计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive
本文导读

使用场景

更新时间:2024-11-27 GMT+08:00

背景

目前在互联网、教育、游戏等行业都有实时精准营销的需求。通过系统生成用户画像,在营销时通过条件组合筛选用户,快速提取目标群体。例如:

  • 在电商行业中,商家在进行营销活动前,需要根据活动的目的,圈选一批满足特定特征的目标用户群体进行广告推送。
  • 在教育行业中,需要根据学生不同的特征,推送有针对性的练习题目,帮助学生查漏补缺。
  • 在搜索、视频、门户网站中,根据用户关注的热点,推送不同的内容。

这些业务场景都有一些共同的特点:

  • 数据量庞大,运算量极大。
  • 用户规模庞大,标签多,字段多,占用存储空间也多。
  • 圈选的特征条件多样化,很难找到固定索引,如果每个字段一个索引,存储空间又会暴增。
  • 性能要求高,因为实时营销要求秒级响应。
  • 数据更新时效要求高,用户画像几乎要求实时更新。

针对上述业务场景特点,GaussDB(DWS)的roaringbitmap可以高效生成、压缩、解析位图数据,支持最常见的位图聚合操作(与、或、非、异或),满足用户在亿级以上、千万级标签的大数据量下实时精准营销、快速圈选用户的需求。

roaringbitmap使用示例

假设有一张用户浏览网页的流水信息表userinfo,表中的字段如下:

1
2
3
4
5
6
7
CREATE TABLE userinfo
(userid int,
age int,
gender text,
salary int,
hobby  text
)WITH (orientation=column);

userinfo表中的数据会随着用户信息的变化不断增长,比如用户有多个hobby属性,那么就有多条记录。

如果用户需要筛选出所有“收入大于10000元的男性,年龄大于30岁,爱好钓鱼”的群体,向这些目标群体推送特定的消息。

传统的方法是直接在原表上执行查询,语句如下:

1
SELECT distinct userid FROM userinfo WHERE salary > 10000 AND age > 30 AND gender ='m' AND hobby ='fishing';

当userinfo表的数据量不大的时候,可以通过在salary,age,gender,hobby列上建立索引来满足需求。但是如果userinfo表的数据量非常大,同时一张表的标签数非常多的时候,上述语句就不能满足诉求,因为如下原因:

  • 需要创建的索引会非常多。
  • count (distinct)的性能比较差。

这种场景下使用roaringbitmap就会有比较好的效果。

  1. 新建一张Roaringbitmap表:
    1
    2
    3
    4
    5
    6
    7
    8
    CREATE TABLE userinfoset
    ( age int,
    gender text,
    salary int,
    hobby  text,
    userset roaringbitmap,
    PRIMARY KEY(age,gender,salary,hobby)
    )WITH (orientation=column);
    
  2. 所有userinfo表中的数据要通过标签列聚合到userinfoset表中。可以采用对全量数据进行聚合的方法(如下命令所示)。也可以采用只对增量数据进行聚合的方法。只对增量数据进行聚合即对含有相同的标签的用户集合放到表的一条记录中,通常可以通过upsert来实现。考虑到其中频繁的update操作可能产生大量的脏数据,因此对增量数据进行聚合的方法,建议将userinfoset表创建为行存表。
    1
    2
    3
    4
    5
    INSERT INTO userinfoset
    SELECT age, gender, salary, hobby, rb_build_agg(userid)
    FROM 
    userinfo
    GROUP BY age, gender, salary, hobby;
    
  3. 直接查询userinfoset表获得用户筛选信息。
    1
    SELECT rb_iterate(rb_or_agg(userset)) FROM userinfoset WHERE salary > 10000 AND age > 30 AND gender ='m' AND hobby ='fishing';
    

数据进行聚合后的userinfoset的数据量相比源表小了很多,基表scan的性能会快很多,同时基于Roaringbitmap的优势,计算rb_or_agg和rb_iterate的性能也很好,相比传统的方法,性能明显提升。

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容