计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

CSE仪表盘模板

更新时间:2025-01-21 GMT+08:00

微服务引擎(Cloud Service Engine,CSE)是用于微服务应用的云中间件。用户可结合其他云服务,快速构建云原生微服务体系,实现微服务应用的快速开发和高可用运维。

CSE仪表盘模板支持查看CSE层级访问中心查看CSE层级监控中心查看CSE层级秒级监控

前提条件

查看CSE层级访问中心

  1. 登录云日志服务控制台,在左侧导航栏中选择“仪表盘 ”。
  2. 在仪表盘模板下方,选择“CSE仪表盘模板 > CSE层访问中心”,查看图表详情。

    • 过滤上游IP,所关联的查询分析语句如下所示:
      select distinct(upstream_host)
    • 过滤调用链trace_id,所关联的查询分析语句如下所示:
      select distinct(trace_id)
    • PV对比昨日图表所关联的查询分析语句如下所示:
      select diff[1] as "total", round((diff[1] - diff[2]) / diff[2] * 100, 2) as inc from(select compare( "pv" , 86400) as diff from (select count(1) as "pv" from log))
    • PV对比上周图表所关联的查询分析语句如下所示
      select diff[1] as "total", round((diff[1] - diff[2]) / diff[2] * 100, 2) as inc from(select compare( "pv" , 604800) as diff from (select count(1) as "pv" from log))
    • UV对比昨日图表所关联的查询分析语句如下所示:
      select diff[1] as "total", round((diff[1] - diff[2]) / diff[2] * 100, 2) as inc from(select compare( "uv" , 86400) as diff from (select APPROX_COUNT_DISTINCT(authority) as "uv" from log))
    • UV对比上周图表所关联的查询分析语句如下所示:
      select diff[1] as "total", round((diff[1] - diff[2]) / diff[2] * 100, 2) as inc from(select compare( "uv" , 604800) as diff from (select APPROX_COUNT_DISTINCT(authority) as "uv" from log))
    • 访问量PV分布(中国)图表所关联的查询分析语句如下所示:
      select ip_to_province(authority) as province, sum(ori_pv) as pv from (select authority, count(1) as ori_pv   group by authority   ORDER BY ori_pv desc  LIMIT 10000)  where IP_TO_COUNTRY (authority) = '中国'  group by province HAVING province not in ('','保留地址','*')
    • 访问量PV分布(世界)图表所关联的查询分析语句如下所示:
      SELECT ip_to_country(authority) as country,sum(ori_pv) as PV from (select authority, count(1) as ori_pv  group by authority   ORDER BY ori_pv desc  LIMIT 10000) GROUP BY country HAVING country not in ('','保留地址','*')
    • 平均时延分布(中国)图表所关联的查询分析语句如下所示:
      SELECT province,round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)" FROM (SELECT ip_to_province(authority) as province,sum(rt)/sum(ori_pv) * 1000 AS "平均延迟(ms)" from (select authority, sum(duration) as rt,count(1) as ori_pv  group by authority   ORDER BY ori_pv desc   LIMIT 10000) WHERE  IP_TO_COUNTRY (authority) = '中国' GROUP BY province )  where province not in ('','保留地址','*')
    • 平均时延分布(世界)图表所关联的查询分析语句如下所示:
      SELECT country,round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 2 ) AS "平均延迟(ms)" FROM (SELECT ip_to_country(authority) as country,sum(rt)/sum(ori_pv)  * 1000 AS "平均延迟(ms)" from (select authority, sum(duration) as rt,count(1) as ori_pv   group by authority   ORDER BY ori_pv desc LIMIT 10000) GROUP BY country ) where  country not in ('','保留地址','*')
    • 今日PV/UV图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,PV,UV FROM (select TIME_CEIL(TIME_PARSE(start_time),'PT600S') AS _time_ , count(1) as PV,  APPROX_COUNT_DISTINCT(authority) as UV from log WHERE __time <= CURRENT_TIMESTAMP  and __time >= DATE_TRUNC( 'DAY',(CURRENT_TIMESTAMP + INTERVAL '8' HOUR)) - INTERVAL '8' HOUR group by _time_ order by _time_)
    • 区域访问TOP10(省份)图表所关联的查询分析语句如下所示:
      select ip_to_province(authority) as "province", sum(ori_pv) as "访问次数" from (select authority, count(1) as ori_pv  group by authority  ORDER BY ori_pv desc  LIMIT 10000) group by "province" HAVING "province" <> '-1' order by "访问次数" desc limit 10
    • 区域访问TOP10(城市)图表所关联的查询分析语句如下所示:
      select ip_to_city(authority) as "city", sum(ori_pv) as "访问次数" from (select authority, count(1) as ori_pv  group by authority ORDER BY ori_pv desc LIMIT 10000) group by "city" HAVING  "city" <> '-1' order by "访问次数" desc  limit 10
    • Host访问TOP10图表所关联的查询分析语句如下所示:
      select  upstream_host as "Host", count(1) as "PV" group by "Host" order by "PV" desc limit 10
    • UserAgent访问TOP10图表所关联的查询分析语句如下所示:
      select user_agent as "UserAgent", count(1) as "PV" group by "UserAgent" order by "PV" desc limit 10
    • 设备占比(终端)图表所关联的查询分析语句如下所示:
      select case when regexp_like(lower(user_agent), 'iphone|ipod|android|ios') then '移动端' else 'PC端' end as type , count(1) as total group by  type
    • 设备占比(系统)图表所关联的查询分析语句如下所示:
      select case when regexp_like(lower(user_agent), 'iphone|ipod|ios') then 'IOS' when regexp_like(lower(user_agent), 'android') then 'Android' else 'other' end as type , count(1) as total group by  type HAVING type != 'other'
    • TOP URL图表所关联的查询分析语句如下所示:
      select path , count(1) as pv, APPROX_COUNT_DISTINCT(authority) as UV, round(sum( case when response_code < 400 then 1 else 0 end   )  * 100.0 / count(1), 2) as "访问成功率" group by path ORDER by pv desc
    • TOP 访问IP图表所关联的查询分析语句如下所示:
      select authority as "来源IP",ip_to_country(authority) as "国家",ip_to_province(authority) as "省份",ip_to_city(authority) as "城市",ip_to_provider(authority) as "运营商",count(1) as "PV" group by authority ORDER by "PV" desc limit 100

