET_NAME
● CHARACTER_SET_SCHEMA
● CHAR_LENGTH
● CHECK
● CHECKPOINT_APP_NAME
● CHECKPOINT_INTERVAL
● CHECKPOINTINTERVAL
● CLASS_ORIGIN
● CLOB
● CLOSE
● CLUSTER_ADDRESS
● CLUSTER_ID
● CLUSTER_NAME
● COALESCE
● COBOL
● COLLATE
● COLLATION
● COLLATION_CATALOG
● COLLATION_NAME
● COLLATION_SCHEMA
● COLLECT
● COLUMN
● COLUMN_NAME
● COLUMN_NAME_MAP
● COMMAND_FUNCTION
● COMMAND_FUNCTION_CODE
● COMMIT
● COMMITTED

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 265

● CONDITION
● CONDITION_NUMBER
● CONFIGURATION
● CONFLUENT_CERTIFICATE_NAME
● CONFLUENT_PROPERTIES
● CONFLUENT_SCHEMA_FIELD
● CONFLUENT_URL
● CONNECT
● CONNECTION_NAME
● CONSTRAINT
● CONSTRAINTS
● CONSTRAINT_CATALOG
● CONSTRAINT_NAME
● CONSTRAINT_SCHEMA
● CONSTRUCTOR
● CONTAINS
● CONTINUE
● CONVERT
● CORR
● CORRESPONDING
● COUNT
● COVAR_POP
● COVAR_SAMP
● CREATE
● CREATE_IF_NOT_EXIST
● CROSS
● CUBE
● CUME_DIST
● CURRENT
● CURRENT_CATALOG
● CURRENT_DATE
● CURRENT_DEFAULT_TRANSFORM_GROUP
● CURRENT_PATH
● CURRENT_ROLE
● CURRENT_SCHEMA
● CURRENT_TIMESTAMP
● CURRENT_TRANSFORM_GROUP_FOR_TYPE
● CURRENT_USER
● CURSOR
● CURSOR_NAME

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 266

● CYCLE

D
● DATE
● DATABASE
● DATE
● DATETIME_INTERVAL_CODE
● DATETIME_INTERVAL_PRECISION
● DAY
● DB_COLUMNS
● DB_URL
● DB_OBS_SERVER
● DB_TYPE
● DEALLOCATE
● DEC
● DECADE
● DECIMAL
● DECLARE
● DEFAULTS
● DEFERRABLE
● DEFERRED
● DEFINER
● DEGREE
● DELETE
● DELETE_OBS_TEMP_FILE
● DENSE_RANK
● DEPTH
● DEREF
● DERIVED
● DESC
● DESCRIBE
● DESCRIPTION
● DESCRIPTOR
● DETERMINISTIC
● DIAGNOSTICS
● DISALLOW
● DISCONNECT
● DIS_NOTICE_CHANNEL
● DISPATCH
● DISTINCT

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 267

● DOMAIN
● DOUBLE
● DOW
● DOY
● DRIVER
● DROP
● DUMP_INTERVAL
● DYNAMIC
● DYNAMIC_FUNCTION
● DYNAMIC_FUNCTION_CODE

E
● EACH
● ELEMENT
● ELSE
● EMAIL_KEY
● ENABLECHECKPOINT
● ENABLE_CHECKPOINT
● ENABLE_OUTPUT_NULL
● ENCODE
● ENCODE_CLASS_NAME
● ENCODE_CLASS_PARAMETER
● ENCODED_DATA
● END
● ENDPOINT
● END_EXEC
● EPOCH
● EQUALS
● ESCAPE
● ES_FIELDS
● ES_INDEX
● ES_TYPE
● ESTIMATEMEM
● ESTIMATEPARALLELISM
● EXACTLY_ONCE
● EXCEPT
● EXCEPTION
● EXCLUDE
● EXCLUDING
● EXEC

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 268

● EXECUTE
● EXISTS
● EXP
● EXPLAIN
● EXTEND
● EXTERNAL
● EXTRACT
● EVERY

F
● FALSE
● FETCH
● FIELD_DELIMITER
● FIELD_NAMES
● FILE_PREFIX
● FILTER
● FINAL
● FIRST
● FIRST_VALUE
● FLOAT
● FLOOR
● FOLLOWING
● FOR
● FUNCTION
● FOREIGN
● FORTRAN
● FOUND
● FRAC_SECOND
● FREE
● FROM
● FULL
● FUSION

G
● G
● GENERAL
● GENERATED
● GET
● GLOBAL
● GO
● GOTO

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 269

● GRANT
● GRANTED
● GROUP
● GROUPING
● GW_URL

H
● HASH_KEY_COLUMN
● HAVING
● HIERARCHY
● HOLD
● HOUR
● HTTPS_PORT

I
● IDENTITY
● ILLEGAL_DATA_TABLE
● IMMEDIATE
● IMPLEMENTATION
● IMPORT
● IN
● INCLUDING
● INCREMENT
● INDICATOR
● INITIALLY
● INNER
● INOUT
● INPUT
● INSENSITIVE
● INSERT
● INSTANCE
● INSTANTIABLE
● INT
● INTEGER
● INTERSECT
● INTERSECTION
● INTERVAL
● INTO
● INVOKER
● IN_WITH_SCHEMA
● IS

