Dynamic Parameterized Path Pruning
- Supported partitioning types: range partitioning, hash partitioning, and list partitioning.
- Supported operator types: index scan, index-only scan, and bitmap scan.
- Supported expression types: comparison expression (<, <=, =, >=, >) and logical expression.

Dynamic parameterized path pruning does not support subquery expressions, STABLE and VOLATILE functions, cross-QueryBlock parameterized paths, BitmapOr operator, or BitmapAnd operator.
- Typical scenarios where dynamic parameterized path pruning is supported are as follows:
- Comparison expressions
-- Create partitioned tables and indexes. gaussdb=# CREATE TABLE t1 (c1 INT, c2 INT) PARTITION BY RANGE (c1) ( PARTITION p1 VALUES LESS THAN(10), PARTITION p2 VALUES LESS THAN(20), PARTITION p3 VALUES LESS THAN(MAXVALUE) ); gaussdb=# CREATE TABLE t2 (c1 INT, c2 INT) PARTITION BY RANGE (c1) ( PARTITION p1 VALUES LESS THAN(10), PARTITION p2 VALUES LESS THAN(20), PARTITION p3 VALUES LESS THAN(MAXVALUE) ); gaussdb=# CREATE INDEX t1_c1 ON t1(c1) LOCAL; gaussdb=# CREATE INDEX t2_c1 ON t2(c1) LOCAL; gaussdb=# CREATE INDEX t1_c2 ON t1(c2) LOCAL; gaussdb=# CREATE INDEX t2_c2 ON t2(c2) LOCAL; gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1) indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 = t2.c1; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------- Data Node Scan Output: t2.c1, t2.c2, t1.c1, t1.c2 Node/s: All datanodes Remote query: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 Remote SQL: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 Datanode Name: datanode1 Nested Loop Output: t2.c1, t2.c2, t1.c1, t1.c2 -> Partition Iterator Output: t2.c1, t2.c2 Iterations: 3 -> Partitioned Index Scan using t2_c1 on public.t2 Output: t2.c1, t2.c2 Selected Partitions: 1..3 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: PART -> Partitioned Index Scan using t1_c1 on public.t1 Output: t1.c1, t1.c2 Index Cond: (t1.c1 = t2.c1) Selected Partitions: 1..3 (ppi-pruning) (23 rows) gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1) indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 < t2.c1; QUERY PLAN ------------------------------------------------------------------- Streaming (type: GATHER) Output: t2.c1, t2.c2, t1.c1, t1.c2 Node/s: All datanodes -> Nested Loop Output: t2.c1, t2.c2, t1.c1, t1.c2 -> Streaming(type: BROADCAST) Output: t2.c1, t2.c2 Spawn on: All datanodes Consumer Nodes: All datanodes -> Partition Iterator Output: t2.c1, t2.c2 Iterations: 3 -> Partitioned Seq Scan on public.t2 Output: t2.c1, t2.c2 Distribute Key: t2.c1 Selected Partitions: 1..3 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: PART -> Partitioned Index Scan using t1_c1 on public.t1 Output: t1.c1, t1.c2 Distribute Key: t1.c1 Index Cond: (t1.c1 < t2.c1) Selected Partitions: 1..3 (ppi-pruning) (24 rows) gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1) indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 < t2.c1; QUERY PLAN ------------------------------------------------------------------- Streaming (type: GATHER) Output: t2.c1, t2.c2, t1.c1, t1.c2 Node/s: All datanodes -> Nested Loop Output: t2.c1, t2.c2, t1.c1, t1.c2 -> Streaming(type: BROADCAST) Output: t2.c1, t2.c2 Spawn on: All datanodes Consumer Nodes: All datanodes -> Partition Iterator Output: t2.c1, t2.c2 Iterations: 3 -> Partitioned Seq Scan on public.t2 Output: t2.c1, t2.c2 Distribute Key: t2.c1 Selected Partitions: 1..3 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: PART -> Partitioned Index Scan using t1_c1 on public.t1 Output: t1.c1, t1.c2 Distribute Key: t1.c1 Index Cond: (t1.c1 > t2.c1) Selected Partitions: 1..3 (ppi-pruning) (24 rows)