查看CSE层级监控中心

  1. 登录云日志服务控制台,在左侧导航栏中选择“仪表盘 ”。
  2. 在仪表盘模板下方,选择“CSE仪表盘模板 > CSE层监控中心”,查看图表详情。

    • 过滤上游IP,所关联的查询分析语句如下所示:
      select distinct(upstream_host)
    • 过滤调用链trace_id,所关联的查询分析语句如下所示:
      select distinct(trace_id)
    • 访问量PV图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,PV FROM ( SELECT TIME_CEIL ( TIME_PARSE(start_time), 'PT300S' ) AS _time_, count( 1 ) AS PV FROM log GROUP BY _time_ )
    • 请求成功率图表所关联的查询分析语句如下所示:
      select ROUND(sum(case when response_code < 400 then 1 else 0 end) * 100.0 / count(1),2) as cnt
    • 平均延迟图表所关联的查询分析语句如下所示:
      select round(avg(duration) * 1000, 3) as cnt
    • 4XX请求数图表所关联的查询分析语句如下所示:
      SELECT COUNT(1) as cnt WHERE "response_code" >= 400 and "response_code" < 500
    • 404请求数图表所关联的查询分析语句如下所示:
      SELECT COUNT(1) as cnt WHERE "response_code" = 404
    • 429请求数图表所关联的查询分析语句如下所示:
      SELECT COUNT(1) as cnt WHERE "response_code" = 429
    • 504请求数图表所关联的查询分析语句如下所示:
      SELECT COUNT(1) as cnt WHERE "response_code" = 504
    • 5XX请求数图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,cnt FROM ( SELECT TIME_CEIL ( TIME_PARSE(start_time), 'PT300S' ) AS _time_, count( 1 ) AS cnt FROM log where "response_code" >= 500 GROUP BY _time_ )
    • 状态码分布图表所关联的查询分析语句如下所示:
      SELECT response_code, COUNT(1) AS rm GROUP BY response_code
    • 访问量UV图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,UV FROM (select TIME_CEIL(TIME_PARSE(start_time),'PT600S') AS _time_ , APPROX_COUNT_DISTINCT(authority) as UV  from log group by _time_)
    • 流量图表所关联的查询分析语句如下所示:
      select TIME_FORMAT(_time_,'yyyy-MM-dd HH:mm:ss') AS _time_,round( CASE WHEN "入流量" > 0 THEN "入流量" ELSE 0 END, 2 ) AS "入流量",round( CASE WHEN "出流量" > 0 THEN "出流量" ELSE 0 END, 2 ) AS "出流量" FROM (SELECT TIME_CEIL(TIME_PARSE(start_time),'PT600S') AS _time_,sum(bytes_received) / 1024.0 AS "入流量",sum(bytes_sent) / 1024.0 AS "出流量" group by  _time_)
    • 访问失败率图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,round( CASE WHEN "失败率" > 0 THEN "失败率" ELSE 0 END, 2 ) AS "失败率",round( CASE WHEN "5XX比例" > 0 THEN "5XX比例" ELSE 0 END, 2 ) AS "5XX比例" from (select TIME_CEIL(TIME_PARSE(start_time),'PT600S') AS _time_,sum(case when response_code >= 400 then 1 else 0 end) * 100.0 / count(1) as '失败率' , sum(case when response_code >=500 THEN 1 ELSE 0 END)*100.0/COUNT(1) as '5XX比例' group by  _time_)
    • 延迟图表所关联的查询分析语句如下所示:
      select TIME_FORMAT( _time_, 'yyyy-MM-dd HH:mm:ss') as _time_,round( CASE WHEN "平均" > 0 THEN "平均" ELSE 0 END, 2 ) AS "平均",round( CASE WHEN "P50" > 0 THEN "P50" ELSE 0 END, 2 ) AS "P50",round( CASE WHEN "P90" > 0 THEN "P90" ELSE 0 END, 2 ) AS "P90",round( CASE WHEN "P99" > 0 THEN "P99" ELSE 0 END, 2 ) AS "P99",round( CASE WHEN "P9999" > 0 THEN "P9999" ELSE 0 END, 2 ) AS "P9999" from (select TIME_CEIL(TIME_PARSE(start_time),'PT600S') as _time_,avg(duration) * 1000 as "平均", APPROX_QUANTILE_DS("duration", 0.50)*1000 as "P50", APPROX_QUANTILE_DS("duration", 0.90)*1000 as "P90" ,APPROX_QUANTILE_DS("duration", 0.99)*1000 as 'P99',APPROX_QUANTILE_DS("duration", 0.9999)*1000 as 'P9999' group by  _time_)
