Kafka Result Table
Function
DLI outputs the Flink job output data to Kafka through the Kafka result table.
Apache Kafka is a fast, scalable, and fault-tolerant distributed message publishing and subscription system. It delivers high throughput and built-in partitions and provides data replicas and fault tolerance. Apache Kafka is applicable to scenarios of handling massive messages.
Prerequisites
- You have created a Kafka cluster.
- An enhanced datasource connection has been created for DLI to connect to Kafka clusters, so that jobs can run on the dedicated queue of DLI and you can set the security group rules as required.
- For details about how to create an enhanced datasource connection, see Enhanced Datasource Connections in the Data Lake Insight User Guide.
- For details about how to configure security group rules, see Security Group in the Virtual Private Cloud User Guide.
- In Flink cross-source development scenarios, there is a risk of password leakage if datasource authentication information is directly configured. You are advised to use the datasource authentication provided by DLI.
For details about datasource authentication, see Introduction to Datasource Authentication.
Precautions
- When creating a Flink OpenSource SQL job, you need to set Flink Version to 1.12 on the Running Parameters tab of the job editing page, select Save Job Log, and set the OBS bucket for saving job logs.
- For details about how to use data types, see section Format.
Syntax
1 2 3 4 5 6 7 8 9 10 11 |
create table kafkaSink(
attr_name attr_type
(',' attr_name attr_type)*
(','PRIMARY KEY (attr_name, ...) NOT ENFORCED)
)
with (
'connector' = 'kafka',
'topic' = '',
'properties.bootstrap.servers' = '',
'format' = ''
);
|
Parameters
Parameter |
Mandatory |
Default Value |
Data Type |
Description |
---|---|---|---|---|
connector |
Yes |
None |
string |
Connector to be used. Set this parameter to kafka. |
topic |
Yes |
None |
string |
Topic name of the Kafka result table. |
properties.bootstrap.servers |
Yes |
None |
string |
Kafka broker address. The value is in the format of host:port,host:port,host:port. Multiple host:port pairs are separated with commas (,). |
format |
Yes |
None |
string |
Format used by the Flink Kafka connector to serialize Kafka messages. Either this parameter or the value.format parameter is required. The following formats are supported:
Refer to Format for more details and format parameters. |
topic-pattern |
No |
None |
String |
Regular expression for matching the Kafka topic name. Only one of topic and topic-pattern can be specified. Example: 'topic.*' '(topic-c|topic-d)' '(topic-a|topic-b|topic-\\d*)' '(topic-a|topic-b|topic-[0-9]*)' |
properties.* |
No |
None |
String |
This parameter can set and pass arbitrary Kafka configurations. Note:
|
key.format |
No |
None |
String |
Format used to deserialize and serialize the key part of Kafka messages. Note:
|
key.fields |
No |
[] |
List<String> |
Defines the columns in the table as the list of keys. This parameter must be configured in pair with key.format. This parameter is left empty by default. Therefore, no key is defined. The format is like field1;field2. |
key.fields-prefix |
No |
None |
String |
Defines a custom prefix for all fields of the key format to avoid name clashes with fields of the value format. |
value.format |
Yes |
None |
String |
Format used to deserialize and serialize the value part of Kafka messages. Note:
|
value.fields-include |
No |
ALL |
Enum Possible values: [ALL, EXCEPT_KEY] |
Whether to contain the key field when parsing the message body. Possible values are:
|
sink.partitioner |
No |
None |
string |
Mapping from Flink's partitions into Kafka's partitions. Valid values are as follows:
|
sink.semantic |
No |
at-least-once |
String |
Defines the delivery semantic for the Kafka sink. Valid values are as follows:
|
sink.parallelism |
No |
None |
Integer |
Defines the parallelism of the Kafka sink operator. By default, the parallelism is determined by the framework using the same parallelism of the upstream chained operator. |
ssl_auth_name |
No |
None |
String |
Name of datasource authentication of the Kafka_SSL type created on DLI. This configuration is used when SSL is configured for Kafka. Note: If only the SSL type is used, you need to set properties.security.protocol to SSL. If the SASL_SSL type is used, you need to set properties.security.protocol to SASL_SSL, properties.sasl.mechanism to GSSAPI or PLAIN, and properties.sasl.jaas.config to org.apache.kafka.common.security.plain.PlainLoginModule required username=\"xxx\" password=\"xxx\";. |
krb_auth_name |
No |
None |
String |
Name of datasource authentication of the Kerberos type created on DLI. This configuration is used when SASL is configured for Kafka. Note: If the SASL_PLAINTEXT type and Kerberos authentication are used, you need to set properties.sasl.mechanism to GSSAPI and properties.security.protocol to SASL_PLAINTEXT. |
Example (SASL_SSL Disabled for the Kafka Cluster)
In this example, data is read from a Kafka topic and written to another using a Kafka result table.
