计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

HBase开源增强特性

更新时间:2023-03-17 GMT+08:00

HBase开源增强特性:HIndex

HBase是一个Key-Value类型的分布式存储数据库。每张表的数据按照RowKey的字典顺序排序,因此,如果按照某个指定的RowKey去查询数据,或者指定某一个RowKey范围去扫描数据时,HBase可以快速定位到需要读取的数据位置,从而可以高效地获取到所需要的数据。

在实际应用中,很多场景是查询某一个列值为“XXX”的数据。HBase提供了Filter特性去支持这样的查询,它的原理是:按照RowKey的顺序,去遍历所有可能的数据,再依次去匹配那一列的值,直到获取到所需要的数据。可以看出,可能只是为了获取一行数据,它却扫描了很多不必要的数据。因此,如果对于这样的查询请求非常频繁并且对查询性能要求较高,使用Filter无法满足这个需求。

这就是HBase HIndex产生的背景。HIndex为HBase提供了按照某些列的值进行索引的能力。

图1 HIndex
  • 索引数据不支持滚动升级。
  • 组合索引限制。
    • 用户必须在单次mutation中输入或删除参与组合索引的所有列。否则会导致不一致问题。

      索引:IDX1=>cf1:[q1->datatype],[q2];cf2:[q2->datatype]

      正确的写操作:

      Put put = new Put(Bytes.toBytes("row"));
      put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
      put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
      put.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));
      table.put(put);

      错误的写操作:

      Put put1 = new Put(Bytes.toBytes("row"));
      put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
      table.put(put1);
      Put put2 = new Put(Bytes.toBytes("row"));
      put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
      table.put(put2);
      Put put3 = new Put(Bytes.toBytes("row"));
      put3.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));
      table.put(put3);
    • 使用组合条件查询,仅支持组合索引列包含过滤条件的查询,或者不指定StartRow和StopRow的部分索引列的查询。

      索引:IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]

      正确的查询操作:

      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true) "}
      
      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" }
      
      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)",STARTROW=>'row001',STOPROW=>'row100'}

      错误的查询操作:

      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)  AND SingleColumnValueFilter('cf2','q2',>=,'binary:valueD',true,true)"}
      
      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)" }
      
      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf2','q2',>=,'binary:valueD',true,true)" }
      
      scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" ,STARTROW=>'row001',STOPROW=>'row100' }
  • 用户不要明确地为有索引数据的表配置任何分裂策略。
  • 不支持其他的mutation操作,如increment和append。
  • 不支持maxVersions>1的列的索引。
  • 不支持一行数据索引列的更新操作。

    索引1:IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]

    索引2:IDX2=>cf2:[q2->datatype]

    正确的更新操作:

    Put put1 = new Put(Bytes.toBytes("row"));
    put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
    put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
    put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
    put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
    table.put(put1);
    
    Put put2 = new Put(Bytes.toBytes("row"));
    put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q3"), Bytes.toBytes("valueE"));
    put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q3"), Bytes.toBytes("valueF"));
    table.put(put2);

    错误的更新操作:

    Put put1 = new Put(Bytes.toBytes("row"));
    put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
    put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
    put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
    put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
    table.put(put1);
    
    Put put2 = new Put(Bytes.toBytes("row"));
    put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA_new"));
    put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB_new"));
    put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC_new"));
    put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD_new"));
    table.put(put2);
  • 添加索引的表不应拥有大于32KB的值。
  • 当由于列族级TTL(生存周期)过期而导致用户数据删除时,对应的索引数据不会立即删除。索引数据会在进行major compaction操作时被删除。
  • 用户列族的TTL在索引创建后不能修改。
    • 如果在创建索引之后,列族的TTL值变大,应该删除并重新创建该索引。否则,一些已经生成的索引数据会先于用户数据被删除。
    • 如果在创建索引之后,列族的TTL值变小。索引数据会晚于用户数据被删除。
  • 索引查询不支持reverse;且查询结果是无序的。
  • 索引不支持clone snapshot操作。
  • 索引表必须使用HIndexWALPlayer回放日志,不支持WALPlayer回放日志。
    hbase org.apache.hadoop.hbase.hindex.mapreduce.HIndexWALPlayer
    Usage: WALPlayer [options] <wal inputdir> <tables> [<tableMappings>]
    Read all WAL entries for <tables>.
    If no tables ("") are specific, all tables are imported.
    (Careful, even -ROOT- and hbase:meta entries will be imported in that case.)
    Otherwise <tables> is a comma separated list of tables.
    
    The WAL entries can be mapped to new set of tables via <tableMapping>.
    <tableMapping> is a command separated list of targettables.
    If specified, each table in <tables> must have a mapping.
    
    By default WALPlayer will load data directly into HBase.
    To generate HFiles for a bulk data load instead, pass the option:
      -Dwal.bulk.output=/path/for/output
      (Only one table can be specified, and no mapping is allowed!)
    Other options: (specify time range to WAL edit to consider)
      -Dwal.start.time=[date|ms]
      -Dwal.end.time=[date|ms]
    For performance also consider the following options:
      -Dmapreduce.map.speculative=false
      -Dmapreduce.reduce.speculative=false
  • 使用deleteall操作索引表存在性能慢问题。
  • 索引表不支持HBCK;如需使用HBCK修复索引表,需先删除索引数据后,再进行修复。

HBase开源增强特性:支持多点分割

当用户在HBase创建Region预先分割的表时,用户可能不知道数据的分布趋势,所以Region的分割可能不合适,所以当系统运行一段时间后,Region需要重新分割以获得更好的查询性能,HBase只会分割空的Region。

