Java Sample Code
Function
Collects the information of female netizens who spend more than 2 hours in online shopping on the weekend from the log files.
Sample Code
The following code segment is only an example. For details, see the com.huawei.bigdata.spark.examples.FemaleInfoCollection class.
// Create a configuration class SparkConf, and then create a SparkContext. SparkSession spark = SparkSession .builder() .appName("CollectFemaleInfo") .config("spark.some.config.option", "some-value") .getOrCreate(); // Read the source file data, and transfer each row of records to an element of the RDD. JavaRDD<String> data = spark.read() .textFile(args[0]) .javaRDD(); // Split each column of each record, and generate a Tuple. JavaRDD<Tuple3<String,String,Integer>> person = data.map(new Function<String,Tuple3<String,String,Integer>>() { private static final long serialVersionUID = -2381522520231963249L; public Tuple3<String, String, Integer> call(String s) throws Exception { // Split a row of data by commas (,). String[] tokens = s.split(","); // Integrate the three split elements to a ternary Tuple. Tuple3<String, String, Integer> person = new Tuple3<String, String, Integer>(tokens[0], tokens[1], Integer.parseInt(tokens[2])); return person; } }); // Use the filter function to filter the data information about the time that female netizens spend online. JavaRDD<Tuple3<String,String,Integer>> female = person.filter(new Function<Tuple3<String,String,Integer>, Boolean>() { private static final long serialVersionUID = -4210609503909770492L; public Boolean call(Tuple3<String, String, Integer> person) throws Exception { // Filter the records of which the gender in the second column is female. Boolean isFemale = person._2().equals("female"); return isFemale; } }); // Aggregate the total time that each female netizen spends online. JavaPairRDD<String, Integer> females = female.mapToPair(new PairFunction<Tuple3<String, String, Integer>, String, Integer>() { private static final long serialVersionUID = 8313245377656164868L; public Tuple2<String, Integer> call(Tuple3<String, String, Integer> female) throws Exception { // Extract the two columns representing the name and online time for the sum of online time by name during further operations. Tuple2<String, Integer> femaleAndTime = new Tuple2<String, Integer>(female._1(), female._3()); return femaleAndTime; } }); JavaPairRDD<String, Integer> femaleTime = females.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = -3271456048413349559L; public Integer call(Integer integer, Integer integer2) throws Exception { // Sum two online time durations of the same female netizen. return (integer + integer2); } }); // Filter the information about female netizens who spend more than 2 hours online. JavaPairRDD<String, Integer> rightFemales = females.filter(new Function<Tuple2<String, Integer>, Boolean>() { private static final long serialVersionUID = -3178168214712105171L; public Boolean call(Tuple2<String, Integer> s) throws Exception { // Extract the total time that female netizens spend online, and determine whether the time is more than 2 hours. if(s._2() > (2 * 60)) { return true; } return false; } }); // Print the information about female netizens who meet the requirements. for(Tuple2<String, Integer> d: rightFemales.collect()) { System.out.println(d._1() + "," + d._2()); }
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.