- Create an enhanced datasource connection in the VPC and subnet where Kafka locates, and bind the connection to the required Flink elastic resource pool. For details, see Enhanced Datasource Connections.
- Set Kafka security groups and add inbound rules to allow access from the Flink queue. Test the connectivity using the Kafka address by referring to Testing Address Connectivity. If the connection is successful, the datasource is bound to the queue. Otherwise, the binding fails.
- Create a Flink OpenSource SQL job. Enter the following job script and submit the job.
When you create a job, set Flink Version to 1.12 on the Running Parameters tab. Select Save Job Log, and specify the OBS bucket for saving job logs. Change the values of the parameters in bold as needed in the following script.
CREATE TABLE kafkaSource ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'KafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', "format" = "json" ); CREATE TABLE kafkaSink ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'KafkaSinkTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', "format" = "json" ); insert into kafkaSink select * from kafkaSource;
- Connect to the Kafka cluster and insert the following test data into the source topic in Kafka:
{"order_id":"202103241000000001","order_channel":"webShop","order_time":"2021-03-24 10:00:00","pay_amount":100.0,"real_pay":100.0,"pay_time":"2021-03-24 10:02:03","user_id":"0001","user_name":"Alice","area_id":"330106"} {"order_id":"202103241606060001","order_channel":"appShop","order_time":"2021-03-24 16:06:06","pay_amount":200.0,"real_pay":180.0,"pay_time":"2021-03-24 16:10:06","user_id":"0001","user_name":"Alice","area_id":"330106"}
- Connect to the Kafka cluster and read data from the sink topic of Kafka.
{"order_id":"202103241000000001","order_channel":"webShop","order_time":"2021-03-24 10:00:00","pay_amount":100.0,"real_pay":100.0,"pay_time":"2021-03-24 10:02:03","user_id":"0001","user_name":"Alice","area_id":"330106"} {"order_id":"202103241606060001","order_channel":"appShop","order_time":"2021-03-24 16:06:06","pay_amount":200.0,"real_pay":180.0,"pay_time":"2021-03-24 16:10:06","user_id":"0001","user_name":"Alice","area_id":"330106"}
Example (SASL_SSL Enabled for the Kafka Cluster)
- Example 1: Enable SASL_SSL authentication for the DMS cluster.
Create a Kafka cluster for DMS, enable SASL_SSL, download the SSL certificate, and upload the downloaded certificate client.jks to an OBS bucket.
CREATE TABLE ordersSource ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:9093,xx:9093,xx:9093', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'properties.connector.auth.open' = 'true', 'properties.ssl.truststore.location' = 'obs://xx/xx.jks', -- Location where the user uploads the certificate to 'properties.sasl.mechanism' = 'PLAIN', -- Value format: SASL_PLAINTEXT 'properties.security.protocol' = 'SASL_SSL', 'properties.sasl.jaas.config' = 'org.apache.kafka.common.security.plain.PlainLoginModule required username=\"xx\" password=\"xx\";', -- Account and password set when the Kafka cluster is created "format" = "json" ); CREATE TABLE ordersSink ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:9093,xx:9093,xx:9093', 'properties.connector.auth.open' = 'true', 'properties.ssl.truststore.location' = 'obs://xx/xx.jks', 'properties.sasl.mechanism' = 'PLAIN', 'properties.security.protocol' = 'SASL_SSL', 'properties.sasl.jaas.config' = 'org.apache.kafka.common.security.plain.PlainLoginModule required username=\"xx\" password=\"xx\";', "format" = "json" ); insert into ordersSink select * from ordersSource;
- Example 2: Enable Kafka SASL_SSL authentication for the MRS cluster.
- Enable Kerberos authentication for the MRS cluster.
- Click the Components tab and click Kafka. In the displayed page, click the Service Configuration tab, locate the security.protocol, and set it to SASL_SSL.
- Log in to the FusionInsight Manager of the MRS cluster and download the user credential. Choose System > Permission > User. Locate the row that contains the target user, choose More > Download Authentication Credential.
Obtain the truststore.jks file using the authentication credential and store the credential and truststore.jks file in OBS.
- If "Message stream modified (41)" is displayed, the JDK version may be incorrect. Change the JDK version in the sample code to a version earlier than 8u_242 or delete the renew_lifetime = 0m configuration item from the krb5.conf configuration file.
