虚拟私有云

最佳实践

文档版本01发布日期2024-10-25

版权所有 © 华为云计算技术有限公司 2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

注意

您购买的产品、服务或特性等应受华为云计算技术有限公司商业合同和条款的约束,本文档中描述的全部或部 分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为云计算技术有限公司对本文 档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文 档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

1 节约公网成本	1
2 VPC 网络安全	3
2.1 通过对等连接和第三方防火墙实现多 VPC 互访流量清洗	
2.2 通过第三方防火墙实现 VPC 和云下数据中心互访流量清洗	12
3 基于华为云弹性云服务器自建容器并实现通信	15

▲ 节约公网成本

在您购买带宽产品之前一定要分析您业务系统的流量模型,以便选择适合的产品及计 费模式。

独享带宽

如您需要保证单个弹性公网IP的带宽大小,建议您购买独享带宽。独享带宽只针对单个弹性公网IP进行限速,不受其他业务影响。

支持两种计费模式:

- 按带宽计费:针对流量使用较大且比较稳定的业务。
- 按流量计费:针对流量使用相对较小的业务,搭配共享流量包使用价格更优惠。

对于流量比较稳定,没有突发流量的系统可以考虑选择预付费的按带宽计费模式,可以比正常后付费按带宽计费享受更多价格优惠。

共享带宽

当您有大量业务在云上时,如果每个ECS单独使用一条独享带宽,则需要较多的带宽实例,并且总的带宽费用会较高,如果所有实例共用一条带宽,就可以节省企业的网络运营成本,同时方便运维统计。共享带宽是独立的带宽产品,支持将多个按需计费的弹性公网IP添加到共享带宽,对多个弹性公网IP进行集中限速。您可以将EIP绑定到ECS、NAT网关、ELB等产品,从而使这些产品使用共享带宽。

共享流量包

共享流量包是公网流量的预付费套餐,价格比后付费流量更低,大大降低了公网流量 成本。共享流量包购买后立即生效,自动抵扣按需计费(按流量计费)的EIP带宽产生 的流量资费,使用简单,无需额外操作。

• 共享流量包适用哪些场景?

对于按流量计费的带宽,启用共享流量包后,该带宽所产生的流量费用优先从共 享流量包中进行抵扣。共享流量包全部使用完后,再按后付费流量进行结算。从 节约成本的角度看,流量越大,节省的成本越多。

- 共享流量包使用说明
 - 只能抵扣同一区域产生的带宽流量,不支持跨区域抵扣。

- 共享流量包包括动态和静态两种类型,分别抵扣全动态BGP和静态BGP产生的流量。
- 共享流量包具有使用有效期(从购买开始计算1个自然月或1个自然年)。超 过有效期后,没有使用完的流量无法继续使用。建议根据业务系统历史情况 仔细评估需要多少共享流量包。
- 共享流量包支持自动续费功能。如果您开通了自动续费功能,那么共享流量
 包到期前7天内,系统会尝试自动续费扣款,续费成功后,共享流量包中剩余
 的流量可以在新的有效期内继续使用。
- 共享流量包全部使用完后,系统会自动按后付费流量进行结算,不会导致业务系统无法使用。

2 vpc 网络安全

2.1 通过对等连接和第三方防火墙实现多 VPC 互访流量清洗

应用场景

虚拟私有云支持用户自主配置和管理虚拟网络环境,您可以在VPC中使用安全组及网络ACL来进行网络访问控制,也可以使用第三方防火墙软件,对云上的业务进行灵活的安全控制。

本文为您介绍通过防火墙软件实现VPC内流量安全管控的需求,首先基于VPC对等连接 实现多个VPC网络互通,然后VPC之间互访流量通过防火墙软件过滤清洗。

方案架构

本示例中vpc-A、vpc-B、vpc-C为业务所在的VPC,vpc-X为防火墙所在的VPC,这些 VPC通过对等连接实现网络互通。vpc-A、vpc-B、vpc-C之间互通的流量均需要经过 vpc-X上的防火墙。根据默认路由表配置,所有vpc-X的入方向流量均引入防火墙,通 过防火墙清洗后的流量根据自定义路由表的目的地址送往指定业务VPC。

