Scala Example Code
Development Description
Redis supports only enhanced datasource connections.
- Prerequisites
An enhanced datasource connection has been created on the DLI management console and bound to a queue in packages.
Hard-coded or plaintext passwords pose significant security risks. To ensure security, encrypt your passwords, store them in configuration files or environment variables, and decrypt them when needed.
- Constructing dependency information and creating a Spark session
- Import dependencies.
Maven dependency involved
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.3.2</version> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.1.0</version> </dependency> <dependency> <groupId>com.redislabs</groupId> <artifactId>spark-redis</artifactId> <version>2.4.0</version> </dependency>
Import dependency packages.1 2 3 4 5
import org.apache.spark.sql.{Row, SaveMode, SparkSession} import org.apache.spark.sql.types._ import com.redislabs.provider.redis._ import scala.reflect.runtime.universe._ import org.apache.spark.{SparkConf, SparkContext}
- Import dependencies.
- Connecting to data sources through DataFrame APIs
- Create a session.
1
val sparkSession = SparkSession.builder().appName("datasource_redis").getOrCreate()
- Construct a schema.
1 2 3 4 5 6 7 8 9 10
//method one var schema = StructType(Seq(StructField("name", StringType, false), StructField("age", IntegerType, false))) var rdd = sparkSession.sparkContext.parallelize(Seq(Row("abc",34),Row("Bob",19))) var dataFrame = sparkSession.createDataFrame(rdd, schema) // //method two // var jdbcDF= sparkSession.createDataFrame(Seq(("Jack",23))) // val dataFrame = jdbcDF.withColumnRenamed("_1", "name").withColumnRenamed("_2", "age") // //method three // case class Person(name: String, age: Int) // val dataFrame = sparkSession.createDataFrame(Seq(Person("John", 30), Person("Peter", 45)))
case class Person(name: String, age: Int) must be written outside the object. For details, see Connecting to data sources through DataFrame APIs.
- Import data to Redis.
1 2 3 4 5 6 7 8 9
dataFrame .write .format("redis") .option("host","192.168.4.199") .option("port","6379") .option("table","person") .option("password","******") .option("key.column","name") .mode(SaveMode.Overwrite) .save()
Table 1 Redis operation parameters Parameter
Description
host
IP address of the Redis cluster to be connected.
To obtain the IP address, log in to the HUAWEI CLOUD official website, search for redis, go to the console of Distributed Cache Service for Redis, and choose Cache Manager. Select an IP address (including the port information) based on the IP address required by the host name to copy the data. For details, see Figure 1.
port
Access port.
password
Password for the connection. This parameter is optional if no password is required.
table
Key or hash key in Redis.
- This parameter is mandatory when Redis data is inserted.
- Either this parameter or the keys.pattern parameter when Redis data is queried.
keys.pattern
Use a regular expression to match multiple keys or hash keys. This parameter is used only for query. Either this parameter or table is used to query Redis data.
key.column
Key value of a column. This parameter is optional. If a key is specified when data is written, the key must be specified during query. Otherwise, the key will be abnormally loaded during query.
partitions.number
Number of concurrent tasks during data reading.
scan.count
Number of data records read in each batch. The default value is 100. If the CPU usage of the Redis cluster still needs to be improved during data reading, increase the value of this parameter.
iterator.grouping.size
Number of data records inserted in each batch. The default value is 100. If the CPU usage of the Redis cluster still needs to be improved during the insertion, increase the value of this parameter.
timeout
Timeout interval for connecting to the Redis, in milliseconds. The default value is 2000 (2 seconds).
- The options of mode are Overwrite, Append, ErrorIfExis, and Ignore.
- To save nested DataFrames, use .option("model", "binary").
- Specify the data expiration time by .option("ttl", 1000). The unit is second.
- Read data from Redis.
1 2 3 4 5 6 7 8 9
sparkSession.read .format("redis") .option("host","192.168.4.199") .option("port","6379") .option("table", "person") .option("password","######") .option("key.column","name") .load() .show()
Operation result
- Create a session.
- Connecting to data sources using Spark RDDs
- Create a datasource connection.
1 2 3 4 5 6
val sparkContext = new SparkContext(new SparkConf() .setAppName("datasource_redis") .set("spark.redis.host", "192.168.4.199") .set("spark.redis.port", "6379") .set("spark.redis.auth", "######") .set("spark.driver.allowMultipleContexts","true"))
If spark.driver.allowMultipleContexts is set to true, only the current context is used when multiple contexts are started, to prevent context invoking conflicts.