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 270

● ISOLATION

J
● JAVA
● JOIN
● JSON_CONFIG
● JSON_SCHEMA

K
● K
● KAFKA_BOOTSTRAP_SERVERS
● KAFKA_CERTIFICATE_NAME
● KAFKA_GROUP_ID
● KAFKA_PROPERTIES
● KAFKA_PROPERTIES_DELIMITER
● KAFKA_TOPIC
● KEY
● KEY_COLUMN
● KEY_MEMBER
● KEY_TYPE
● KEY_VALUE
● KRB_AUTH

L
● LABEL
● LANGUAGE
● LARGE
● LAST
● LAST_VALUE
● LATERAL
● LEADING
● LEFT
● LENGTH
● LEVEL
● LIBRARY
● LIKE
● LIMIT
● LONG

M
● M

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 271

● MAP
● MATCH
● MATCHED
● MATCHING_COLUMNS
● MATCHING_REGEX
● MAX
● MAXALLOWEDCPU
● MAXALLOWEDMEM
● MAXALLOWEDPARALLELISM
● MAX_DUMP_FILE_NUM
● MAX_RECORD_NUM_CACHE
● MAX_RECORD_NUM_PER_FILE
● MAXVALUE
● MEMBER
● MERGE
● MESSAGE_COLUMN
● MESSAGE_LENGTH
● MESSAGE_OCTET_LENGTH
● MESSAGE_SUBJECT
● MESSAGE_TEXT
● METHOD
● MICROSECOND
● MILLENNIUM
● MIN
● MINUTE
● MINVALUE
● MOD
● MODIFIES
● MODULE
● MONTH
● MORE
● MS
● MULTISET
● MUMPS

N
● NAME
● NAMES
● NATIONAL
● NATURAL

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 272

● NCHAR
● NCLOB
● NESTING
● NEW
● NEXT
● NO
● NONE
● NORMALIZE
● NORMALIZED
● NOT
● NULL
● NULLABLE
● NULLIF
● NULLS
● NUMBER
● NUMERIC

O
● OBJECT
● OBJECT_NAME
● OBS_DIR
● OCTETS
● OCTET_LENGTH
● OF
● OFFSET
● OLD
● ON
● ONLY
● OPEN
● OPERATION_FIELD
● OPTION
● OPTIONS
● OR
● ORDER
● ORDERING
● ORDINALITY
● OTHERS
● OUT
● OUTER
● OUTPUT

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 273

● OVER
● OVERLAPS
● OVERLAY
● OVERRIDING

P
● PAD
● PARALLELISM
● PARAMETER
● PARAMETER_MODE
● PARAMETER_NAME
● PARAMETER_ORDINAL_POSITION
● PARAMETER_SPECIFIC_CATALOG
● PARAMETER_SPECIFIC_NAME
● PARAMETER_SPECIFIC_SCHEMA
● PARTIAL
● PARTITION
● PARTITION_COUNT
● PARTITION_KEY
● PARTITION_RANGE
● PASCAL
● PASSTHROUGH
● PASSWORD
● PATH
● PERCENTILE_CONT
● PERCENTILE_DISC
● PERCENT_RANK
● PERSIST_SCHEMA
● PIPELINE_ID
● PLACING
● PLAN
● PLI
● POSITION
● POWER
● PRECEDING
● PRECISION
● PREPARE
● PRESERVE
● PRIMARY
● PRIMARY_KEY

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 274

● PRIOR
● PRIVILEGES
● PROCEDURE
● PROCTIME
● PROJECT_ID
● PUBLIC

Q
● QUARTER
● QUOTE

R
● RANGE
● RANK
● RAW
● READ
● READS
● READ_ONCE
● REAL
● RECURSIVE
● REF
● REFERENCES
● REFERENCING
● REGION
● REGR_AVGX
● REGR_AVGY
● REGR_COUNT
● REGR_INTERCEPT
● REGR_R2
● REGR_SLOPE
● REGR_SXX
● REGR_SXY
● REGR_SYY
● RELATIVE
● RELEASE
● REPEATABLE
● RESET
● RESTART
● RESTRICT
● RESULT
● RETURN

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 275

● RETURNED_CARDINALITY
● RETURNED_LENGTH
● RETURNED_OCTET_LENGTH
● RETURNED_SQLSTATE
● RETURNS
● REVOKE
● RIGHT
● ROLE
● ROLLBACK
● ROLLING_INTERVAL
● ROLLING_SIZE
● ROLLUP
● ROUTINE
● ROUTINE_CATALOG
● ROUTINE_NAME
● ROUTINE_SCHEMA
● ROW
● ROW_COUNT
● ROW_DELIMITER
● ROW_NUMBER
● ROWS
● ROWTIME