    • Host请求TOP图表所关联的查询分析语句如下所示:
      SELECT "upstream_host", pv, uv, round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "入流量(KB)" > 0 THEN "入流量(KB)" ELSE 0 END, 3 ) AS "入流量(KB)", round( CASE WHEN "出流量(KB)" > 0 THEN "出流量(KB)" ELSE 0 END, 3 ) AS "出流量(KB)"  FROM ( SELECT "upstream_host", count( 1 ) AS pv, APPROX_COUNT_DISTINCT ( authority ) AS uv, sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", sum( bytes_received ) / 1024.0 AS "入流量(KB)", sum( bytes_sent ) / 1024.0 AS "出流量(KB)"  WHERE "upstream_host" != ''  GROUP BY "upstream_host" ) ORDER BY pv DESC
    • Host延迟TOP图表所关联的查询分析语句如下所示:
      SELECT "upstream_host", pv, round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)", round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)" FROM ( SELECT "upstream_host", count( 1 ) AS pv, sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)", avg( duration ) * 1000 AS "平均延迟(ms)",APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)", APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != ''  GROUP BY "upstream_host" ) ORDER BY "平均延迟(ms)" desc
    • Host失败率TOP图表所关联的查询分析语句如下所示:
      SELECT "upstream_host", pv,round( CASE WHEN "访问失败率(%)" > 0 THEN "访问失败率(%)" ELSE 0 END, 2 ) AS "访问失败率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)", round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)"  FROM ( SELECT "upstream_host", count( 1 ) AS pv, sum( CASE WHEN "response_code" >= 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问失败率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)", APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != ''  GROUP BY "upstream_host") ORDER BY "访问失败率(%)" desc
    • URL请求TOP图表所关联的查询分析语句如下所示:
      SELECT path, pv,uv, round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "入流量(KB)" > 0 THEN "入流量(KB)" ELSE 0 END, 3 ) AS "入流量(KB)", round( CASE WHEN "出流量(KB)" > 0 THEN "出流量(KB)" ELSE 0 END, 3 ) AS "出流量(KB)"  FROM ( SELECT path, count( 1 ) AS pv, APPROX_COUNT_DISTINCT ( authority ) AS uv, sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", sum( bytes_received ) / 1024.0 AS "入流量(KB)", sum( bytes_sent ) / 1024.0 AS "出流量(KB)"  WHERE "upstream_host" != ''  GROUP BY path  ) ORDER BY pv desc
    • URL失败率TOP图表所关联的查询分析语句如下所示:
      SELECT path, pv, round( CASE WHEN "访问失败率(%)" > 0 THEN "访问失败率(%)" ELSE 0 END, 2 ) AS "访问失败率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)", round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)" FROM( SELECT path, count( 1 ) AS pv, sum( CASE WHEN "response_code" >= 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问失败率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)", APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != '' GROUP BY path  ) ORDER BY "访问失败率(%)" desc