- Insert data.
- Save data in strings.
1 2
val stringRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("high","111"), ("together","333"))) sparkContext.toRedisKV(stringRedisData)
- Save data in hashes.
1 2
val hashRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("saprk","123"), ("data","222"))) sparkContext.toRedisHASH(hashRedisData, "hashRDD")
- Save data in lists.
1 2 3
val data = List(("school","112"), ("tom","333")) val listRedisData:RDD[String] = sparkContext.parallelize(Seq[(String)](data.toString())) sparkContext.toRedisLIST(listRedisData, "listRDD")
- Save data in sets.
1 2 3
val setData = Set(("bob","133"),("kity","322")) val setRedisData:RDD[(String)] = sparkContext.parallelize(Seq[(String)](setData.mkString)) sparkContext.toRedisSET(setRedisData, "setRDD")
- Save data in zsets.
1 2
val zsetRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("whight","234"), ("bobo","343"))) sparkContext.toRedisZSET(zsetRedisData, "zsetRDD")
- Save data in strings.
- Query data.
- Query data by traversing keys.
1 2 3 4 5 6
val keysRDD = sparkContext.fromRedisKeys(Array("high","together", "hashRDD", "listRDD", "setRDD","zsetRDD"), 6) keysRDD.getKV().collect().foreach(println) keysRDD.getHash().collect().foreach(println) keysRDD.getList().collect().foreach(println) keysRDD.getSet().collect().foreach(println) keysRDD.getZSet().collect().foreach(println)
- Query data by string.
1
sparkContext.fromRedisKV(Array( "high","together")).collect().foreach{println}
- Query data by hash.
1
sparkContext.fromRedisHash(Array("hashRDD")).collect().foreach{println}
- Query data by list.
1
sparkContext.fromRedisList(Array("listRDD")).collect().foreach{println}
- Query data by set.
1
sparkContext.fromRedisSet(Array("setRDD")).collect().foreach{println}
- Query data by zset.
1
sparkContext.fromRedisZSet(Array("zsetRDD")).collect().foreach{println}
- Query data by traversing keys.
- Create a datasource connection.
- Connecting to data sources through SQL APIs
- Create a table to connect to a Redis data source.
sparkSession.sql( "CREATE TEMPORARY VIEW person (name STRING, age INT) USING org.apache.spark.sql.redis OPTIONS ( 'host' = '192.168.4.199', 'port' = '6379', 'password' = '######', table 'person')".stripMargin)
- Insert data.
1
sparkSession.sql("INSERT INTO TABLE person VALUES ('John', 30),('Peter', 45)".stripMargin)
- Query data.
1
sparkSession.sql("SELECT * FROM person".stripMargin).collect().foreach(println)
- Create a table to connect to a Redis data source.
- Submitting a Spark job
- Generate a JAR package based on the code and upload the package to DLI.
- In the Spark job editor, select the corresponding dependency module and execute the Spark job.
- If the Spark version is 2.3.2 (will be offline soon) or 2.4.5, specify the Module to sys.datasource.redis when you submit a job.
- If the Spark version is 3.1.1, you do not need to select a module. Configure Spark parameters (--conf).
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
- For details about how to submit a job on the console, see the description of the table "Parameters for selecting dependency resources" in Creating a Spark Job.
- For details about how to submit a job through an API, see the description of the modules parameter in Table 2 "Request parameters" in Creating a Batch Processing Job.