- Set the port to the sasl_ssl.port configured in the Kafka service configuration.
- In the following statements, set security.protocol to SASL_SSL.
CREATE TABLE ordersSource ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:21009,xx:21009', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'properties.sasl.kerberos.service.name' = 'kafka', 'properties.connector.auth.open' = 'true', 'properties.connector.kerberos.principal' = 'xx', --Username 'properties.connector.kerberos.krb5' = 'obs://xx/krb5.conf', 'properties.connector.kerberos.keytab' = 'obs://xx/user.keytab', 'properties.security.protocol' = 'SASL_SSL', 'properties.ssl.truststore.location' = 'obs://xx/truststore.jks', 'properties.ssl.truststore.password' = 'xx', -- Password set for generating truststore.jks 'properties.sasl.mechanism' = 'GSSAPI', "format" = "json" ); CREATE TABLE ordersSink ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:21009,xx:21009', 'properties.sasl.kerberos.service.name' = 'kafka', 'properties.connector.auth.open' = 'true', 'properties.connector.kerberos.principal' = 'xx', 'properties.connector.kerberos.krb5' = 'obs://xx/krb5.conf', 'properties.connector.kerberos.keytab' = 'obs://xx/user.keytab', 'properties.ssl.truststore.location' = 'obs://xx/truststore.jks', 'properties.ssl.truststore.password' = 'xx', 'properties.security.protocol' = 'SASL_SSL', 'properties.sasl.mechanism' = 'GSSAPI', "format" = "json" ); insert into ordersSink select * from ordersSource;
- Example 3: Enable Kerberos SASL_PAINTEXT authentication for the MRS cluster
- Enable Kerberos authentication for the MRS cluster.
- Click the Components tab and click Kafka. In the displayed page, click the Service Configuration tab, locate the security.protocol, and set it to SASL_PLAINTEXT.
- Log in to the FusionInsight Manager of the MRS cluster and download the user credential. Choose System > Permission > User. Locate the row that contains the target user, choose More > Download Authentication Credential. Upload the credential to OBS.
- If error message "Message stream modified (41)" is displayed, the JDK version may be incorrect. Change the JDK version in the sample code to a version earlier than 8u_242 or delete the renew_lifetime = 0m configuration item from the krb5.conf configuration file.
- Set the port to the sasl.port configured in the Kafka service configuration.
- In the following statements, set security.protocol to SASL_PLAINTEXT.
CREATE TABLE ordersSources ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:21007,xx:21007', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'properties.sasl.kerberos.service.name' = 'kafka', 'properties.connector.auth.open' = 'true', 'properties.connector.kerberos.principal' = 'xx', 'properties.connector.kerberos.krb5' = 'obs://xx/krb5.conf', 'properties.connector.kerberos.keytab' = 'obs://xx/user.keytab', 'properties.security.protocol' = 'SASL_PLAINTEXT', 'properties.sasl.mechanism' = 'GSSAPI', "format" = "json" ); CREATE TABLE ordersSink ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:21007,xx:21007', 'properties.sasl.kerberos.service.name' = 'kafka', 'properties.connector.auth.open' = 'true', 'properties.connector.kerberos.principal' = 'xx', 'properties.connector.kerberos.krb5' = 'obs://xx/krb5.conf', 'properties.connector.kerberos.keytab' = 'obs://xx/user.keytab', 'properties.security.protocol' = 'SASL_PLAINTEXT', 'properties.sasl.mechanism' = 'GSSAPI', "format" = "json" ); insert into ordersSink select * from ordersSource;
- Example 4: Use SSL for the MRS cluster
- Do not enable Kerberos authentication for the MRS cluster.
- Log in to the FusionInsight Manager of the MRS cluster and download the user credential. Choose System > Permission > User. Locate the row that contains the target user, choose More > Download Authentication Credential.
Obtain the truststore.jks file using the authentication credential and store the credential and truststore.jks file in OBS.
- Set the port to the ssl.port configured in the Kafka service configuration.
- In the following statements, set security.protocol to SSL.
- Set ssl.mode.enable to true.
CREATE TABLE ordersSource ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'xx', 'properties.bootstrap.servers' = 'xx:9093,xx:9093,xx:9093', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'properties.connector.auth.open' = 'true', 'properties.ssl.truststore.location' = 'obs://xx/truststore.jks', 'properties.ssl.truststore.password' = 'xx', -- Password set for generating truststore.jks 'properties.security.protocol' = 'SSL', "format" = "json" ); CREATE TABLE ordersSink ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'print' ); insert into ordersSink select * from ordersSource;
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.