Terminating a Training Job
Function
This API is used to terminate a training job. Only jobs in the Creating, Waiting, or Running state can be terminated.
URI
POST /v2/{project_id}/training-jobs/{training_job_id}/actions
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details, see Obtaining a Project ID and Name. |
training_job_id |
Yes |
String |
ID of a training job. |
Request Parameters
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
action_type |
No |
String |
Operation request for a training job. If this parameter is set to terminate, the training job is terminated. |
Response Parameters
Status code: 202
Parameter |
Type |
Description |
---|---|---|
kind |
String |
Training job type, which is job by default. Options: |
metadata |
JobMetadata object |
Metadata of a training job. |
status |
Status object |
Status of a training job. You do not need to set this parameter when creating a job. |
algorithm |
JobAlgorithmResponse object |
Algorithm used by a training job. Options: |
tasks |
Array of TaskResponse objects |
List of tasks in heterogeneous training jobs. |
spec |
spec object |
Specifications of a training job. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Training job ID, which is generated and returned by ModelArts after the training job is created. |
name |
String |
Name of a training job. The value must contain 1 to 64 characters consisting of only digits, letters, underscores (_), and hyphens (-). |
workspace_id |
String |
Workspace where a job is located. The default value is 0. |
description |
String |
Training job description. The value must contain 0 to 256 characters. The default value is NULL. |
create_time |
Long |
Time when a training job was created, in milliseconds. The value is generated and returned by ModelArts after a training job is created. |
user_name |
String |
Username for creating a training job. The username is generated and returned by ModelArts after a training job is created. |
annotations |
Map<String,String> |
Advanced configuration of a training job. Options: |
Parameter |
Type |
Description |
---|---|---|
phase |
String |
Level-1 status of a training job. The options are as follows: Creating Pending Running Failed Completed, Terminating Terminated Abnormal |
secondary_phase |
String |
The level-2 status of a training job is an internal detailed status, which may be added, modified, or deleted. Dependency is not recommended. The options are as follows: Creating Queuing Running Failed Completed, Terminating Terminated CreateFailed TerminatedFailed Unknown Lost |
duration |
Long |
Running duration of a training job, in milliseconds |
node_count_metrics |
Array<Array<Integer>> |
Node count changes during the training job running period. |
tasks |
Array of strings |
Tasks of a training job. |
start_time |
String |
Start time of a training job. The value is in timestamp format. |
task_statuses |
Array of task_statuses objects |
Status of a training job task. |
Parameter |
Type |
Description |
---|---|---|
task |
String |
Name of a training job task. |
exit_code |
Integer |
Exit code of a training job task. |
message |
String |
Error message of a training job task. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Algorithm used by a training job. Options: |
name |
String |
Algorithm name. |
subscription_id |
String |
Subscription ID of a subscribed algorithm, which must be used with item_version_id |
item_version_id |
String |
Version ID of the subscribed algorithm, which must be used with subscription_id |
code_dir |
String |
Code directory of a training job, for example, /usr/app/. This parameter must be used together with boot_file. If id or subscription_id+item_version_id is set, leave it blank. |
boot_file |
String |
Boot file of a training job, which must be stored in the code directory, for example, /usr/app/boot.py. This parameter must be used with code_dir. Leave this parameter blank if id, or subscription_id and item_version_id are specified. |
autosearch_config_path |
String |
YAML configuration path of auto search jobs. An OBS URL is required. |
autosearch_framework_path |
String |
Framework code directory of auto search jobs. An OBS URL is required. |
command |
String |
Boot command used to start the container of a custom image of a training job. For example, python train.py. |
parameters |
Array of Parameter objects |
Running parameters of a training job. |
policies |
policies object |
Policies supported by jobs. |
inputs |
Array of Input objects |
Input of a training job. |
outputs |
Array of Output objects |
Output of a training job. |
engine |
engine object |
Engine of a training job. Leave this parameter blank if the job is created using id of the algorithm in algorithm management, or subscription_id+item_version_id of the subscribed algorithm. |
local_code_dir |
String |
Local directory to the training container to which the algorithm code directory is downloaded. Ensure that the following rules are complied with: - The directory must be in the /home directory. - In v1 compatibility mode, the current field does not take effect. - When code_dir is prefixed with file://, the current field does not take effect. |
working_dir |
String |
Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
environments |
Array of Map<String,String> objects |
Environment variables of a training job. The format is key: value. Leave this parameter blank. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Parameter name. |
value |
String |
Parameter value. |
description |
String |
Parameter description. |
constraint |
constraint object |
Parameter constraint. |
i18n_description |
i18n_description object |
