Scala Sample Code
Function Description
In a Flink application, call API of the flink-connector-kafka module to produce and consume data.
Sample Code
Following is the main logic code of Kafka Consumer and Kafka Producer.
For the complete code, see com.huawei.bigdata.flink.examples.WriteIntoKafka and com.huawei.bigdata.flink.examples.ReadFromKafka.
//Code of producer object WriteIntoKafka { def main(args: Array[String]) { //Print the reference command of flink run. System.out.println("use command as: ") System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.WriteIntoKafka" + " /opt/test.jar --topic topic-test --bootstrap.servers 10.91.8.218:9092") System.out.println("******************************************************************************************") System.out.println("<topic> is the kafka topic name") System.out.println("<bootstrap.servers> is the ip:port list of brokers") System.out.println("******************************************************************************************") //Build the execution environment. val env = StreamExecutionEnvironment.getExecutionEnvironment //Configure the parallelism. env.setParallelism(1) //Parse the execution parameter. val paraTool = ParameterTool.fromArgs(args) //Build the StreamGraph and wirte data generated by customized source into Kafka. val messageStream: DataStream[String] = env.addSource(new SimpleStringGenerator) messageStream.addSink(new FlinkKafkaProducer( paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties)) //Call execute to trigger the execution. env.execute } } //Customize source to continuously generate messages every one second. class SimpleStringGenerator extends SourceFunction[String] { var running = true var i = 0 override def run(ctx: SourceContext[String]) { while (running) { ctx.collect("element-" + i) i += 1 Thread.sleep(1000) } } override def cancel() { running = false } } //consumer code object ReadFromKafka { def main(args: Array[String]) { //Print the reference command of flink run. System.out.println("use command as: ") System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.ReadFromKafka" + " /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:9092") System.out.println("******************************************************************************************") System.out.println("<topic> is the kafka topic name") System.out.println("<bootstrap.servers> is the ip:port list of brokers") System.out.println("******************************************************************************************") //Build the execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment //Configure the parallelism. env.setParallelism(1) //Parse the execution parameter. val paraTool = ParameterTool.fromArgs(args) //Build the StreamGraph, read data from Kafka and print the result in another row. val messageStream = env.addSource(new FlinkKafkaConsumer( paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties)) messageStream .map(s => "Flink says " + s + System.getProperty("line.separator")).print() //Call execute to trigger the execution env.execute() } }
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.