更新时间:2024-05-06 GMT+08:00
准备算法简介
机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。
选择算法的实现方式
ModelArts提供如下方式实现模型训练。
- 使用预置框架
如果您需要使用自己开发的算法,可以选择使用ModelArts预置框架。ModelArts支持了大多数主流的AI引擎,详细请参见预置训练引擎。这些预置引擎预加载了一些额外的python包,例如numpy等;也支持您通过在代码目录中使用“requirements.txt”文件安装依赖包。使用预置框架创建训练作业请参考使用预置框架(自定义脚本)指导。
- 使用自定义镜像
订阅算法和预置框架涵盖了大部分的训练场景。针对特殊场景,ModelArts支持用户构建自定义镜像用于模型训练。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts上训练,请参考使用自定义镜像训练模型。由于自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置引擎无法满足需求,否则不推荐使用。
父主题: 准备算法