Internationalization description. |
Parameter |
Type |
Description |
---|---|---|
type |
String |
Parameter type. |
editable |
Boolean |
Whether the parameter is editable. |
required |
Boolean |
Whether the parameter is mandatory. |
sensitive |
Boolean |
Whether the parameter is sensitive This function is not implemented currently. |
valid_type |
String |
Valid type. |
valid_range |
Array of strings |
Valid range. |
Parameter |
Type |
Description |
---|---|---|
language |
String |
Language. |
description |
String |
Description. |
Parameter |
Type |
Description |
---|---|---|
auto_search |
auto_search object |
Hyperparameter search configuration. |
Parameter |
Type |
Description |
---|---|---|
skip_search_params |
String |
Hyperparameter parameters that need to be skipped. |
reward_attrs |
Array of reward_attrs objects |
List of search metrics. |
search_params |
Array of search_params objects |
Search parameters. |
algo_configs |
Array of algo_configs objects |
Search algorithm configurations. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Metric name. |
mode |
String |
Search direction. |
regex |
String |
Regular expression of a metric. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the search algorithm. |
params |
Array of AutoSearchAlgoConfigParameter objects |
Search algorithm parameters. |
Parameter |
Type |
Description |
---|---|---|
key |
String |
Parameter key. |
value |
String |
Parameter value. |
type |
String |
Parameter type. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data input channel. |
description |
String |
Description of the data input channel. |
local_dir |
String |
Local directory of the container to which the data input channel is mapped. |
remote |
InputDataInfo object |
Data input. Options: |
remote_constraint |
Array of remote_constraint objects |
Data input constraint |
Parameter |
Type |
Description |
---|---|---|
dataset |
dataset object |
Dataset as the data input. |
obs |
obs object |
OBS in which data input and output stored. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Dataset ID of a training job. |
version_id |
String |
Dataset version ID of a training job. |
obs_url |
String |
OBS URL of the dataset required by a training job. ModelArts automatically parses and generates the URL based on the dataset and dataset version IDs. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
data_type |
String |
Data input type, including the data storage location and dataset. |
attributes |
String |
Attributes if a dataset is used as the data input. Options: |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data output channel. |
description |
String |
Description of the data output channel. |
local_dir |
String |
Local directory of the container to which the data output channel is mapped. |
remote |
remote object |
Description of the actual data output. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL to which data is actually exported. |
Parameter |
Type |
Description |
---|---|---|
engine_id |
String |
Engine ID selected for a training job. You can set this parameter to engine_id, engine_name + engine_version, or image_url. |
engine_name |
String |
Name of the engine selected for a training job. If engine_id is set, leave this parameter blank. |
engine_version |
String |
Name of the engine version selected for a training job. If engine_id is set, leave this parameter blank. |
image_url |
String |
Custom image URL selected for a training job. |
Parameter |
Type |
Description |
---|---|---|
role |
String |
Task role. This function is not supported currently. |
algorithm |
algorithm object |
Algorithm management and configuration. |
task_resource |
FlavorResponse object |
Flavors of a training job or an algorithm. |
Parameter |
Type |
Description |
---|---|---|
code_dir |
String |
Absolute path of the directory where the algorithm boot file is stored. |
boot_file |
String |
Absolute path of the algorithm boot file. |
inputs |
inputs object |
Algorithm input channel. |
outputs |
outputs object |
Algorithm output channel. |
engine |
engine object |
Engine on which a heterogeneous job depends. |
local_code_dir |
String |
Local directory to the training container to which the algorithm code directory is downloaded. Ensure that the following rules are complied with: - The directory must be in the /home directory. - In v1 compatibility mode, the current field does not take effect. - When code_dir is prefixed with file://, the current field does not take effect. |
working_dir |
String |
Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data input channel. |
local_dir |
String |
Local path of the container to which the data input and output channels are mapped. |
remote |
remote object |
Actual data input. Heterogeneous jobs support only OBS. |
Parameter |
Type |
Description |
---|---|---|
obs |
obs object |
OBS in which data input and output stored. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data output channel. |
local_dir |
String |
Local directory of the container to which the data output channel is mapped. |
remote |
remote object |
Description of the actual data output. |
mode |
String |
Data transmission mode. The default value is upload_periodically. |
period |
String |
Data transmission period. The default value is 30s. |
Parameter |
Type |
Description |
---|---|---|
obs |
obs object |
OBS to which data is actually exported. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL to which data is actually exported. |
Parameter |
Type |
Description |
---|---|---|
engine_id |
String |
Engine ID of a heterogeneous job, for example, caffe-1.0.0-python2.7. |
engine_name |
String |