在<mark>图2-1</mark>中,以ecs-A01访问ecs-C01为例,您可以清晰的看到流量的请求路径和响应路 径。

图 2-1 云上 VPC 互访使用第三方防火墙组网规划

资源规划说明

本示例中需要创建虚拟私有云VPC、弹性云服务器ECS以及VPC对等连接,资源规划总体说明请参见表2-1。

🛄 说明

以下资源规划详情仅为示例,供您参考,您需要根据实际业务情况规划资源。

表 2-1	云上 VPC	互访使用第三方防火墙资源规划总体说明
-------	--------	--------------------

资源	说明
虚拟私有云	VPC的资源规划详情如 <mark>表2-2</mark> 所示。
VPC	本示例中共有4个VPC,包括业务所在VPC和防火墙所在的VPC。这 些VPC位于同一个区域内,且这些VPC的子网网段不重叠。
	 vpc-A、vpc-B、vpc-C为业务VPC,vpc-X为防火墙VPC,这些 VPC通过对等连接实现网络互通。
	● vpc-A、vpc-B、vpc-C、vpc-X各有一个子网。
	● vpc-A、vpc-B、vpc-C各有一个默认路由表,子网关联VPC默认路由表。
	 vpc-X有两个路由表,一个系统自带的默认路由表,一个用户创建的自定义路由表,vpc-X的子网关联自定义路由表。 默认路由表控制vpc-X的入方向流量,自定义路由表控制vpc-X的出方向流量。
	须知 需要通过对等连接通信的VPC的子网网段不能重叠,否则对等连接不会生 效,更多详情请参见 <mark>无效的VPC对等连接配置</mark> 。

资源	说明
弹性云服务器 ECS	ECS的资源规划详情如 <mark>表2-3</mark> 所示。 本示例中共有4个ECS,这些ECS分别位于不同的VPC内,这些ECS如 果位于不同的安全组,需要在安全组中添加规则放通对端安全组的 网络。
VPC对等连接	VPC对等连接的资源规划详情如表2-4所示。 本示例中共3个对等连接,网络连通需求如下: • peer-AX:连通vpc-A和vpc-X的网络。 • peer-BX:连通vpc-B和vpc-X的网络。 • peer-CX:连通vpc-C和vpc-X的网络。 由于VPC对等连接具有传递性,通过路由配置,vpc-A、vpc-B以及 vpc-C之间可以通过vpc-X进行网络通信。

表 2-2 VPC 资源规划详情

VPC名 称	VPC网段	子网名 称	子网网段	关联路由表	子网作用
vрс-А	10.1.0.0/16	subnet- A01	10.1.0.0/24	默认路由表	部署业务的子网
vрс-В	10.2.0.0/16	subnet- B01	10.2.0.0/24	默认路由表	部署业务的子网
vрс-С	10.3.0.0/16	subnet- C01	10.3.0.0/24	默认路由表	部署业务的子网
vpc-Х	192.168.0.0 /16	subnet- X01	192.168.0.0 /24	自定义路由 表	部署防火墙的子网

表 2-3 ECS 资源规划详情

ECS名 称	VPC名 称	子网名 称	私有IP地 址	镜像	安全组	ECS作用		
ecs- A01	vрс-А	subnet- A01	10.1.0.13 9	公共 sg- 镜 demo 像: : Cent 通用 OS Web 8.2 务器 64bit	sg- demo	部署业务的云服务器		
ecs- B01	vрс-В	subnet- B01	10.2.0.93		1家。 Cent OS	Cent	: 通用 Web服	部署业务的云服务器
ecs- C01	vpc-С	subnet- C01	10.3.0.22 0		务器	部署业务的云服务器		
ecs- X01	vрс-Х	subnet- X01	192.168. 0.5			部署防火墙的云服务器		

表 2-4 VPC 对等连接资源规划详情

VPC对等连接名称	本端VPC	对端VPC
peer-AX	vpc-А	vpc-Х
peer-BX	vpc-В	vpc-Х
peer-CX	vpc-C	vpс-Х

