更新时间:2025-09-22 GMT+08:00
分享

调用说明

只有当预置服务-免费服务有免费token额度或在免费有效期内,预置服务-商用服务的付费状态为“已开通”、或者自定义接入点的状态为“使用中”时,预置服务才可被成功调用。

更完整的请求参数及鉴权信息,请参考图片生成

服务调用产生的内容由AI生成,不代表ModelArts Studio观点,平台不保证其合法性、真实性、准确性,不承担相关法律责任。

步骤一:获取API Key

在调用MaaS的模型服务时,需要填写API Key用于接口的鉴权认证。请创建新的API Key或使用已有API Key。关于如何创建API Key,请参见在ModelArts Studio(MaaS)管理API Key

步骤二:复制调用示例并替换接口信息、API Key

表1 接口信息

名称

说明

取值

API地址

调用图片生成的API地址。

https://api.modelarts-maas.com/v1/images/generations

model参数

model参数调用名称。

请任选以下方式获取:

Qwen_Image(按张计费)调用示例

  • Rest API的示例代码如下。
    • Python示例
      import requests
      import json
      
      if __name__ == '__main__':
          url = "https://api.modelarts-maas.com/v1/images/generations"  # API地址。
          api_key = "MAAS_API_KEY"  # 把MAAS_API_KEY替换成已获取的API Key。
      
          # Send request.
          headers = {
              'Content-Type': 'application/json',
              'Authorization': f'Bearer {api_key}'
          }
          data = {
              "model": "qwen-image",  # model参数。
              "prompt": "A running cat.",  # 支持中英文。
              "size": "1024x1024",
              # 生成图像尺寸qwen_image要求介于[512x512,2048x2048]
              # 推荐:2048x2048、1536x1536、1024x1024、512x512,其中height和width需要被8整除,否则会向下兼容。
              "response_format": "b64_json",  # 返回格式, 暂仅支持b64_json。
              "seed": 1  # 取值范围在[0, 2147483648], 随机种子,默认为1。
          }
          response = requests.post(url, headers=headers, data=json.dumps(data), verify=False)
      
          # Print result.
          print(response.status_code)
          print(response.text)
    • cURL示例
      curl -X POST https://api.modelarts-maas.com/v1/images/generations \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer $MAAS_API_KEY" \
        -d '{
          "model": "qwen-image",
          "prompt": "A running cat.",
          "size": "1024x1024",
          "response_format": "b64_json",
          "seed": 1
      }'
  • OpenAI SDK示例代码如下。
    from openai import OpenAI
    
    base_url = "https://api.modelarts-maas.com/v1/" # API地址。
    api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。
    
    client = OpenAI(api_key=api_key, base_url=base_url)
    
    response = client.images.generate(
        model="qwen-image",
        prompt="A cartoon-style cat that is skiing.",
        size="1024x1024",
        response_format="b64_json"
    )
    
    print(response.data[0].b64_json)

Qwen-Image(按生成耗时计费)调用示例

  • Rest API的示例代码如下。
    • Python示例
      import requests
      import json
      
      if __name__ == '__main__':
          url = "https://api.modelarts-maas.com/v1/images/generations"  # API地址。
          api_key = "MAAS_API_KEY"  # 把MAAS_API_KEY替换成已获取的API Key。
      
          # Send request.
          headers = {
              'Content-Type': 'application/json',
              'Authorization': f'Bearer {api_key}'
          }
          data = {
              "model": "qwen_image",  # model参数。
              "prompt": "A running cat.",  # 支持中英文。
              "size": "1024x1024",
              # 生成图像尺寸qwen_image要求介于[512x512,2048x2048]
              # 推荐:2048x2048、1536x1536、1024x1024、512x512,其中height和width需要被8整除,否则会向下兼容。
              "response_format": "b64_json",  # 返回格式, 暂仅支持b64_json。
              "seed": 1  # 取值范围在[0, 2147483648], 随机种子,默认为1。
          }
          response = requests.post(url, headers=headers, data=json.dumps(data), verify=False)
      
          # Print result.
          print(response.status_code)
          print(response.text)
    • cURL示例
      curl -X POST https://api.modelarts-maas.com/v1/images/generations \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer $MAAS_API_KEY" \
        -d '{
          "model": "qwen_image",
          "prompt": "A running cat.",
          "size": "1024x1024",
          "response_format": "b64_json",
          "seed": 1
      }'
  • OpenAI SDK示例代码如下。
    from openai import OpenAI
    
    base_url = "https://api.modelarts-maas.com/v1/" # API地址。
    api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。
    
    client = OpenAI(api_key=api_key, base_url=base_url)
    
    response = client.images.generate(
        model="qwen_image",
        prompt="A cartoon-style cat that is skiing.",
        size="1024x1024",
        response_format="b64_json"
    )
    
    print(response.data[0].b64_json)