Complete Example Code
- Maven dependency
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.3.2</version> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.1.0</version> </dependency> <dependency> <groupId>com.redislabs</groupId> <artifactId>spark-redis</artifactId> <version>2.4.0</version> </dependency>
- Connecting to data sources through SQL APIs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import org.apache.spark.sql.{SparkSession}; object Test_Redis_SQL { def main(args: Array[String]): Unit = { // Create a SparkSession session. val sparkSession = SparkSession.builder().appName("datasource_redis").getOrCreate(); sparkSession.sql( "CREATE TEMPORARY VIEW person (name STRING, age INT) USING org.apache.spark.sql.redis OPTIONS ( 'host' = '192.168.4.199', 'port' = '6379', 'password' = '******',table 'person')".stripMargin) sparkSession.sql("INSERT INTO TABLE person VALUES ('John', 30),('Peter', 45)".stripMargin) sparkSession.sql("SELECT * FROM person".stripMargin).collect().foreach(println) sparkSession.close() } }
- Connecting to data sources through DataFrame APIs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
import org.apache.spark.sql.{Row, SaveMode, SparkSession} import org.apache.spark.sql.types._ object Test_Redis_SparkSql { def main(args: Array[String]): Unit = { // Create a SparkSession session. val sparkSession = SparkSession.builder().appName("datasource_redis").getOrCreate() // Set cross-source connection parameters. val host = "192.168.4.199" val port = "6379" val table = "person" val auth = "######" val key_column = "name" // ******** setting DataFrame ******** // method one var schema = StructType(Seq(StructField("name", StringType, false),StructField("age", IntegerType, false))) var rdd = sparkSession.sparkContext.parallelize(Seq(Row("",34),Row("Bob",19))) var dataFrame = sparkSession.createDataFrame(rdd, schema) // // method two // var jdbcDF= sparkSession.createDataFrame(Seq(("Jack",23))) // val dataFrame = jdbcDF.withColumnRenamed("_1", "name").withColumnRenamed("_2", "age") // // method three // val dataFrame = sparkSession.createDataFrame(Seq(Person("John", 30), Person("Peter", 45))) // Write data to redis dataFrame.write.format("redis").option("host",host).option("port",port).option("table", table).option("password",auth).mode(SaveMode.Overwrite).save() // Read data from redis sparkSession.read.format("redis").option("host",host).option("port",port).option("table", table).option("password",auth).load().show() // Close session sparkSession.close() } } // methoe two // case class Person(name: String, age: Int)
- Connecting to data sources using Spark RDDs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
import com.redislabs.provider.redis._ import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object Test_Redis_RDD { def main(args: Array[String]): Unit = { // Create a SparkSession session. val sparkContext = new SparkContext(new SparkConf() .setAppName("datasource_redis") .set("spark.redis.host", "192.168.4.199") .set("spark.redis.port", "6379") .set("spark.redis.auth", "@@@@@@") .set("spark.driver.allowMultipleContexts","true")) //***************** Write data to redis ********************** // Save String type data val stringRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("high","111"), ("together","333"))) sparkContext.toRedisKV(stringRedisData) // Save Hash type data val hashRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("saprk","123"), ("data","222"))) sparkContext.toRedisHASH(hashRedisData, "hashRDD") // Save List type data val data = List(("school","112"), ("tom","333")); val listRedisData:RDD[String] = sparkContext.parallelize(Seq[(String)](data.toString())) sparkContext.toRedisLIST(listRedisData, "listRDD") // Save Set type data val setData = Set(("bob","133"),("kity","322")) val setRedisData:RDD[(String)] = sparkContext.parallelize(Seq[(String)](setData.mkString)) sparkContext.toRedisSET(setRedisData, "setRDD") // Save ZSet type data val zsetRedisData:RDD[(String,String)] = sparkContext.parallelize(Seq[(String,String)](("whight","234"), ("bobo","343"))) sparkContext.toRedisZSET(zsetRedisData, "zsetRDD") // ***************************** Read data from redis ******************************************* // Traverse the specified key and get the value val keysRDD = sparkContext.fromRedisKeys(Array("high","together", "hashRDD", "listRDD", "setRDD","zsetRDD"), 6) keysRDD.getKV().collect().foreach(println) keysRDD.getHash().collect().foreach(println) keysRDD.getList().collect().foreach(println) keysRDD.getSet().collect().foreach(println) keysRDD.getZSet().collect().foreach(println) // Read String type data// val stringRDD = sparkContext.fromRedisKV("keyPattern *") sparkContext.fromRedisKV(Array( "high","together")).collect().foreach{println} // Read Hash type data// val hashRDD = sparkContext.fromRedisHash("keyPattern *") sparkContext.fromRedisHash(Array("hashRDD")).collect().foreach{println} // Read List type data// val listRDD = sparkContext.fromRedisList("keyPattern *") sparkContext.fromRedisList(Array("listRDD")).collect().foreach{println} // Read Set type data// val setRDD = sparkContext.fromRedisSet("keyPattern *") sparkContext.fromRedisSet(Array("setRDD")).collect().foreach{println} // Read ZSet type data// val zsetRDD = sparkContext.fromRedisZSet("keyPattern *") sparkContext.fromRedisZSet(Array("zsetRDD")).collect().foreach{println} // close session sparkContext.stop() } }
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.