- Logical expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1) indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 = t2.c1 AND t1.c2 = 2; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------------- Data Node Scan Output: t2.c1, t2.c2, t1.c1, t1.c2 Node/s: All datanodes Remote query: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 AND t1.c2 = 2 Remote SQL: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 AND t1.c2 = 2 Datanode Name: datanode1 Nested Loop Output: t2.c1, t2.c2, t1.c1, t1.c2 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: 3 -> Partitioned Index Scan using t1_c2 on public.t1 Output: t1.c1, t1.c2 Index Cond: (t1.c2 = 2) Selected Partitions: 1..3 -> Partition Iterator Output: t2.c1, t2.c2 Iterations: PART -> Partitioned Index Scan using t2_c1 on public.t2 Output: t2.c1, t2.c2 Index Cond: (t2.c1 = t1.c1) Selected Partitions: 1..3 (ppi-pruning) (24 rows)
- Comparison expressions
- Typical scenarios where dynamic parameterized path pruning is not supported are as follows:
- BitmapOr and BitmapAnd operators
gaussdb=# set enable_seqscan=off; gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) */ * FROM t2 JOIN t1 ON t1.c1 = t2.c1 OR t1.c2 = 2; WARNING: Statistics in some tables or columns(public.t2.c1, public.t1.c1, public.t1.c2) are not collected. HINT: Do analyze for them in order to generate optimized plan. QUERY PLAN ---------------------------------------------------------------------- Streaming (type: GATHER) Output: t2.c1, t2.c2, t1.c1, t1.c2 Node/s: All datanodes -> Nested Loop Output: t2.c1, t2.c2, t1.c1, t1.c2 -> Streaming(type: BROADCAST) Output: t2.c1, t2.c2 Spawn on: All datanodes Consumer Nodes: All datanodes -> Partition Iterator Output: t2.c1, t2.c2 Iterations: 3 -> Partitioned Seq Scan on public.t2 Output: t2.c1, t2.c2 Distribute Key: t2.c1 Selected Partitions: 1..3 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: 3 -> Partitioned Bitmap Heap Scan on public.t1 Output: t1.c1, t1.c2 Distribute Key: t1.c1 Recheck Cond: ((t1.c1 = t2.c1) OR (t1.c2 = 2)) Selected Partitions: 1..3 -> BitmapOr -> Partitioned Bitmap Index Scan on t1_c1 Index Cond: (t1.c1 = t2.c1) -> Partitioned Bitmap Index Scan on t1_c2 Index Cond: (t1.c2 = 2) (29 rows)
- Implicit conversion
gaussdb=# CREATE TABLE t3(c1 TEXT, c2 INT); CREATE TABLE gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 = t3.c1; WARNING: Statistics in some tables or columns(public.t1.c1, public.t3.c1) are not collected. HINT: Do analyze for them in order to generate optimized plan. QUERY PLAN ------------------------------------------------------------------- Streaming (type: GATHER) Output: t1.c1, t1.c2, t3.c1, t3.c2 Node/s: All datanodes -> Nested Loop Output: t1.c1, t1.c2, t3.c1, t3.c2 Join Filter: (t1.c1 = (lengthb(t3.c1))) -> Partition Iterator Output: t1.c1, t1.c2 Iterations: 3 -> Partitioned Index Scan using t1_c1 on public.t1 Output: t1.c1, t1.c2 Distribute Key: t1.c1 Selected Partitions: 1..3 -> Materialize Output: t3.c1, t3.c2, (lengthb(t3.c1)) -> Streaming(type: REDISTRIBUTE) Output: t3.c1, t3.c2, (lengthb(t3.c1)) Distribute Key: (lengthb(t3.c1)) Spawn on: All datanodes Consumer Nodes: All datanodes -> Seq Scan on public.t3 Output: t3.c1, t3.c2, lengthb(t3.c1) Distribute Key: t3.c1 (23 rows)
- Functions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 = LENGTHB(t3.c1); QUERY PLAN ------------------------------------------------------------- Nested Loop Output: t1.c1, t1.c2, t3.c1, t3.c2 -> Seq Scan on public.t3 Output: t3.c1, t3.c2 -> Partition Iterator Output: t1.c1, t1.c2 Iterations: 3 -> Partitioned Index Scan using t1_c1 on public.t1 Output: t1.c1, t1.c2 Index Cond: (t1.c1 = lengthb(t3.c1)) Selected Partitions: 1..3 (11 rows) -- Drop a table. gaussdb=# DROP TABLE t1; gaussdb=# DROP TABLE t2; gaussdb=# DROP TABLE t3;
- BitmapOr and BitmapAnd operators
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.