MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce 数据准备 更多内容
  • 准备数据

    准备数据 服务不同功能部署的区域,数据格式和调用并发数有相应的约束限制,需要您在使用服务前参考约束准备好待识别的数据。 服务功能的使用约束请参见约束与限制。 例如媒资图像标签,输入数据存在以下约束: 支持“华北-北京四”区域。 支持识别处理PNG、JPEG、BMP、WEBP格式的图片。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 数据要求 受技术与成本多种因素制约,SIS服务存在一些约束限制。详情请参考产品介绍中的约束与限制章节。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 数据要求 受技术与成本多种因素制约,FRS服务存在一些约束限制。 以人脸检测API为例,输入数据存在以下约束。其他API的的使用约束请参见API参考。 只支持识别JPG、PNG、JPEG、BMP格式的图片。 application/json请求的body中,请使用标准Json格式。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发用户

    准备MapReduce应用开发用户 开发用户用于运行样例工程。用户需要有组件权限,才能运行样例工程。 前提条件 MRS 服务集群开启了Kerberos认证,没有开启Kerberos认证的集群忽略该步骤。 操作步骤 登录MRS Manager,在MRS Manager界面选择“系统设置

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 数据服务的优势是什么 私有模板和公共模板的区别是什么 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 数据集中的数据导入特征工程后,可能存在空值、冗余、数据不足等情况,或者用户需要将多次导入的数据集实例进行数据联合。以上情况,都可以在数据准备中进行操作。当前数据准备包含的功能有:数据修复、数据过滤、数据联合、数据连接、数据去噪。 数据修复 用户可以在数据修复中对单列进行

    来自:帮助中心

    查看更多 →

  • 准备数据

    为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

  • 准备数据

    为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 在使用安全帽检测技能模板开发技能之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。

    来自:帮助中心

    查看更多 →

  • 准备数据

    以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。

    来自:帮助中心

    查看更多 →

  • 准备数据

    场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了