S
● SAVEPOINT
● SCALE
● SCHEMA
● SCHEMA_CASE_SENSITIVE
● SCHEMA_NAME
● SCOPE
● SCOPE_CATALOGS
● SCOPE_NAME
● SCOPE_SCHEMA
● SCROLL
● SEARCH
● SECOND
● SECTION
● SECURITY
● SELECT
● SELF

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 276

● SENSITIVE
● SEQUENCE
● SERIALIZABLE
● SERVER
● SERVER_NAME
● SESSION
● SESSION_USER
● SET
● SETS
● SIMILAR
● SIMPLE
● SINK
● SIZE
● SK
● SMALLINT
● SOME
● SOURCE
● SPACE
● SPECIFIC
● SPECIFICTYPE
● SPECIFIC_NAME
● SQL
● SQLEXCEPTION
● SQLSTATE
● SQLWARNING
● SQL_TSI_DAY
● SQL_TSI_FRAC_SECOND
● SQL_TSI_HOUR
● SQL_TSI_MICROSECOND
● SQL_TSI_MINUTE
● SQL_TSI_MONTH
● SQL_TSI_QUARTER
● SQL_TSI_SECOND
● SQL_TSI_WEEK
● SQL_TSI_YEAR
● SQRT
● START
● START_TIME
● STATE
● STATEMENT

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 277

● STATIC
● STDDEV_POP
● STDDEV_SAMP
● STREAM
● STRING
● STRUCTURE
● STYLE
● SUBCLASS_ORIGIN
● SUBMULTISET
● SUBSTITUTE
● SUBSTRING
● SUM
● SYMMETRIC
● SYSTEM
● SYSTEM_USER

T
● TABLE
● TABLESAMPLE
● TABLE_COLUMNS
● TABLE_NAME
● TABLE_NAME_MAP
● TEMP
● TEMPORARY
● THEN
● TIES
● TIME
● TIMESTAMP
● TIMESTAMPADD
● TIMESTAMPDIFF
● TIMEZONE_HOUR
● TIMEZONE_MINUTE
● TINYINT
● TO
● TOP_LEVEL_COUNT
● TOPIC
● TOPIC_URN
● TRAILING
● TRANSACTION
● TRANSACTIONAL_TABLE

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 278

● TRANSACTIONS_ACTIVE
● TRANSACTIONS_COMMITTED
● TRANSACTIONS_ROLLED_BACK
● TRANSFORM
● TRANSFORMS
● TRANSLATE
● TRANSLATION
● TRANX_ID
● TREAT
● TRIGGER
● TRIGGER_CATALOG
● TRIGGER_NAME
● TRIGGER_SCHEMA
● TRIM
● TRUE
● TSDB_LINK_ADDRESS
● TSDB_METRICS
● TSDB_TIMESTAMPS
● TSDB_TAGS
● TSDB_VALUES
● TYPE
● TYPE_CLASS_NAME
● TYPE_CLASS_PARAMETER

U
● UESCAPE
● UNBOUNDED
● UNCOMMITTED
● UNDER
● UNION
● UNIQUE
● UNKNOWN
● UNNAMED
● UNNEST
● UPDATE
● UPPER
● UPSERT
● URN_COLUMN
● USAGE
● USER

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 279

● USER_DEFINED_TYPE_CATALOG
● USER_DEFINED_TYPE_CODE
● USER_DEFINED_TYPE_NAME
● USER_DEFINED_TYPE_SCHEMA
● USERNAME
● USING

V
● VALUE
● VALUES
● VALUE_TYPE
● VARBINARY
● VARCHAR
● VARYING
● VAR_POP
● VAR_SAMP
● VERSION
● VERSION_ID
● VIEW

W
● WATERMARK
● WEEK
● WHEN
● WHENEVER
● WHERE
● WIDTH_BUCKET
● WINDOW
● WITH
● WITHIN
● WITHOUT
● WORK
● WRAPPER
● WRITE

X
● XML
● XML_CONFIG

Y
● YEAR

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 280

Z
● ZONE

Data Lake Insight
SQL Syntax Reference 2 Flink SQL Syntax

2023-03-06 281

3 Identifiers

3.1 aggregate_func

Syntax
None.

Description
Aggregate function.

3.2 alias

Syntax
None.

Description
Alias, which must be STRING type. It can be assigned to a field, table, view, or
subquery.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 282

3.3 attr_expr

Syntax

Description
Syntax Description

attr_expr Attribute expression.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 283

Syntax Description

attr Table field, which is the same as col_name.

const_value Constant value.

case_expr Case expression.

math_func Mathematical function.

date_func Date function.

string_func String function.

aggregate_func Aggregate function.

window_func Analysis window function.

user_define_func User-defined function.

general_binary_operator General binary operator.

general_unary_operator General unary operator.