    • 后端请求TOP图表所关联的查询分析语句如下所示:
      SELECT addr, pv, uv, round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "入流量(KB)" > 0 THEN "入流量(KB)" ELSE 0 END, 3 ) AS "入流量(KB)", round( CASE WHEN "出流量(KB)" > 0 THEN "出流量(KB)" ELSE 0 END, 3 ) AS "出流量(KB)"  FROM ( SELECT authority as addr, count( 1 ) AS pv, APPROX_COUNT_DISTINCT ( authority ) AS uv, sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", sum( bytes_received ) / 1024.0 AS "入流量(KB)", sum( bytes_sent ) / 1024.0 AS "出流量(KB)"  WHERE "upstream_host" != ''  GROUP BY addr  having length(authority) > 2) ORDER BY "pv" desc
    • 后端延迟TOP图表所关联的查询分析语句如下所示:
      SELECT addr,pv,round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)",round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)",round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)",round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)" FROM (SELECT authority as addr,count( 1 ) AS pv,sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)",avg( duration ) * 1000 AS "平均延迟(ms)",APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)",APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != '' and "authority" != '-' GROUP BY addr ) ORDER BY "平均延迟(ms)" desc
    • 后端失败率TOP图表所关联的查询分析语句如下所示:
      SELECT addr, pv, round( CASE WHEN "访问失败率(%)" > 0 THEN "访问失败率(%)" ELSE 0 END, 2 ) AS "访问失败率(%)", round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)", round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)", round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)"  FROM ( SELECT authority as addr, count( 1 ) AS pv, sum( CASE WHEN "response_code" >= 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问失败率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)", APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != '' and "authority" != '-' GROUP BY addr) ORDER BY "访问失败率(%)" desc
    • URL延迟TOP图表所关联的查询分析语句如下所示:
      SELECT path, pv,round( CASE WHEN "访问成功率(%)" > 0 THEN "访问成功率(%)" ELSE 0 END, 2 ) AS "访问成功率(%)",round( CASE WHEN "平均延迟(ms)" > 0 THEN "平均延迟(ms)" ELSE 0 END, 3 ) AS "平均延迟(ms)",round( CASE WHEN "P90延迟(ms)" > 0 THEN "P90延迟(ms)" ELSE 0 END, 3 ) AS "P90延迟(ms)",round( CASE WHEN "P99延迟(ms)" > 0 THEN "P99延迟(ms)" ELSE 0 END, 3 ) AS "P99延迟(ms)" FROM (SELECT path, count( 1 ) AS pv, sum( CASE WHEN "response_code" < 400 THEN 1 ELSE 0 END ) * 100.0 / count( 1 ) AS "访问成功率(%)", avg( duration ) * 1000 AS "平均延迟(ms)", APPROX_QUANTILE_DS(duration, 0.9) * 1000 AS "P90延迟(ms)", APPROX_QUANTILE_DS(duration, 0.99) * 1000 AS "P99延迟(ms)" WHERE "upstream_host" != ''  GROUP BY path  ) ORDER BY "平均延迟(ms)" desc

