Kafka基本原理
Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据)、日志收集等大量数据的互联网服务的数据收集场景。
Kafka结构
生产者(Producer)将消息发布到Kafka主题(Topic)上,消费者(Consumer)订阅这些主题并消费这些消息。在Kafka集群上一个服务器称为一个Broker。对于每一个主题,Kafka集群保留一个用于缩放、并行化和容错性的分区(Partition)。每个分区是一个有序、不可变的消息序列,并不断追加到提交日志文件。分区的消息每个也被赋值一个称为偏移顺序(Offset)的序列化编号。
名称 |
说明 |
---|---|
Broker |
在Kafka集群上一个服务器称为一个Broker。 |
Topic/主题 |
一个Topic就是一个类别或者一个可订阅的条目名称,也即一类消息。一个主题可以有多个分区,这些分区可以作为并行的一个单元。 |
Partition/分区 |
是一个有序的、不可变的消息序列,这个序列可以被连续地追加—个提交日志。在分区内的每条消息都有一个有序的ID号,这个ID号被称为偏移(Offset),这个偏移量可以唯一确定每条消息在分区内的位置。 |
Producer/生产者 |
向Kafka的主题发布消息。 |
Consumer/消费者 |
向Topic订阅,并且接收发布到这些Topic的消息。 |
各模块间关系如图2所示。
消费者使用一个消费者组名称来标记自己,主题的每个消息被传递给每个订阅消费者组中的一个消费者。如果所有的消费者实例都属于同样的消费组,它们就以传统队列负载均衡方式工作。如上图中,Consumer1与Consumer2之间为负载均衡方式;Consumer3、Consumer4、Consumer5与Consumer6之间为负载均衡方式。如果消费者实例都属于不同的消费组,则消息会被广播给所有消费者。如上图中,Topic1中的消息,同时会广播到Consumer Group1与Consumer Group2中。
Kafka原理
- 消息可靠性
Kafka Broker收到消息后,会持久化到磁盘,同时,Topic的每个Partition有自己的Replica(备份),每个Replica分布在不同的Broker节点上,以保证当某一节点失效时,可以自动故障转移到可用消息节点。
- 高吞吐量
Kafka通过以下方式提供系统高吞吐量:
- 数据磁盘持久化:消息不在内存中cache,直接写入到磁盘,充分利用磁盘的顺序读写性能。
- Zero-copy:减少IO操作步骤。
- 数据批量发送:提高网络利用率。
- Topic划分为多个Partition,提高并发度,可以由多个Producer、Consumer数目之间的关系并发来读、写消息。Producer根据用户指定的算法,将消息发送到指定的Partition。
- 消息订阅-通知机制
消费者对感兴趣的主题进行订阅,并采取pull的方式消费数据,使得消费者可以根据其消费能力自主地控制消息拉取速度,同时,可以根据自身情况自主选择消费模式,例如批量、重复消费,从尾端开始消费等;另外,需要消费者自己负责维护其自身消息的消费记录。
- 可扩展性
当在Kafka集群中可通过增加Broker节点以提供更大容量时。新增的Broker会向ZooKeeper注册,而Producer及Consumer会及时从ZooKeeper感知到这些变化,并及时作出调整。
Kafka开源特性
Kafka UI
Kafka UI提供Kafka Web服务,通过界面展示Kafka集群中Broker、Topic、Partition、Consumer等功能模块的基本信息,同时提供Kafka服务常用命令的界面操作入口。该功能作为Kafka Manager替代,提供安全的符合安全规范的Kafka Web服务。
通过Kafka UI可以进行以下操作:
- 支持界面检查集群状态(主题,消费者,偏移量,分区,副本,节点)
- 支持界面执行集群内分区重新分配
- 支持界面选择配置创建主题
- 支持界面删除主题(Kafka服务设置了delete.topic.enable = true)
- 支持为已有主题增加分区
- 支持更新现有主题的配置
- 可以为分区级别和主题级别度量标准启用JMX查询