(Start of the specified subattribute
expression.

) End of the specified subattribute
expression.

3.4 attr_expr_list

Syntax
None.

Description
List of attr_expr, which is separated by commas (,).

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 284

3.5 attrs_value_set_expr

Syntax

Description
Syntax Description

attrs_value_set_expr Collection of attribute values.

sub_query Subquery clause.

(Start of the specified subquery expression.

) End of the specified subquery expression.

3.6 boolean_expression

Syntax
None.

Description
Return a boolean expression.

3.7 col

Syntax
None.

Description
Formal parameter for function call. It is usually a field name, which is the same as
col_name.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 285

3.8 col_comment

Syntax
None.

Description
Column (field) description, which must be STRING type and cannot exceed 256
bytes.

3.9 col_name

Syntax
None.

Description
Column name, which must be STRING type and cannot exceed 128 bytes.

3.10 col_name_list

Syntax
None.

Description
Field list, which consists of one col_name or more. If there is more than one
col_name, separate them by using a comma (,).

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 286

3.11 condition

Syntax

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 287

Description
Syntax Description

condition Judgment condition.

> Relational operator: >

>= Relational operator: ≥

< Relational operator: <

<= Relational operator: ≤

= Relational operator: =

<> Relational operator: <>

is Relational operator: is

is not Relational operator: is not

const_null Constant value: null

like Relational operator: used for wildcard matching.

pattern_string Pattern matching string, which supports wildcard
matching. In WHERE LIKE, SQL wildcard characters "%"
and "_" are supported. "%" represents one or more
characters. "_" represents only one character.

attr_expr Attribute expression.

attrs_value_set_exp
r

Collection of attribute values.

in Keyword used to determine whether attributes are in the
same collection.

const_string String constant.

const_int Integer constant.

(Start of the specified constant collection.

) End of the specified constant collection.

, Separator comma (,)

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 288

3.12 condition_list

Syntax

Description

Syntax Description

condition_list List of judgment conditions.

and Logical operator: AND

or Logical operator: OR

not Logical operator: NOT

(Start of the subjudgment condition.

) End of the subjudgment condition.

condition Judgment condition.

3.13 cte_name

Syntax

None.

Description

Common expression name.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 289

3.14 data_type

Syntax
None.

Description
Data type. Currently, only the primitive data types are supported.

3.15 db_comment

Syntax
None.

Description
Database description, which must be STRING type and cannot exceed 256
characters.

3.16 db_name

Syntax
None.

Description
Database name, which must be STRING type and cannot exceed 128 bytes.

3.17 else_result_expression

Syntax
None.

Description
Returned result for the ELSE clause of the CASE WHEN statement.

3.18 file_format

Format
| AVRO

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 290

| CSV

| JSON

| ORC

| PARQUET

Description
● Currently, the preceding formats are supported.

● Both USING and STORED AS can be used for specifying the data format. You
can specify the preceding data formats by USING, but only the ORC and
PARQUET formats by STORED AS.

● ORC has optimized RCFile to provide an efficient method to store Hive data.

● PARQUET is an analytical service-oriented and column-based storage format.

3.19 file_path

Syntax

None.

Description

File path, which is the OBS path

3.20 function_name

Syntax

None.

Description

Function name, which must be STRING type.

3.21 groupby_expression

Syntax

None.

Description

Expression that includes GROUP BY.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 291

3.22 having_condition

Syntax

Description
Syntax Description

having_condition Judgment condition of having.

and Logical operator: AND

or Logical operator: OR

not Logical operator: NOT

(Start of the subjudgment condition.

) End of the subjudgment condition.

condition Judgment condition.

const_set Collection of constants, which are separated by using
comma (,).

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 292

Syntax Description

in Keyword used to determine whether attributes are in
the same collection.

attrs_value_set_expr Collection of attribute values.

attr_expr Attribute expression.

Equality and inequality Equation and inequality. For details, see Relational
Operators.

pattern_string Pattern matching string, which supports wildcard
matching. In WHERE LIKE, SQL wildcard characters
"%" and "_" are supported. "%" represents one or
more characters. "_" represents only one character.

like Relational operator: used for wildcard matching.

3.23 input_expression

Syntax
None.

Description
Input expression of the CASE WHEN statement.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 293

3.24 join_condition

Syntax

Description
Syntax Description

join_condition Judgment condition of join.

and Logical operator: AND

or Logical operator: OR

not Logical operator: NOT

(Start of the subjudgment condition.

) End of the subjudgment condition.

condition Judgment condition.

const_set Collection of constants, which are separated by
using comma (,).

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 294

Syntax Description

in Keyword used to determine whether attributes
are in the same collection.

atrrs_value_set_expr Collection of attribute values.

attr_expr Attribute expression.