组网规划说明

本示例中需要在VPC路由表中配置路由,实现VPC之间的互通以及通过防火墙的流量清洗、组网规划总体说明请参见表2-5。

🛄 说明

以下路由规划详情仅为示例,供您参考,您需要根据实际业务情况规划路由。

表 2-5 云上 VPC 互访使用第三方防火墙组网规划总体说明

路由表	说明
业务所在 VPC	vpc-A、vpc-B、vpc-C为业务VPC,路由表的规划详情如 <mark>表2-6</mark> 所示。 在vpc-A、vpc-B、vpc-C的默认路由表中,分别添加指向其他VPC子 网,下一跳为对等连接的路由,实现不同VPC之间的网络互通。
防火墙所在 VPC	 vpc-X为防火墙VPC,路由表的规划详情如表2-7所示。 1.在vpc-X的默认路由表中,根据您防火墙部署方案分为以下情况: 防火墙部署在一台ECS上,则添加目的地址为默认网段 (0.0.0.0/0),下一跳为ecs-X01的路由,将流量引入防火墙所 在的云服务器。
	 防火墙部署在两台ECS上,对外通过同一个虚拟IP通信,当主 ECS发生故障无法对外提供服务时,动态将虚拟IP切换到备 ECS,继续对外提供服务。此场景下,则添加目的地址为默认 网段(0.0.0.0/0),下一跳为虚拟IP的路由,将流量进入虚拟 IP,由虚拟IP将流量引入防火墙所在的云服务器。
	本文以防火墙部署在一台ECS上为例,vpc-A、vpc-B、vpc-C互访 的流量,都需要经过vpc-X,然后通过该条路由,将流量引入防火 墙中进行清洗过滤。
	2. 在vpc-X的自定义路由表中,添加目的地址为业务VPC子网网段 (vpc-A、vpc-B、vpc-C子网),下一跳为对等连接的路由,将清 洗后的流量引入业务VPC。

表 2-6 业务 VPC 路由表规划

VP C 名称	VPC路由 表	目的地址	下一跳类型	下一跳	路由类 型	路由作用
vp c- A	默认路由 表:rtb- vpc-A	10.2.0.0/2 4	对等连接	peer-AX	自定义	 目的地址指向 vpc-B的子网 subnet-B01 连通子网subnet- A01和subnet- B01
		10.3.0.0/2 4	对等连接	peer-AX	自定义	 目的地址指向 vpc-C的子网 subnet-C01 连通子网subnet- A01和subnet- C01
		192.168.0. 0/24	对等连接	peer-AX	自定义	 目的地址指向 vpc-X的子网 subnet-X01 连通子网subnet- A01和subnet- X01
vp c- B	vp 默认路由 c- 表: rtb- B vpc-B	10.1.0.0/2 4	对等连接	peer-BX	自定义	 目的地址指向 vpc-A的子网 subnet-A01 连通子网subnet- A01和subnet- B01
		10.3.0.0/2 4	对等连接	peer-BX	自定义	 目的地址指向 vpc-C的子网 subnet-C01 连通子网subnet- B01和subnet- C01
		192.168.0. 0/24	对等连接	peer-BX	自定义	 目的地址指向 vpc-X的子网 subnet-X01 连通子网subnet- B01和subnet- X01

VP C 名称	VPC路由 表	目的地址	下一跳类 型	下一跳	路由类 型	路由作用
vp c- C	默认路由 表:rtb- vpc-C	10.1.0.0/2 4	对等连接	peer-CX	自定义	• 目的地址指向 vpc-A的子网 subnet-A01
						● 连通子网subnet- A01和subnet- C01
		10.2.0.0/2 4	对等连接	peer-CX	自定义	• 目的地址指向 vpc-B的子网 subnet-B01
						● 连通子网subnet- B01和subnet- C01
		192.168.0. 0/24	对等连接	peer-CX	自定义	• 目的地址指向 vpc-X的子网 subnet-X01
						● 连通子网subnet- C01和subnet- X01

表 2-7 防火墙 VPC 路由表规划

VP C 名称	VPC路由 表	目的地址	下一跳类 型	下一跳	路由类 型	路由作用
vpc -X	默认路由 表:rtb- vpc-X	0.0.0/0	服务器实例	ECS-X	自定义	 目的地址指向部 署防火墙的ecs-X 将vpc-X入方向的 流量引入防火墙 本文以防火墙部署在 一台ECS上为例,如 果您的防火墙同时部 署在多台ECS上,对 外通过虚拟IP通信, 则路由下一跳选择虚 拟IP。

VP C 名称	VPC路由 表	目的地址	下一跳类 型	下一跳	路由类 型	路由作用
	自定义路 由表: rtb-vpc- custom- X	10.1.0.0/2 4	对等连接	peer-AX	自定义	 目的地址指向 vpc-A的子网 subnet-A01 连通子网subnet- A01和subnet- X01
		10.2.0.0/2 4	对等连接	peer-BX	自定义	 目的地址指向 vpc-B的子网 subnet-B01 连通子网subnet- B01和subnet- X01
		10.3.0.0/2 4	对等连接	peer-CX	自定义	 目的地址指向 vpc-C的子网 subnet-C01 连通子网subnet- C01和subnet- X01

约束与限制

- VPC对等连接只能实现同区域VPC的网络互通,因此请确保您的VPC位于同一个区域内。
- 需要通过VPC对等连接通信的VPC的子网网段不能重叠,否则对等连接不会生效, 更多详情请参见无效的VPC对等连接配置。
- 第三方防火墙部署的ECS所在的子网需要关联自定义路由表 ,请确保您资源所在 的区域支持自定义路由表功能。
 如果在网络控制台的左侧子栏目看到独立的"路由表"选项,表示支持自定义路 由表功能。