HBase自带的Region分割只有当Region到达设定的Threshold后才会进行分割,这种分割被称为单点分割。

为了实现根据用户的需要动态分割Region以获得更好的性能这一目标,开发了多点分割又称动态分割,即把空的Region预先分割成多个Region。通过预先分割,避免了因为Region空间不足出现Region分割导致性能下降的现象。

图2 多点分割

HBase开源增强特性:连接数限制

过多的session连接意味着过多的查询和MR任务跑在HBase上,这会导致HBase性能下降以至于导致HBase拒绝服务。通过配置参数来限制客户端连接到HBase服务器端的session数目,来实现HBase过载保护。

HBase开源增强特性:容灾增强

主备集群之间的容灾能力可以增强HBase数据的高可用性,主集群提供数据服务,备用集群提供数据备份,当主集群出现故障时,备集群可以提供数据服务。相比开源Replication功能,做了如下增强:

  1. 备集群白名单功能,只接受指定集群ip的数据推送。
  2. 开源版本中replication是基于WAL同步,在备集群回放WAL实现数据备份的。对于BulkLoad,由于没有WAL产生,BulkLoad的数据不会replicate到备集群。通过将BulkLoad操作记录在WAL上,同步至备集群,备集群通过WAL读取BulkLoad操作记录,将对应的主集群的HFile加载到备集群,完成数据的备份。
  3. 开源版本中HBase对于系统表ACL做了过滤,ACL信息不会同步至备集群,通过新加一个过滤器org.apache.hadoop.hbase.replication.SystemTableWALEntryFilterAllowACL,允许ACL信息同步至备集群,用户可以通过配置hbase.replication.filter.sytemWALEntryFilter使用该过滤其实现ACL同步。
  4. 备集群只读限制,备集群只接受备集群节点内的super user对备集群的HBase进行修改操作,即备集群节点之外的HBase客户端只能对备集群的HBase进行读操作。

HBase开源增强特性:HBase MOB

在实际应用中,用户需要存储大大小小的数据,比如图像数据、文档。小于10MB的数据一般都可以存储在HBase上,对于小于100KB的数据,HBase的读写性能是最优的。如果存放在HBase的数据大于100KB甚至到10MB时,插入同样个数的数据文件,其数据量很大,会导致频繁的compaction和split,占用很多CPU,磁盘IO频率很高,性能严重下降。

将MOB数据(即100KB到10MB大小的数据)直接以HFile的格式存储在文件系统上(例如HDFS文件系统),然后把这个文件的地址信息及大小信息作为value存储在普通HBase的store上,通过expiredMobFileCleaner和Sweeper工具集中管理这些文件。这样就可以大大降低HBase的compation和split频率,提升性能。

图3所示,图中MOB模块表示存储在HRegion上的mobstore,mobstore存储的是key-value,key即为HBase中对应的key,value对应的就是存储在文件系统上的引用地址以及数据偏移量。读取数据时,mobstore会用自己的scanner,先读取mobstore中的key-value数据对象,然后通过value中的地址及数据大小信息,从文件系统中读取真正的数据。

图3 MOB数据存储原理

HBase开源增强特性:HFS

HBase文件存储模块(HBase FileStream,简称HFS)是HBase的独立模块,它作为对HBase与HDFS接口的封装,应用在MRS的上层应用,为上层应用提供文件的存储、读取、删除等功能。

在Hadoop生态系统中,无论是HDFS,还是HBase,均在面对海量文件的存储的时候,在某些场景下,都会存在一些很难解决的问题:

  • 如果把海量小文件直接保存在HDFS中,会给NameNode带来极大的压力。
  • 由于HBase接口以及内部机制的原因,一些较大的文件也不适合直接保存到HBase中。

HFS的出现,就是为了解决需要在Hadoop中存储海量小文件,同时也要存储一些大文件的混合的场景。简单来说,就是在HBase表中,需要存放大量的小文件(10MB以下),同时又需要存放一些比较大的文件(10MB以上)。

HFS为以上场景提供了统一的操作接口,这些操作接口与HBase的函数接口类似。

HBase开源增强特性:多RegionServer共机部署

HBase支持一个节点部署多个RegionServer,提升HBase资源利用率。

单RegionServer资源利用率低:

  1. 单个RegionServer支持的Region数量有限,无法充分利用内存、CPU资源。
  2. 单个RegionServer数据量为20T,两副本为40T,三副本60T,无法用完96T的磁盘。
  3. 写入性能差:一台物理机一个RegionServer,只有一个HLog,只能同时写三块盘。

多RegionServer共机部署,提升HBase资源利用率:

  1. 一台物理机最多可以部署5个RegionServer,每台物理机上部署的RegionServer个数可以根据需要自由选择。
  2. 充分利用内存、磁盘、CPU等资源。
  3. 一台物理机最多5个HLog ,可以同时写15块盘,大幅提升写入性能。
图4 HBase资源利用率提升

HBase开源增强特性:HBase双读

在HBase存储场景下,因为GC、网络抖动、磁盘坏道等原因,很难保证99.9%的查询稳定性。为了满足用户大数据量随机读低毛刺的要求,新增了HBase双读特性。

HBase双读特性是建立在主备集群容灾能力之上,两套集群同时产生毛刺的概率要远远小于一套集群,即采用双集群并发访问的方式,保证查询的稳定性。当用户发起查询请求时,同时查询两个集群的HBase服务,在等待一段时间(最大容忍的毛刺时间)后,如果主集群没有返回结果,则可以使用响应最快的集群数据。原理图如下:

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容