查看CSE层级秒级监控

  1. 登录云日志服务控制台,在左侧导航栏中选择“仪表盘 ”。
  2. 在仪表盘模板下方,选择“CSE仪表盘模板 > CSE层秒级监控”,查看图表详情。

    • 过滤上游IP,所关联的查询分析语句如下所示:
      select distinct(upstream_host)
    • 过滤调用链trace_id,所关联的查询分析语句如下所示:
      select distinct(trace_id)
    • QPS图表所关联的查询分析语句如下所示:
      SELECT TIME_FORMAT(TIME_CEIL(TIME_PARSE(start_time),'PT5S'),'yyyy-MM-dd HH:mm:ss') AS _time_ , COUNT(*) as QPS from log group by _time_
    • 成功率图表所关联的查询分析语句如下所示:
      select __time,round(CASE WHEN "成功率" > 0 THEN "成功率" else 0 end,2) as "成功率" from (select TIME_FORMAT(TIME_CEIL(TIME_PARSE(start_time),'PT5S'),'yyyy-MM-dd HH:mm:ss') as __time, sum(case when response_code < 400 then 1 else 0 end) * 100.0 / count(1) as '成功率' from log group by __time)
    • 延迟图表所关联的查询分析语句如下所示:
      select __time,round(CASE WHEN "访问延迟" > 0 THEN "访问延迟" else 0 end,2) as "访问延迟",round(CASE WHEN "Upstream延迟" > 0 THEN "Upstream延迟" else 0 end,2) as "Upstream延迟" from (select TIME_FORMAT(TIME_CEIL(TIME_PARSE(start_time),'PT5S'),'yyyy-MM-dd HH:mm:ss') as __time, avg(duration)* 1000 as '访问延迟',avg(upstream_service_time)* 1000 as 'Upstream延迟' from log group by __time)
    • 流量图表所关联的查询分析语句如下所示:
      select __time,round( CASE WHEN "请求流量" > 0 THEN "请求流量" ELSE 0 END, 3 ) AS "请求流量",round( CASE WHEN "返回body流量" > 0 THEN "返回body流量" ELSE 0 END, 3 ) AS "返回body流量" from (select TIME_FORMAT(TIME_CEIL(TIME_PARSE(start_time),'PT5S'),'yyyy-MM-dd HH:mm:ss') as __time , sum("bytes_received") / 1024.0 as "请求流量", sum("bytes_sent") / 1024.0 as "返回body流量" group by __time)
    • 状态码图表所关联的查询分析语句如下所示:
      SELECT TIME_CEIL ( TIME_PARSE ( start_time ), 'PT5S' ) AS "time", SUM( CASE WHEN "response_code" >= 200 AND "response_code" < 300 THEN 1 ELSE 0 END ) AS "2XX", SUM( CASE WHEN "response_code" >= 300 AND "response_code" < 400 THEN 1 ELSE 0 END ) AS "3XX", SUM( CASE WHEN "response_code" >= 400 AND "response_code" < 500 THEN 1 ELSE 0 END ) AS "4XX", SUM( CASE WHEN "response_code" >= 500 AND "response_code" < 600 THEN 1 ELSE 0 END ) AS "5XX", SUM( CASE WHEN "response_code" < 200 OR "response_code" >= 600 THEN 1 ELSE 0 END ) AS "其他" FROM log  WHERE TIME_PARSE ( start_time ) IS NOT NULL GROUP BY "time"  ORDER BY "time" ASC LIMIT 100000

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容