网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts 盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts 盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务
更新时间:2024-12-06 GMT+08:00
分享

子查询调优

子查询背景介绍

应用程序通过SQL语句来操作数据库时会使用大量的子查询,这种写法比直接对两个表做连接操作在结构上和思路上更清晰,尤其是在一些比较复杂的查询语句中,子查询有更完整、更独立的语义,会使SQL对业务逻辑的表达更清晰更容易理解,因此得到了广泛的应用。

GaussDB(DWS)根据子查询在SQL语句中的位置把子查询分成了子查询、子链接两种形式。

  • 子查询SubQuery:对应于查询解析树中的范围表RangeTblEntry,更通俗一些指的是出现在FROM语句后面的独立的SELECT语句。
  • 子链接SubLink:对应于查询解析树中的表达式,更通俗一些指的是出现在where/on子句、targetlist里面的语句。
    综上,对于查询解析树而言,SubQuery的本质是范围表,而SubLink的本质是表达式。针对SubLink场景而言,由于SubLink可以出现在约束条件、表达式中,按照GaussDB(DWS)对sublink的实现,sublink可以分为以下几类:
    • exist_sublink:对应EXIST、NOT EXIST语句
    • any_sublink:对应op Any(select…)语句,其中OP可以是IN,<,>,=操作符
    • all_sublink:对应op ALL(select…)语句,其中OP可以是IN,<,>,=操作符
    • rowcompare_sublink:对应record op (select …)语句
    • expr_sublink:对应(SELECT with single targetlist item ...)语句
    • array_sublink:对应ARRAY(select…)语句
    • cte_sublink:对应with query(…)语句

    其中OLAP、HTAP场景中常用的sublink为exist_sublink、any_sublink,在GaussDB(DWS)的优化引擎中对其应用场景做了优化(子链接提升),由于SQL语句中子查询的使用的灵活性,会带来SQL子查询过于复杂而造成的性能问题。子查询从大类上来看,分为非相关子查询和相关子查询:

    • 非相关子查询None-Correlated SubQuery

      子查询的执行不依赖于外层父查询的任何属性值。这样子查询具有独立性,可独自求解,形成一个子查询计划先于外层的查询求解。

      例如:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      select t1.c1,t1.c2
      from t1
      where t1.c1 in (
          select c2
          from t2
          where t2.c2 IN (2,3,4)
      );
                                QUERY PLAN
      ---------------------------------------------------------------
      Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Hash Right Semi Join
               Hash Cond: (t2.c2 = t1.c1)
               ->  Streaming(type: REDISTRIBUTE)
                     Spawn on: All datanodes
                     ->  Seq Scan on t2
                           Filter: (c2 = ANY ('{2,3,4}'::integer[]))
               ->  Hash
                     ->  Seq Scan on t1
      (10 rows)
      
    • 相关子查询Correlated-SubQuery

      子查询的执行依赖于外层父查询的一些属性值(如下列示例t2.c1 = t1.c1条件中的t1.c1)作为内层查询的一个AND-ed条件。这样的子查询不具备独立性,需要和外层查询按分组进行求解。

      例如:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      select t1.c1,t1.c2
      from t1
      where t1.c1 in (
          select c2
          from t2
          where t2.c1 = t1.c1 AND t2.c2 in (2,3,4)
      );
                                       QUERY PLAN
      -----------------------------------------------------------------------
      Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Seq Scan on t1
               Filter: (SubPlan 1)
               SubPlan 1
                 ->  Result
                       Filter: (t2.c1 = t1.c1)
                       ->  Materialize
                               ->  Streaming(type: BROADCAST)
                                   Spawn on: All datanodes
                                   ->  Seq Scan on t2
                                         Filter: (c2 = ANY ('{2,3,4}'::integer[]))
      (12 rows)
      

GaussDB(DWS)对SubLink的优化

针对SubLink的优化策略主要是让内层的子查询提升(pullup),能够和外表直接做关联查询,从而避免生成SubPlan+Broadcast內表的执行计划。判断子查询是否存在性能风险,可以通过explain查询语句查看Sublink的部分是否被转换成SubPlan+Broadcast的执行计划。

例如:

  • 目前GaussDB(DWS)支持的Sublink-Release场景
    • IN-Sublink无相关条件
      • 不能包含上一层查询的表中的列(可以包含更高层查询表中的列)。
      • 不能包含易变函数。