Equality and inequality Equation and inequality. For details, see
Relational Operators.

pattern_string Pattern matching string, which supports wildcard
matching. In WHERE LIKE, SQL wildcard
characters "%" and "_" are supported. "%"
represents one or more characters. "_" represents
only one character.

3.25 non_equi_join_condition

Syntax

None.

Description

The condition of an inequality join.

3.26 number

Syntax

None.

Description

Maximum number of output lines specified by LIMIT. Which must be INT type.

3.27 partition_col_name

Syntax

None.

Description

Partition column name, that is, partition field name, which must be STRING type.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 295

3.28 partition_col_value

Syntax

None.

Description

Partition column value, that is, partition field value.

3.29 partition_specs

Syntax

partition_specs : (partition_col_name = partition_col_value, partition_col_name =
partition_col_value, ...);

Description

Table partition list, which is expressed by using key=value pairs, in which key
represents partition_col_name, and value represents partition_col_value. If there
is more than one partition field, separate every two key=value pairs by using a
comma (,).

3.30 property_name

Syntax

None.

Description

Property name, which must be STRING type.

3.31 property_value

Syntax

None.

Description

Property value, which must be STRING type.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 296

3.32 regex_expression

Syntax
None.

Description
Pattern matching string, which supports wildcard matching.

3.33 result_expression

Syntax
None.

Description
Returned result for the THEN clause of the CASE WHEN statement.

3.34 select_statement

Syntax
None.

Description
Query clause for the basic SELECT statement.

3.35 separator

Syntax
None.

Description
Separator, which can be customized by users, for example, comma (,), semicolon
(;), and colon (:). Which must be CHAR type.

3.36 sql_containing_cte_name

Syntax
None.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 297

Description

SQL statement containing the common expression defined by cte_name.

3.37 sub_query

Syntax

None.

Description

Subquery.

3.38 table_comment

Syntax

None.

Description

Table description, which must be STRING type and cannot exceed 256 bytes.

3.39 table_name

Syntax

None

Description

Table name, which cannot exceed 128 bytes. The string type and "$" symbol are
supported.

3.40 table_properties

Syntax

None.

Description

Table property list, which is expressed by using key=value pairs. key represents
property_name, and value represents property_value. If there is more than one
key=value pair, separate every two key=value pairs by using a comma (,).

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 298

3.41 table_reference

Syntax
None.

Description
Table or view name, which must be STRING type. It can also be a subquery. If it is
subquery, an alias must also be provided.

3.42 when_expression

Syntax
None.

Description
When expression of the CASE WHEN statement. It is used for matching with the
input expression.

3.43 where_condition

Syntax

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 299

Description
Syntax Description

where_condition Judgment condition of where.

and Logical operator: AND

or Logical operator: OR

not Logical operator: NOT

(Start of the subjudgment condition.

) End of the subjudgment condition.

condition Judgment condition.

exists Keyword used to determine whether a non-empty
collection exists. If exists is followed by a subquery, then
the subquery must contain a judgment condition.

in Keyword used to determine whether attributes are in
the same collection.

attrs_value_set_expr Collection of attribute values.

attr_expr Attribute expression.

3.44 window_function

Syntax
None.

Description
Analysis window function. For details, see Window Functions.

Data Lake Insight
SQL Syntax Reference 3 Identifiers

2023-03-06 300

4 Operators

4.1 Relational Operators
All data types can be compared by using relational operators and the result is
returned as a BOOLEAN value.

Relationship operators are binary operators. Two compared data types must be of
the same type or they must support implicit conversion.

Table 4-1 lists the relational operators provided by DLI.

Table 4-1 Relational operators

Operator Result Type Description

A = B BOOLEAN If A is equal to B, then TRUE is returned.
Otherwise, FALSE is returned. This operator is used
for value assignment.

A == B BOOLEAN If A is equal to B, then TRUE is returned.
Otherwise, FALSE is returned. This operator cannot
be used for value assignment.

A <=> B BOOLEAN If A is equal to B, then TRUE is returned.
Otherwise, FALSE is returned. If A and B are NULL,
then TRUE is returned. If A or B is NULL, then
FALSE is returned.

A <> B BOOLEAN If A is not equal to B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned. This operator follows the
standard SQL syntax.

A != B BOOLEAN This operator is the same as the <> logical
operator. It follows the SQL Server syntax.

Data Lake Insight
SQL Syntax Reference 4 Operators

2023-03-06 301

Operator Result Type Description

A < B BOOLEAN If A is less than B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned.

A <= B BOOLEAN If A is less than or equal to B, then TRUE is
returned. Otherwise, FALSE is returned. If A or B is
NULL, then NULL is returned.

A > B BOOLEAN If A is greater than B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned.

A >= B BOOLEAN If A is greater than or equal to B, then TRUE is
returned. Otherwise, FALSE is returned. If A or B is
NULL, then NULL is returned.

