调用说明
只有当预置服务-免费服务有免费token额度或在免费有效期内,预置服务-商用服务的付费状态为“已开通”、或者自定义接入点的状态为“使用中”时,预置服务才可被成功调用。
更完整的请求参数及鉴权信息,请参考图片生成。
服务调用产生的内容由AI生成,不代表ModelArts Studio观点,平台不保证其合法性、真实性、准确性,不承担相关法律责任。
步骤一:获取API Key
在调用MaaS的模型服务时,需要填写API Key用于接口的鉴权认证。请创建新的API Key或使用已有API Key。关于如何创建API Key,请参见在ModelArts Studio(MaaS)管理API Key。
步骤二:复制调用示例并替换接口信息、API Key
名称 |
说明 |
取值 |
---|---|---|
API地址 |
调用图片生成的API地址。 |
https://api.modelarts-maas.com/v1/images/generations |
model参数 |
model参数调用名称。 |
请任选以下方式获取:
|
Qwen_Image(按张计费)调用示例
- Rest API的示例代码如下。
- Python示例
import requests import json if __name__ == '__main__': url = "https://api.modelarts-maas.com/v1/images/generations" # API地址。 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。 # Send request. headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = { "model": "qwen-image", # model参数。 "prompt": "A running cat.", # 支持中英文。 "size": "1024x1024", # 生成图像尺寸qwen_image要求介于[512x512,2048x2048] # 推荐:2048x2048、1536x1536、1024x1024、512x512,其中height和width需要被8整除,否则会向下兼容。 "response_format": "b64_json", # 返回格式, 暂仅支持b64_json。 "seed": 1 # 取值范围在[0, 2147483648], 随机种子,默认为1。 } response = requests.post(url, headers=headers, data=json.dumps(data), verify=False) # Print result. print(response.status_code) print(response.text)
- cURL示例
curl -X POST https://api.modelarts-maas.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $MAAS_API_KEY" \ -d '{ "model": "qwen-image", "prompt": "A running cat.", "size": "1024x1024", "response_format": "b64_json", "seed": 1 }'
- Python示例
- OpenAI SDK示例代码如下。
from openai import OpenAI base_url = "https://api.modelarts-maas.com/v1/" # API地址。 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。 client = OpenAI(api_key=api_key, base_url=base_url) response = client.images.generate( model="qwen-image", prompt="A cartoon-style cat that is skiing.", size="1024x1024", response_format="b64_json" ) print(response.data[0].b64_json)
Qwen-Image(按生成耗时计费)调用示例
- Rest API的示例代码如下。
- Python示例
import requests import json if __name__ == '__main__': url = "https://api.modelarts-maas.com/v1/images/generations" # API地址。 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。 # Send request. headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = { "model": "qwen_image", # model参数。 "prompt": "A running cat.", # 支持中英文。 "size": "1024x1024", # 生成图像尺寸qwen_image要求介于[512x512,2048x2048] # 推荐:2048x2048、1536x1536、1024x1024、512x512,其中height和width需要被8整除,否则会向下兼容。 "response_format": "b64_json", # 返回格式, 暂仅支持b64_json。 "seed": 1 # 取值范围在[0, 2147483648], 随机种子,默认为1。 } response = requests.post(url, headers=headers, data=json.dumps(data), verify=False) # Print result. print(response.status_code) print(response.text)
- cURL示例
curl -X POST https://api.modelarts-maas.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $MAAS_API_KEY" \ -d '{ "model": "qwen_image", "prompt": "A running cat.", "size": "1024x1024", "response_format": "b64_json", "seed": 1 }'
- Python示例
- OpenAI SDK示例代码如下。
from openai import OpenAI base_url = "https://api.modelarts-maas.com/v1/" # API地址。 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key。 client = OpenAI(api_key=api_key, base_url=base_url) response = client.images.generate( model="qwen_image", prompt="A cartoon-style cat that is skiing.", size="1024x1024", response_format="b64_json" ) print(response.data[0].b64_json)
Qwen-Image-Edit调用示例
- Rest API的示例代码如下。
- Python示例:
import requests import json import base64 # Base64 编码格式 def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") base64_image = encode_image("test.jpg") if __name__ == '__main__': url = "https://api.modelarts-maas.com/v1/images/generations" # API地址 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key # Send request. headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = { "model": "qwen_image_edit", # model参数 "prompt": "将湖面颜色修改为蓝色", # 支持中英文 "size": "1024x1024", # 生成图像尺寸qwen_image_edit要求介于[512x512,2048x2048]。 # 推荐:2048x2048,1536x1536,1024x1024, 512x512,其中height和width需要被16整除,否则会向下兼容。 "image": f"data:image/jpeg;base64,{base64_image}", # 支持图片格式,仅支持b64_json。 "seed": 44 # 取值范围在[0, 2147483648], 随机种子。 } response = requests.post(url, headers=headers, data=json.dumps(data), verify=False) # Print result. print(response.status_code) print(response.text)
- cURL示例:
curl -X POST https://api.modelarts-maas.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $MAAS_API_KEY" \ -d '{ "model": "qwen_image_edit", "prompt": "将湖面颜色修改为蓝色", "size": "1024x1024", "image": f"data:image/jpeg;base64,$BASE64_IMAGE", "seed": 44 }'
- Python示例:
- 使用OpenAI SDK调用示例。
import base64 from openai import OpenAI # Base64 编码格式 def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") base64_image = encode_image("test.jpg") base_url = "https://api.modelarts-maas.com/v1/" # API地址 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key client = OpenAI(api_key=api_key, base_url=base_url) response = client.images.generate( model="qwen_image_edit", prompt="将湖面颜色修改为蓝色", size="1024x1024", extra_body={ "image": f"data:image/jpeg;base64,{base64_image}", "seed": 44 } ) print(response.data[0].b64_json)
SDXL调用示例
- Rest API请求示例:
- Python示例:
import requests import json if __name__ == '__main__': url = "https://api.modelarts-maas.com/v1/images/generations" # API地址 api_key = "MAAS_API_KEY" # 把yourApiKey替换成已获取的API Key # Send request. headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = { "model": "stable-diffusion-xl", # model参数 "prompt": "A cartoon-style cat that is skiing.", # SDXL模型当前仅支持英文 "size": "1024x1024", "guidance_scale": 3 } response = requests.post(url, headers=headers, data=json.dumps(data), verify=False) # Print result. print(response.status_code) print(response.text)
- cURL示例:
curl -X POST https://api.modelarts-maas.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $MAAS_API_KEY" \ -d '{ "model": "stable-diffusion-xl", "prompt": "A cartoon-style cat that is skiing.", "size": "1024x1024", "guidance_scale": 3 }'
- Python示例:
- OpenAI SDK请求示例:
from openai import OpenAI base_url = "https://api.modelarts-maas.com/v1/" # API地址 api_key = "MAAS_API_KEY" # 把MAAS_API_KEY替换成已获取的API Key client = OpenAI(api_key=api_key, base_url=base_url) response = client.images.generate( model="stable-diffusion-xl", prompt="A cartoon-style cat that is skiing.", size="1024x1024", extra_body= { "guidance_scale": 3 } ) print(response.data[0].b64_json)