    • Exist-Sublink包含相关条件

      Where子句中必须包含上一层查询的表中的列,子查询的其它部分不能含有上层查询的表中的列。其它限制如下:

      • 子查询必须有from子句。
      • 子查询不能含有with子句。
      • 子查询不能含有聚集函数。
      • 子查询里不能包含集合操作、排序、limit、windowagg、having操作。
      • 不能包含易变函数。

    • 包含聚集函数的等值相关子查询的提升

      子查询的where条件中必须含有来自上一层的列,而且此列必须和子查询本层涉及表中的列做相等判断,且这些条件必须用and连接。其它地方不能包含上层的列。其它限制条件如下:

      • 子查询中where条件包含的表达式(列名)必须是表中的列。
      • 子查询的Select关键字后,必须有且仅有一个输出列,此输出列必须是聚集函数(如max),并且聚集函数的参数(t2.c2)不能是来自外层表(t1)中的列。聚集函数不能是count。
        下列示例可以提升:
        1
        2
        3
        select * from t1 where c1 >(
               select max(t2.c1) from t2 where t2.c1=t1.c1
        );
        

        下列示例不能提升,因为子查询没有聚集函数:

        1
        2
        3
        select * from t1 where c1 >(
               select  t2.c1 from t2 where t2.c1=t1.c1
        );
        

        下列示例不能提升,因为子查询有两个输出列:

        1
        2
        3
        select * from t1 where (c1,c2) >(
               select  max(t2.c1),min(t2.c2) from t2 where t2.c1=t1.c1
        );
        
      • 子查询必须是from子句。
      • 子查询中不能有groupby、having、集合操作。
      • 子查询只能是inner join。
        下列示例不能提升:
        1
        2
        3
        select * from t1 where c1 >(
               select max(t2.c1) from t2 full join t3 on (t2.c2=t3.c2) where t2.c1=t1.c1
        );
        
      • 子查询的targetlist中不能包含返回set的函数。
      • 子查询的where条件中必须含有来自上一层的列,而且此列必须和子查询层涉及表中的列做相等判断,且这些条件必须用and连接。其它地方不能包含上层中的列。下列示例中的最内层子链接可以提升:
        1
        2
        3
        4
        5
        select * from t3 where t3.c1=(
                select t1.c1
                from t1 where c1 >(
                        select max(t2.c1) from t2 where t2.c1=t1.c1 
        ));
        

        基于上面的示例,再加一个条件,则不能提升,因为最内侧子查询引用了上层中的列。示例如下:

        1
        2
        3
        4
        5
        6
        select * from t3 where t3.c1=(
                select t1.c1
                from t1 where c1 >(
                       select max(t2.c1) from t2 where t2.c1=t1.c1 and t3.c1>t2.c2
        
        ));
        
    • 提升OR子句中的SubLink

      当WHERE过滤条件中有OR连接的EXIST相关SubLink,

      例如:

      1
      2
      3
      select a, c from t1
      where t1.a = (select avg(a) from t3 where t1.b = t3.b) or
      exists (select * from t4 where t1.c = t4.c);
      

      将OR-ed连接的EXIST相关子查询OR子句的提升过程:

      1. 提取where条件中,or子句中的opExpr。为:t1.a = (select avg(a) from t3 where t1.b = t3.b)
      2. 这个op操作中包含subquery,判断是否可以提升,如果可以提升,重写subquery为:select avg(a), t3.b from t3 group by t3.b,生成not null条件t3.b is not null,并将这个opexpr用这个not null条件替换。此时SQL变为:
        1
        2
        3
        select a, c
        from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b)  as t3 on (t1.a = avg and t1.b = t3.b)
        where t3.b is not null or exists (select * from t4 where t1.c = t4.c);
        
      3. 再次提取or子句中的exists sublink,exists (select * from t4 where t1.c = t4.c),判断是否可以提升,如果可以提升,转换subquery为:select t4.c from t4 group by t4.c生成NotNull条件t4.c is not null提升查询,SQL变为:
        1
        2
        3
        select a, c
        from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b)  as t3 on (t1.a = avg and t1.b = t3.b)
        left join (select t4.c from t4 group by t4.c) where t3.b is not null or t4.c is not null;
        

  • 目前GaussDB(DWS)不支持的Sublink-Release场景

    除了以上场景之外都不支持Sublink提升,因此关联子查询会被计划成SubPlan+Broadcast的执行计划,当inner表的数据量较大时则会产生性能风险。

    如果相关子查询中跟外层的两张表做join,那么无法提升该子查询,需要通过将父SQL创建成with子句,然后再跟子查询中的表做相关子查询。

    例如:

    1
    2
    select distinct t1.a, t2.a
    from t1 left join t2 on t1.a=t2.a and not exists (select a,b from test1 where test1.a=t1.a and test1.b=t2.a);
    

    改写为

    1
    2
    3
    4
    5
    6
    7
    8
    with temp as
    (
            select * from (select t1.a as a, t2.a as b from t1 left join t2 on t1.a=t2.a)
    
    )
    select distinct a,b
    from temp
    where not exists (select a,b from test1 where temp.a=test1.a and temp.b=test1.b);
    
    • 出现在targetlist里的相关子查询无法提升(不含count)

      例如:

      1
      2
      3
      4
      explain (costs off)
      select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
      from t1
      where t1.c2 > 10;
      

      执行计划为:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      explain (costs off)
      select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
      from t1
      where t1.c2 > 10;
                            QUERY PLAN
      ------------------------------------------------------
       Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Seq Scan on t1
               Filter: (c2 > 10)
               SubPlan 1
                 ->  Result
                       Filter: (t1.c1 = t2.c1)
                       ->  Materialize
                             ->  Streaming(type: BROADCAST)
                                   Spawn on: All datanodes
                                   ->  Seq Scan on t2
      (11 rows)
      

      由于相关子查询出现在targetlist(查询返回列表)里,对于t1.c1=t2.c1不匹配的场景仍然需要输出值,因此使用left-outerjoin关联T1&T2确保t1.c1=t2.c1在不匹配时,子SSQ能够返回不匹配的补空值。

      SSQ和CSSQ的解释如下:

      • SSQ:ScalarSubQuery一般指返回1行1列scalar值的sublink,简称SSQ。
      • CSSQ:Correlated-ScalarSubQuery和SSQ相同不过是指包含相关条件的SSQ。

      上述SQL语句可以改写为:

      1
      2
      3
      4
      5
      6
      7
      with ssq as
      (
          select t2.c1, t2.c2 from t2
      )
      select ssq.c2, t1.c2
      from t1 left join ssq on t1.c1 = ssq.c1
      where t1.c2 > 10;
      

      改写后的执行计划为:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
                      QUERY PLAN
      -------------------------------------------
       Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Hash Right Join
               Hash Cond: (t2.c1 = t1.c1)
               ->  Seq Scan on t2
               ->  Hash
                     ->  Seq Scan on t1
                           Filter: (c2 > 10)
      (8 rows)
      

      可以看到出现在SSQ返回列表里的相关子查询SSQ,已经被提升成Right Join,从而避免当內表T2较大时出现SubPlan+Broadcast计划导致性能变差。

    • 出现在targetlist里的相关子查询无法提升(带count)

      例如:

      1
      2
      3
      select (select count(*) from t2 where t2.c1=t1.c1) cnt, t1.c1, t3.c1
      from t1,t3
      where t1.c1=t3.c1 order by cnt, t1.c1;
      

      执行计划为:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
                                  QUERY PLAN
      ------------------------------------------------------------------
       Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Sort
               Sort Key: ((SubPlan 1)), t1.c1
               ->  Hash Join
                     Hash Cond: (t1.c1 = t3.c1)
                     ->  Seq Scan on t1
                     ->  Hash
                           ->  Seq Scan on t3
                     SubPlan 1
                       ->  Aggregate
                             ->  Result
                                   Filter: (t2.c1 = t1.c1)
                                   ->  Materialize
                                         ->  Streaming(type: BROADCAST)
                                               Spawn on: All datanodes
                                               ->  Seq Scan on t2
      (17 rows)
      

      由于相关子查询出现在targetlist(查询返回列表)里,对于t1.c1=t2.c1不匹配的场景仍然需要输出值,因此使用left-outerjoin关联T1&T2确保t1.c1=t2.c1在不匹配时子SSQ能够返回不匹配的补空值,但是这里带了count语句及时在t1.c1=t2.t1不匹配时需要输出0,因此可以使用一个case-when NULL then 0 else count(*)来代替。

      上述SQL语句可以改写为:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      with ssq as
      (
          select count(*) cnt, c1 from t2 group by c1
      )
      select case when
                  ssq.cnt is null then 0
                  else ssq.cnt
             end cnt, t1.c1, t3.c1
      from t1 left join ssq on ssq.c1 = t1.c1,t3
      where t1.c1 = t3.c1
      order by ssq.cnt, t1.c1;
      