A BETWEEN
B AND C

BOOLEAN If A is greater than or equal to B and less than or
equal to C, then TRUE is returned. Otherwise,
FALSE is returned. If A, B, or C is NULL, then NULL
is returned.

A NOT
BETWEEN B
AND C

BOOLEAN If A is less than B or greater than C, TRUE is
returned; otherwise, FALSE is returned. If A, B, or C
is NULL, then NULL is returned.

A IS NULL BOOLEAN If A is NULL, then TRUE is returned. Otherwise,
FALSE is returned.

A IS NOT
NULL

BOOLEAN If A is not NULL, then TRUE is returned.
Otherwise, FALSE is returned.

A LIKE B BOOLEAN If A matches B, then TRUE is returned. Otherwise,
FALSE is returned. If A or B is NULL, then NULL is
returned.

A NOT LIKE
B

BOOLEAN If A does not match B, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL,
then NULL is returned.

A RLIKE B BOOLEAN This operator is used for the LIKE operation of
JAVA. If A or its substring matches B, then TRUE is
returned. Otherwise, FALSE is returned. If A or B is
NULL, then NULL is returned.

A REGEXP B BOOLEAN The result is the same as A RLIKE B.

4.2 Arithmetic Operators
Arithmetic operators include binary operators and unary operators. For both types
of operators, the returned results are numbers. Table 4-2 lists the arithmetic
operators supported by DLI.

Data Lake Insight
SQL Syntax Reference 4 Operators

2023-03-06 302

Table 4-2 Arithmetic operators

Opera
tor

Result Type Description

A + B All numeric
types

A plus B. The result type is associated with the
operation data type. For example, if floating-point
number is added to an integer, the result will be a
floating-point number.

A–B All numeric
types

A minus B. The result type is associated with the
operation data type.

A * B All numeric
types

Multiply A and B. The result type is associated with the
operation data type.

A / B All numeric
types

Divide A by B. The result is a number of the double
type (double-precision number).

A % B All numeric
types

A on the B Modulo. The result type is associated with
the operation data type.

A & B All numeric
types

Check the value of the two parameters in binary
expressions and perform the AND operation by bit. If
the same bit of both expressions are 1, then the bit is
set to 1. Otherwise, the bit is 0.

A | B All numeric
types

Check the value of the two parameters in binary
expressions and perform the OR operation by bit. If
one bit of either expression is 1, then the bit is set to 1.
Otherwise, the bit is set to 0.

A ^ B All numeric
types

Check the value of the two parameters in binary
expressions and perform the XOR operation by bit.
Only when one bit of either expression is 1, the bit is 1.
Otherwise, the bit is 0.

~A All numeric
types

Perform the NOT operation on one expression by bit.

4.3 Logical Operators
Common logical operators include AND, OR, and NOT. The operation result can be
TRUE, FALSE, or NULL (which means unknown). The priorities of the operators are
as follows: NOT > AND > OR.

Table 4-3 lists the calculation rules, where A and B represent logical expressions.

Data Lake Insight
SQL Syntax Reference 4 Operators

2023-03-06 303

Table 4-3 Logical operators

Operator Result
Type

Description

A AND B BOOLEAN If A and B are TRUE, then TRUE is returned.
Otherwise, FALSE is returned. If A or B is NULL, then
NULL is returned.

A OR B BOOLEAN If A or B is TRUE, then TRUE is returned. Otherwise,
FALSE is returned. If A or B is NULL, then NULL is
returned. If one is TRUE and the other is NULL, then
TRUE is returned.

NOT A BOOLEAN If A is FALSE, then TRUE is returned. If A is NULL,
then NULL is returned. Otherwise, FALSE is returned.

! A BOOLEAN Same as NOT A.

A IN
(val1,
val2, ...)

BOOLEAN If A is equal to any value in (val1, val2, ...), then TRUE
is returned. Otherwise, FALSE is returned.

A NOT
IN (val1,
val2, ...)

BOOLEAN If A is not equal to any value in (val1, val2, ...), then
TRUE is returned. Otherwise, FALSE is returned.

EXISTS
(subquer
y)

BOOLEAN If the result of any subquery contains at least one
line, then TRUE is returned. Otherwise, FALSE is
returned.

NOT
EXISTS
(subquer
y)

BOOLEAN If the subquery output does not contain any row,
TRUE is returned; otherwise, FALSE is returned.

