计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive
文档首页/ 数据仓库服务 GaussDB(DWS)/ 常见问题/ 数据库性能/ GaussDB(DWS)的CPU资源隔离管控介绍

GaussDB(DWS)的CPU资源隔离管控介绍

更新时间:2024-04-24 GMT+08:00

CPU资源管控概述

在不同的业务场景中,对数据库的系统资源(CPU资源、内存资源、IO资源和存储资源)进行合理的分配,保证执行查询时有充足的系统资源,确保查询性能,可以维持业务稳定性。

GaussDB(DWS)的资源管理功能支持用户根据自身业务将资源按需划分成不同的资源池,不同资源池之间资源互相隔离。再通过关联数据库用户将其关联至不同的资源池,用户SQL查询时将根据“用户-资源池”的关联关系将查询转至资源池中执行。通过指定资源池上可并行运行的查询数、单查询内存上限以及资源池可使用的内存和CPU资源,从而实现对不同业务之间的资源限制和隔离,满足数据库混合负载需求。

GaussDB(DWS)主要利用cgroup(control group,控制组)进行CPU资源管控,涉及CPU、cpuacct、cpuset子系统。CPU共享配额管控基于CPU子系统的cpu.shares实现,该配置方法的好处是:OS CPU没有占满的情况下,不触发CPU管控;CPU专属限额管控基于cpuset实现;cpuacct子系统主要用于CPU资源使用的监控。

在DWS管理控制台使用资源管理配置功能创建资源池时,根据业务需要对CPU资源管理的“共享配额”和“专属配额”进行配置。

共享配额

共享配额:关联在当前资源池的用户在执行作业时可以使用的CPU时间比例。

共享配额有两层含义:

  • 共享:CPU是所有控制组共享的,其他控制组能够使用空闲的CPU资源。
  • 配额:业务繁忙、CPU满负载情况下,控制组之间按照配额比例进行CPU抢占。

共享配额基于cpu.shares实现,只有在CPU满负载情况下生效,因此在CPU空闲情况下并不能保证控制组能够抢占到配额比例的CPU资源。CPU空闲并不能理解为没有CPU资源争抢,控制组内任务可以任意使用CPU。虽然CPU平均使用率可能不高,但是某个特定时刻还是可能存在CPU资源争抢的。

例如:10个CPU上运行10个作业,每个CPU上运行1个作业,这种情况下各作业在任意时刻请求CPU都可以瞬间得到响应,作业之间没有任何CPU资源的争抢;但假如10个CPU上运行20个作业,因为作业不会一直占用CPU,在某些时间可能等待IO、网络等,因此CPU使用率可能并不高,此时CPU资源看似空闲,但是在某个时刻可能出现2~N作业同时请求一个CPU的情况出现,即会导致CPU资源争抢,影响作业性能。

专属限额

专属限额:限定资源池中数据库用户在执行作业时可使用的最大CPU核数占总核数的百分比。

专属限额有两层含义:
  • 专属:CPU是某个控制组专属的,其他控制组不能使用空闲的CPU资源。
  • 限额:只能使用限额配置的CPU资源,其他控制组空闲的CPU资源,也不能抢占。

专属限额基于cpuset.cpu实现,通过合理的限额设置可以实现控制组之间CPU资源的绝对隔离,各控制组间任务互不影响。但因为CPU的绝对隔离,因此在控制组空闲时就会导致CPU资源的极大浪费,因此限额设置不能太大。从作业性能来看并不是限额越大越好。

例如:10个作业运行在10个CPU上,CPU平均使用率5%左右;10个作业运行在5个CPU上,CPU平均使用率10%左右。通过上面共享配额的分析可知:虽然10个作业运行在5个CPU上CPU使用率很低,看似空闲,但是相对10个作业运行在10个CPU上还是存在某种程度的CPU资源争抢,因此10个作业运行在10个CPU上性能要好于运行在5个CPU上。但也不是越多越好,10个作业运行在20个CPU上,在任意一个时刻,总会至少10个CPU是空闲的,因此理论上10个作业运行在20个CPU上并不会比运行在10个CPU上性能更好。对于并发为N的控制组,分配cpus小于N的情况下,CPU越多作业性能越好;但是当分配CPUS大于N的情况下,性能就不会有任何提升了。

CPU资源管理应用场景

CPU共享配额和专属限额的管控方式各有优劣,共享配额能够实现CPU资源的充分利用,但是各控制组之间资源隔离不彻底,可能影响查询性能;专属限额的管控方式可以实现CPU资源的绝对隔离,但是在CPU资源空闲时会造成CPU资源的浪费。相对专属限额来说,共享配额拥有更高的CPU使用率和更高的整体作业吞吐量;相对共享配额来说,专属限额CPU隔离彻底,更满足性能敏感用户的使用诉求。

数据库系统中运行多种类型作业出现CPU争抢时,可根据不同场景,选择不同的CPU资源管控方式:

  • 场景一:实现CPU资源的充分利用,不关注单一类型作业的性能,主要关注CPU整体吞吐量。

    应用建议:不建议进行用户之间的CPU隔离管控,无论哪一种CPU管控都会对CPU整体使用率产生影响。

  • 场景二:允许一定程度的CPU资源争抢和性能损耗,在CPU空闲情况下实现CPU资源充分利用,在CPU满负载情况下需要各业务类型按比例使用CPU。

    应用建议:可以采用基于cpu.shares的共享配额管控方式,在实现满负载CPU隔离管控前提下,尽量提高CPU整体使用率。

  • 场景三:部分作业对性能敏感,允许CPU资源的浪费。

    应用建议:可以采用基于cpuset.cpu的专属限额管控方式,实现不同类型作业之间的CPU绝对隔离。

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容