Qwen-Image-Edit调用示例

  • Rest API的示例代码如下。
    • Python示例:
      import requests
      import json
      import base64
      
      
      #  Base64 编码格式
      def encode_image(image_path):
          with open(image_path, "rb") as image_file:
              return base64.b64encode(image_file.read()).decode("utf-8")
      
      
      base64_image = encode_image("test.jpg")
      
      if __name__ == '__main__':
          url = "https://api.modelarts-maas.com/v1/images/generations"  # API地址
          api_key = "MAAS_API_KEY"  # 把MAAS_API_KEY替换成已获取的API Key
          # Send request.
          headers = {
              'Content-Type': 'application/json',
              'Authorization': f'Bearer {api_key}'
          }
          data = {
              "model": "qwen_image_edit",  # model参数
              "prompt": "将湖面颜色修改为蓝色",  # 支持中英文
              "size": "1024x1024",
              # 生成图像尺寸qwen_image_edit要求介于[512x512,2048x2048]。
              # 推荐:2048x2048,1536x1536,1024x1024, 512x512,其中height和width需要被16整除,否则会向下兼容。
              "image": f"data:image/jpeg;base64,{base64_image}",  # 支持图片格式,仅支持b64_json。
              "seed": 44  # 取值范围在[0, 2147483648], 随机种子。
          }
          response = requests.post(url, headers=headers, data=json.dumps(data), verify=False)
          # Print result.
          print(response.status_code)
          print(response.text)
    • cURL示例:
      curl -X POST https://api.modelarts-maas.com/v1/images/generations \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer $MAAS_API_KEY" \
        -d '{
          "model": "qwen_image_edit",
          "prompt": "将湖面颜色修改为蓝色",
          "size": "1024x1024",
          "image": f"data:image/jpeg;base64,$BASE64_IMAGE",
          "seed": 44
      }'
  • 使用OpenAI SDK调用示例。
    import base64
    from openai import OpenAI
    
    
    #  Base64 编码格式
    def encode_image(image_path):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode("utf-8")
    
    
    base64_image = encode_image("test.jpg")
    base_url = "https://api.modelarts-maas.com/v1/"  # API地址
    api_key = "MAAS_API_KEY"  # 把MAAS_API_KEY替换成已获取的API Key
    
    client = OpenAI(api_key=api_key, base_url=base_url)
    
    response = client.images.generate(
        model="qwen_image_edit",
        prompt="将湖面颜色修改为蓝色",
        size="1024x1024",
        extra_body={
            "image": f"data:image/jpeg;base64,{base64_image}",
            "seed": 44
        }
    )
    
    print(response.data[0].b64_json)

SDXL调用示例

  • Rest API请求示例:
    • Python示例:
      import requests 
      import json
      
      if __name__ == '__main__': 
          url = "https://api.modelarts-maas.com/v1/images/generations" # API地址 
          api_key = "MAAS_API_KEY"  # 把yourApiKey替换成已获取的API Key  
      
          # Send request. 
          headers = { 
              'Content-Type': 'application/json', 
              'Authorization': f'Bearer {api_key}'  
          } 
          data = {
              "model": "stable-diffusion-xl",  # model参数 
              "prompt": "A cartoon-style cat that is skiing.",  # SDXL模型当前仅支持英文
              "size": "1024x1024",
              "guidance_scale": 3
          }    
          response = requests.post(url, headers=headers, data=json.dumps(data), verify=False)
      
          # Print result. 
          print(response.status_code) 
          print(response.text)
    • cURL示例:
      curl -X POST https://api.modelarts-maas.com/v1/images/generations \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer $MAAS_API_KEY" \
        -d '{
          "model": "stable-diffusion-xl",
          "prompt": "A cartoon-style cat that is skiing.",
          "size": "1024x1024",
          "guidance_scale": 3
      }'
  • OpenAI SDK请求示例:
    from openai import OpenAI
    
    base_url = "https://api.modelarts-maas.com/v1/"  # API地址
    api_key = "MAAS_API_KEY"  # 把MAAS_API_KEY替换成已获取的API Key
    
    client = OpenAI(api_key=api_key, base_url=base_url)
    
    response = client.images.generate(
        model="stable-diffusion-xl",
        prompt="A cartoon-style cat that is skiing.",
        size="1024x1024",
        extra_body= {
            "guidance_scale": 3
        }
    )
    
    print(response.data[0].b64_json)

相关文档