Data Lake Insight
SQL Syntax Reference 4 Operators

2023-03-06 304

	Contents
	1 Spark SQL Syntax Reference
	1.1 Common Configuration Items of Batch SQL Jobs
	1.2 SQL Syntax Overview of Batch Jobs
	1.3 Databases
	1.3.1 Creating a Database
	1.3.2 Deleting a Database
	1.3.3 Viewing a Specified Database
	1.3.4 Viewing All Databases

	1.4 Creating an OBS Table
	1.4.1 Creating an OBS Table Using the DataSource Syntax
	1.4.2 Creating an OBS Table Using the Hive Syntax

	1.5 Creating a DLI Table
	1.5.1 Creating a DLI Table Using the DataSource Syntax
	1.5.2 Creating a DLI Table Using the Hive Syntax

	1.6 Deleting a Table
	1.7 Viewing Tables
	1.7.1 Viewing All Tables
	1.7.2 Viewing Table Creation Statements
	1.7.3 Viewing Table Properties
	1.7.4 Viewing All Columns in a Specified Table
	1.7.5 Viewing All Partitions in a Specified Table
	1.7.6 Viewing Table Statistics

	1.8 Modifying a Table
	1.8.1 Adding a Column
	1.8.2 Enabling or Disabling Multiversion Backup

	1.9 Syntax for Partitioning a Table
	1.9.1 Adding Partition Data (Only OBS Tables Supported)
	1.9.2 Renaming a Partition (Only OBS Tables Supported)
	1.9.3 Deleting a Partition
	1.9.4 Deleting Partitions by Specifying Filter Criteria (Only OBS Tables Supported)
	1.9.5 Altering the Partition Location of a Table (Only OBS Tables Supported)
	1.9.6 Updating Partitioned Table Data (Only OBS Tables Supported)
	1.9.7 Updating Table Metadata with REFRESH TABLE

	1.10 Importing Data to the Table
	1.11 Inserting Data
	1.12 Clearing Data
	1.13 Exporting Search Results
	1.14 Backing Up and Restoring Data of Multiple Versions
	1.14.1 Setting the Retention Period for Multiversion Backup Data
	1.14.2 Viewing Multiversion Backup Data
	1.14.3 Restoring Multiversion Backup Data
	1.14.4 Configuring the Trash Bin for Expired Multiversion Data
	1.14.5 Deleting Multiversion Backup Data

	1.15 Creating a Datasource Connection with an HBase Table
	1.15.1 Creating a Table and Associating It with HBase
	1.15.2 Inserting Data to an HBase Table
	1.15.3 Querying an HBase Table

	1.16 Creating a Datasource Connection with an OpenTSDB Table
	1.16.1 Creating a Table and Associating It with OpenTSDB
	1.16.2 Inserting Data to the OpenTSDB Table
	1.16.3 Querying an OpenTSDB Table

	1.17 Creating a Datasource Connection with a DWS table
	1.17.1 Creating a Table and Associating It with DWS
	1.17.2 Inserting Data to the DWS Table
	1.17.3 Querying the DWS Table

	1.18 Creating a Datasource Connection with an RDS Table
	1.18.1 Creating a Table and Associating It with RDS
	1.18.2 Inserting Data to the RDS Table
	1.18.3 Querying the RDS Table

	1.19 Creating a Datasource Connection with a CSS Table
	1.19.1 Creating a Table and Associating It with CSS
	1.19.2 Inserting Data to the CSS Table
	1.19.3 Querying the CSS Table

	1.20 Creating a Datasource Connection with a DCS Table
	1.20.1 Creating a Table and Associating It with DCS
	1.20.2 Inserting Data to a DCS Table
	1.20.3 Querying the DCS Table

	1.21 Creating a Datasource Connection with a DDS Table
	1.21.1 Creating a Table and Associating It with DDS
	1.21.2 Inserting Data to the DDS Table
	1.21.3 Querying the DDS Table

	1.22 Views
	1.22.1 Creating a View
	1.22.2 Deleting a View

	1.23 Viewing the Execution Plan
	1.24 Data Permissions Management
	1.24.1 Data Permissions List
	1.24.2 Creating a Role
	1.24.3 Deleting a Role
	1.24.4 Binding a Role
	1.24.5 Unbinding a Role
	1.24.6 Displaying a Role
	1.24.7 Granting a Permission
	1.24.8 Revoking a Permission
	1.24.9 Displaying the Granted Permissions
	1.24.10 Displaying the Binding Relationship Between All Roles and Users

	1.25 Data Types
	1.25.1 Overview
	1.25.2 Primitive Data Types
	1.25.3 Complex Data Types

	1.26 User-Defined Functions
	1.26.1 Creating a Function
	1.26.2 Deleting a Function
	1.26.3 Displaying Function Details
	1.26.4 Displaying All Functions

	1.27 Built-in Functions
	1.27.1 Mathematical Functions
	1.27.2 Date Functions
	1.27.3 String Functions
	1.27.4 Aggregate Functions
	1.27.5 Window Functions

	1.28 Basic SELECT Statements
	1.29 Filtering
	1.29.1 WHERE Filtering Clause
	1.29.2 HAVING Filtering Clause

	1.30 Sorting
	1.30.1 ORDER BY
	1.30.2 SORT BY
	1.30.3 CLUSTER BY
	1.30.4 DISTRIBUTE BY

	1.31 Grouping
	1.31.1 Column-Based GROUP BY
	1.31.2 Expression-Based GROUP BY
	1.31.3 GROUP BY Using HAVING
	1.31.4 ROLLUP
	1.31.5 GROUPING SETS