      改写后的执行计划为:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
        QUERY PLAN
      -----------------------------------------------------
       Streaming (type: GATHER)
         Node/s: All datanodes
         ->  Sort
               Sort Key: (count(*)), t1.c1
               ->  Hash Join
                     Hash Cond: (t1.c1 = t3.c1)
                     ->  Hash Left Join
                           Hash Cond: (t1.c1 = t2.c1)
                           ->  Seq Scan on t1
                           ->  Hash
                                 ->  HashAggregate
                                       Group By Key: t2.c1
                                       ->  Seq Scan on t2
                     ->  Hash
                           ->  Seq Scan on t3
      (15 rows)
      
    • 相关条件为不等值场景

      例如:

      1
      2
      3
      select t1.c1, t1.c2
      from t1
      where t1.c1 = (select agg() from t2.c2 > t1.c2);
      

      对于非等值相关条件的SubLink目前无法提升,从语义上可以通过做2次join(一次CorrelationKey,一次rownum自关联)达到提升改写的目的。

      改写方案有两种:

      • 子查询改写方式
        1
        2
        3
        4
        5
        6
        7
        select t1.c1, t1.c2
        from t1, (
            select t1.rowid, agg() aggref
            from t1,t2
            where t1.c2 > t2.c2 group by t1.rowid
        ) dt /* derived table */
        where t1.rowid = dt.rowid AND t1.c1 = dt.aggref;
        
      • CTE改写方式
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        WITH dt as
        (
            select t1.rowid, agg() aggref
            from t1,t2
            where t1.c2 > t2.c2 group by t1.rowid
        )
        select t1.c1, t1.c2
        from t1, derived_table
        where t1.rowid = derived_table.rowid AND
        t1.c1 = derived_table.aggref;
        
    • 目前GaussDB(DWS)尚无高效的实现表、中间结果集的全局唯一rowid因此目前此类场景很难改写,建议通过业务层进行规避,或者可以使用t1.xc_node_id + t1.ctid进行rowid关联,但是xc_node_id的重复率较高会导致join关联效率变低,而xc_node_id+ctid类型无法作为hashjoin的关联条件。
    • 对于AGG类型为count(*)时需要进行CASE-WHEN对没有match的场景补0处理,非COUNT(*)场景NULL处理。
    • CTE改写方式如果有sharescan支持性能上能够更优。

更多优化示例

示例1:修改基表为REPLICATION表,并且在过滤列上创建索引。

1
2
3
create table master_table (a int);
create table sub_table(a int, b int);
select a from master_table group by a having a in (select a from sub_table); 

上述事例中存在一个相关性子查询,为了提升查询的性能,可以将sub_table修改为一个REPLICATION表,并且在字段a上创建一个index。

示例2:修改select语句,将子查询修改为和主表的join,或者修改为可以提升的subquery,但是在修改前后需要保证语义的正确性。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
explain (costs off)select * from master_table as t1 where t1.a in (select t2.a from sub_table as t2 where t1.a = t2.b);
                        QUERY PLAN
----------------------------------------------------------
 Streaming (type: GATHER)
   Node/s: All datanodes
   ->  Seq Scan on master_table t1
         Filter: (SubPlan 1)
         SubPlan 1
           ->  Result
                 Filter: (t1.a = t2.b)
                 ->  Materialize
                       ->  Streaming(type: BROADCAST)
                             Spawn on: All datanodes
                             ->  Seq Scan on sub_table t2
(11 rows)

上面事例计划中存在一个subPlan,为了消除这个subPlan可以修改语句为:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
explain(costs off) select * from master_table as t1 where exists (select t2.a from sub_table as t2 where t1.a = t2.b and t1.a = t2.a);
                    QUERY PLAN
--------------------------------------------------
 Streaming (type: GATHER)
   Node/s: All datanodes
   ->  Hash Semi Join
         Hash Cond: (t1.a = t2.b)
         ->  Seq Scan on master_table t1
         ->  Hash
               ->  Streaming(type: REDISTRIBUTE)
                     Spawn on: All datanodes
                     ->  Seq Scan on sub_table t2
(9 rows)

从计划可以看出,subPlan消除了,计划变成了两个表的semi join,这样会大幅度提高执行效率。

相关文档