预置条件
本实践提供在CCE上运行caffe的基础分类例子https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb的过程。
OBS存储数据预置
创建OBS桶,并确认以下文件夹已创建,文件已上传至指定位置(需要使用OBS Browser工具)。
例如:桶内文件路径/文件名,文件下载地址可至github中指定项目的指定路径下查找,示例如1、2所示。
- models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
- models/bvlc_reference_caffenet/deploy.prototxt
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
- python/caffe/imagenet/ilsvrc_2012_mean.npy
https://github.com/BVLC/caffe/tree/master/python/caffe/imagenet
- outputimg/
- examples/images/cat.jpg
https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb
另存链接中里面小猫图片。
- data/ilsvrc12/*
https://github.com/BVLC/caffe/tree/master/data/ilsvrc12
获取get_ilsvrc_aux.sh这个脚本并执行,这个脚本会下载一个压缩包并解压,执行完毕后将解压出来的所有文件上传至目录下。
- caffeEx00.py
# set up Python environment: numpy for numerical routines, and matplotlib for plotting import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # display plots in this notebook #%matplotlib inline # set display defaults plt.rcParams['figure.figsize'] = (10, 10) # large images plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels plt.rcParams['image.cmap'] = 'gray' # use grayscale output rather than a (potentially misleading) color heatmap # The caffe module needs to be on the Python path; # we'll add it here explicitly. import sys caffe_root = '/home/' # this file should be run from {caffe_root}/examples (otherwise change this line) sys.path.insert(0, caffe_root + 'python') import caffe # If you get "No module named _caffe", either you have not built pycaffe or you have the wrong path. import os #if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'): # print 'CaffeNet found.' #else: # print 'Downloading pre-trained CaffeNet model...' # !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet caffe.set_mode_cpu() model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt' model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' net = caffe.Net(model_def, # defines the structure of the model model_weights, # contains the trained weights caffe.TEST) # use test mode (e.g., don't perform dropout) # load the mean ImageNet image (as distributed with Caffe) for subtraction mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy') mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values print 'mean-subtracted values:', zip('BGR', mu) # create transformer for the input called 'data' transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255] transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR # set the size of the input (we can skip this if we're happy # with the default; we can also change it later, e.g., for different batch sizes) net.blobs['data'].reshape(50, # batch size 3, # 3-channel (BGR) images 227, 227) # image size is 227x227 image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg') transformed_image = transformer.preprocess('data', image) plt.imshow(image) plt.savefig(caffe_root + 'outputimg/img1.png') # copy the image data into the memory allocated for the net net.blobs['data'].data[...] = transformed_image ### perform classification output = net.forward() output_prob = output['prob'][0] # the output probability vector for the first image in the batch print 'predicted class is:', output_prob.argmax() # load ImageNet labels labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt' #if not os.path.exists(labels_file): # !../data/ilsvrc12/get_ilsvrc_aux.sh labels = np.loadtxt(labels_file, str, delimiter='\t') print 'output label:', labels[output_prob.argmax()] # sort top five predictions from softmax output top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items print 'probabilities and labels:' zip(output_prob[top_inds], labels[top_inds])