Engine name of a heterogeneous job, for example, Caffe. |
engine_version |
String |
Engine version of a heterogeneous job. |
v1_compatible |
Boolean |
Whether the v1 compatibility mode is used. |
run_user |
String |
User UID started by default by the engine. |
image_url |
String |
Custom image URL selected by an algorithm. |
Parameter |
Type |
Description |
---|---|---|
flavor_id |
String |
ID of the resource flavor. |
flavor_name |
String |
Name of the resource flavor. |
max_num |
Integer |
Maximum number of nodes in a resource flavor. |
flavor_type |
String |
Resource flavor type. Options: |
billing |
billing object |
Billing information of a resource flavor. |
flavor_info |
flavor_info object |
Resource flavor details. |
attributes |
Map<String,String> |
Other specification attributes. |
Parameter |
Type |
Description |
---|---|---|
code |
String |
Billing code. |
unit_num |
Integer |
Number of billing units. |
Parameter |
Type |
Description |
---|---|---|
max_num |
Integer |
Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu |
cpu object |
CPU specifications. |
gpu |
gpu object |
GPU specifications. |
npu |
npu object |
Ascend specifications |
memory |
memory object |
Memory information. |
disk |
disk object |
Disk information. |
Parameter |
Type |
Description |
---|---|---|
arch |
String |
CPU architecture. |
core_num |
Integer |
Number of cores. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
Integer |
Number of GPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
String |
Number of NPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
resource |
Resource object |
Resource flavors of a training job. Select either flavor_id or pool_id+[flavor_id]. |
volumes |
Array of volumes objects |
Volumes attached to a training job. |
log_export_path |
log_export_path object |
Export path of training job logs. |
Parameter |
Type |
Description |
---|---|---|
policy |
String |
Resource flavor of a training job. Options: regular |
flavor_id |
String |
ID of the resource flavor selected for a training job. flavor_id cannot be specified for dedicated resource pools with CPU specifications. The options for dedicated resource pools with GPU/Ascend specifications are as follows: |
flavor_name |
String |
Read-only flavor name returned by ModelArts when flavor_id is used. |
node_count |
Integer |
Number of resource replicas selected for a training job. |
pool_id |
String |
Resource pool ID selected for a training job. |
flavor_detail |
flavor_detail object |
Flavors of a training job or an algorithm. |
Parameter |
Type |
Description |
---|---|---|
flavor_type |
String |
Resource flavor type. Options: |
billing |
billing object |
Billing information of a resource flavor. |
flavor_info |
flavor_info object |
Resource flavor details. |
Parameter |
Type |
Description |
---|---|---|
code |
String |
Billing code. |
unit_num |
Integer |
Number of billing units. |
Parameter |
Type |
Description |
---|---|---|
max_num |
Integer |
Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu |
cpu object |
CPU specifications. |
gpu |
gpu object |
GPU specifications. |
npu |
npu object |
Ascend specifications |
memory |
memory object |
Memory information. |
disk |
disk object |
Disk information. |
Parameter |
Type |
Description |
---|---|---|
arch |
String |
CPU architecture. |
core_num |
Integer |
Number of cores. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
Integer |
Number of GPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
String |
Number of NPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
size |
Integer |
Memory size. |
unit |
String |
Number of memory units. |
Parameter |
Type |
Description |
---|---|---|
size |
String |
Disk size. |
unit |
String |
Unit of the disk size. Generally, the value is GB. |
Example Requests
The following is an example of how to stop the training job whose UUID is 3faf5c03-aaa1-4cbe-879d-24b05d997347.
POST https://endpoint/v2/{project_id}/training-jobs/cf63aba9-63b1-4219-b717-708a2665100b/actions { "action_type" : "terminate" }
Example Responses
Status code: 202
ok
{ "kind" : "job", "metadata" : { "id" : "cf63aba9-63b1-4219-b717-708a2665100b", "name" : "trainjob--py14_mem06-110", "description" : "", "create_time" : 1636515222282, "workspace_id" : "0", "user_name" : "ei_modelarts_z00424192_01" }, "status" : { "phase" : "Terminating", "secondary_phase" : "Terminating", "duration" : 0, "start_time" : 0, "node_count_metrics" : null, "tasks" : [ "worker-0" ] }, "algorithm" : { "code_dir" : "obs://test/economic_test/py_minist/", "boot_file" : "obs://test/economic_test/py_minist/minist_common.py", "inputs" : [ { "name" : "data_url", "local_dir" : "/home/ma-user/modelarts/inputs/data_url_0", "remote" : { "obs" : { "obs_url" : "/test/data/py_minist/" } } } ], "outputs" : [ { "name" : "train_url", "local_dir" : "/home/ma-user/modelarts/outputs/train_url_0", "remote" : { "obs" : { "obs_url" : "/test/train_output/" } } } ], "engine" : { "engine_id" : "pytorch-cp36-1.4.0-v2", "engine_name" : "PyTorch", "engine_version" : "PyTorch-1.4.0-python3.6-v2" } }, "spec" : { "resource" : { "policy" : "economic", "flavor_id" : "modelarts.vm.p100.large.eco", "flavor_name" : "Computing GPU(P100) instance", "node_count" : 1, "flavor_detail" : { "flavor_type" : "GPU", "billing" : { "code" : "modelarts.vm.gpu.p100.eco", "unit_num" : 1 }, "flavor_info" : { "cpu" : { "arch" : "x86", "core_num" : 8 }, "gpu" : { "unit_num" : 1, "product_name" : "NVIDIA-P100", "memory" : "8GB" }, "memory" : { "size" : 64, "unit" : "GB" } } } } } }
Status Codes
Status Code |
Description |
---|---|
202 |
ok |
Error Codes
See Error Codes.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.