	1.32 JOIN
	1.32.1 INNER JOIN
	1.32.2 LEFT OUTER JOIN
	1.32.3 RIGHT OUTER JOIN
	1.32.4 FULL OUTER JOIN
	1.32.5 IMPLICIT JOIN
	1.32.6 Cartesian JOIN
	1.32.7 LEFT SEMI JOIN
	1.32.8 NON-EQUIJOIN

	1.33 Subquery
	1.33.1 Subquery Nested by WHERE
	1.33.2 Subquery Nested by FROM
	1.33.3 Subquery Nested by HAVING
	1.33.4 Multi-Layer Nested Subquery

	1.34 Alias
	1.34.1 AS for Table
	1.34.2 AS for Column

	1.35 Set Operations
	1.35.1 UNION
	1.35.2 INTERSECT
	1.35.3 EXCEPT

	1.36 WITH...AS
	1.37 CASE...WHEN
	1.37.1 Basic CASE Statement
	1.37.2 CASE Query Statement

	1.38 OVER Clause

	2 Flink SQL Syntax
	2.1 SQL Syntax Constraints and Definitions
	2.2 SQL Syntax Overview of Stream Jobs
	2.3 Creating a Source Stream
	2.3.1 DIS Source Stream
	2.3.2 DMS Source Stream
	2.3.3 MRS Kafka Source Stream
	2.3.4 Open-Source Kafka Source Stream
	2.3.5 OBS Source Stream

	2.4 Creating a Sink Stream
	2.4.1 MRS OpenTSDB Sink Stream
	2.4.2 CSS Elasticsearch Sink Stream
	2.4.3 DCS Sink Stream
	2.4.4 DDS Sink Stream
	2.4.5 DIS Sink Stream
	2.4.6 DMS Sink Stream
	2.4.7 DWS Sink Stream (JDBC Mode)
	2.4.8 DWS Sink Stream (OBS-based Dumping)
	2.4.9 MRS HBase Sink Stream
	2.4.10 MRS Kafka Sink Stream
	2.4.11 Open-Source Kafka Sink Stream
	2.4.12 File System Sink Stream (Recommended)
	2.4.13 OBS Sink Stream
	2.4.14 RDS Sink Stream
	2.4.15 SMN Sink Stream

	2.5 Creating a Temporary Stream
	2.6 Creating a Dimension Table
	2.6.1 Creating a Redis Table
	2.6.2 Creating an RDS Table

	2.7 Custom Stream Ecosystem
	2.7.1 Custom Source Stream
	2.7.2 Custom Sink Stream

	2.8 Data Type
	2.9 Built-In Functions
	2.9.1 Mathematical Operation Functions
	2.9.2 String Functions
	2.9.3 Temporal Functions
	2.9.4 Type Conversion Functions
	2.9.5 Aggregate Functions
	2.9.6 Table-Valued Functions
	2.9.7 Other Functions

	2.10 User-Defined Functions
	2.11 Geographical Functions
	2.12 SELECT
	2.13 Condition Expression
	2.14 Window
	2.15 JOIN Between Stream Data and Table Data
	2.16 Configuring Time Models
	2.17 Pattern Matching
	2.18 StreamingML
	2.18.1 Anomaly Detection
	2.18.2 Time Series Forecasting
	2.18.3 Real-Time Clustering
	2.18.4 Deep Learning Model Prediction

	2.19 Reserved Keywords

	3 Identifiers
	3.1 aggregate_func
	3.2 alias
	3.3 attr_expr
	3.4 attr_expr_list
	3.5 attrs_value_set_expr
	3.6 boolean_expression
	3.7 col
	3.8 col_comment
	3.9 col_name
	3.10 col_name_list
	3.11 condition
	3.12 condition_list
	3.13 cte_name
	3.14 data_type
	3.15 db_comment
	3.16 db_name
	3.17 else_result_expression
	3.18 file_format
	3.19 file_path
	3.20 function_name
	3.21 groupby_expression
	3.22 having_condition
	3.23 input_expression
	3.24 join_condition
	3.25 non_equi_join_condition
	3.26 number
	3.27 partition_col_name
	3.28 partition_col_value
	3.29 partition_specs
	3.30 property_name
	3.31 property_value
	3.32 regex_expression
	3.33 result_expression
	3.34 select_statement
	3.35 separator
	3.36 sql_containing_cte_name
	3.37 sub_query
	3.38 table_comment
	3.39 table_name
	3.40 table_properties
	3.41 table_reference
	3.42 when_expression
	3.43 where_condition
	3.44 window_function

	4 Operators
	4.1 Relational Operators
	4.2 Arithmetic Operators
	4.3 Logical Operators