图 2-2 支持定义路路由

虚	•		
	我的VPC		
	子网		
	路由表		
	对等连接		

操作步骤

步骤1 在区域A内,创建4个VPC及其子网。

具体方法请参见创建虚拟私有云和子网。

本示例中的VPC和子网资源规划详情请参见表2-2。

- 步骤2 创建vpc-X内的自定义路由表,并将subnet-X01关联至自定义路由表。
 - 在vpc-X内,创建自定义路由表。
 具体方法请参见创建自定义路由表。
 - 将子网subnet-X01的关联至步骤2.1创建的自定义路由表。
 子网创建完成后,自动关联VPC默认路由表,因此当前子网subnet-X01关联的是 vpc-X的默认路由表,需要更换为步骤2.1创建的自定义路由表。
 具体方法请参见更换子网关联的路由表。
- 步骤3 创建四个ECS,分别属于不同的VPC内。

具体方法请参见<mark>自定义购买ECS</mark>。

- 步骤4 配置ecs-X的网卡,并安装第三方防火墙软件。
 - 1. 关闭ecs-X的网卡"源/目的检查"。
 - a. 在ECS列表中,单击目标ECS的名称。 进入ECS详情页。
 - b. 选择"弹性网卡"页签,并单击 ~ 展开ECS的网卡详情区域,可以查看"源/目的检查"功能。
 如图2-3所示,表示"源/目的检查"功能已关闭。

图 2-3 关闭网卡的"源/目的检查"功能

< ecs								
基本信息	云硬盘	弹性网卡	安全组	弹性公网IP	监控	标签	云备份	
新的扩展网·	卡在添加成功局	6, 需要在弹性云	服务器内部配置的	策略路由来实现扩展	网 卡 的通信。	如何配置策略	路由?	
绑定弹性网·	卡、解绑弹性网	刚卡或切换VPC后	,建议您 <mark>设置</mark> 网·	卡多队列以提升网络	性能。			
(绑定弹性	(總定僅件网卡) 您还可以选择绑定1块弹件网卡							
~ 192	2.168.0.195							
名称	-	-						
网卡ID	0)bca4a90-a1{	Ş	007ea35a				
状态		②激活						
弹性公网	IP -	-						
安全组	5	Sg-A						
源/目的格		0						
IPv4子网]ID 2	2b0b04ca	5-e9d13	b4d6511				
IPv6子网	ID -	-						

2. 在ecs-X中安装第三方防火墙。

步骤5 (可选)为云服务器配置虚拟IP。

此步骤为可选:您可以在vpc-X中创建主备服务器,并绑定同一虚拟IP,当主服务器发 生故障无法对外提供服务时,动态将虚拟IP切换到备服务器,继续对外提供服务。如 果部署第三方防火墙的弹性云服务器不需要主备,此步骤不需要执行。

- 在vpc-X的子网内,创建虚拟IP。
 具体方法请参见申请虚拟IP地址。
- 将虚拟IP绑定到部署防火墙的主备ECS上。
 具体方法请参见虚拟IP绑定云服务器。

步骤6 创建3个VPC对等连接,并配置路由。

- 1. 创建3个VPC对等连接。
 - 如果您的VPC在同一个账号内,具体方法请参见<mark>创建同一账户下的对等连</mark> 接,您只需要执行该章节的"创建VPC对等连接"小节。
 - 如果您的VPC在不同一个账号内,具体方法请参见创建不同账户下的对等连接,您需要执行该章节的"创建VPC对等连接"小节和"接受对等连接"小节。

本示例中的VPC对等连接资源规划详情请参见表2-4。

2. 在3个业务VPC的默认路由表中,添加指向其他3个VPC,下一跳为对等连接的路 由。

具体方法请参见添加自定义路由。

本示例中,分别在vpc-A、vpc-B、vpc-C的路由表中,添加<mark>表2-6</mark>中规划的路由。

- 在防火墙VPC的默认路由表和自定义路由表中,分别配置路由。
 具体方法请参见添加自定义路由。
 本示例中,分别在vpc-X的默认路由表和自定义路由表中,添加表2-7中规划的路由。
- 步骤7 登录ECS,验证防火墙是否生效。

ECS有多种登录方法,具体请参见<mark>登录弹性云服务器</mark>。

本示例是通过管理控制台远程登录(VNC方式)。

登录ecs-A01,验证vpc-A与vpc-B网络互通情况。
 ping ecs-B01的私有IP地址

命令示例:

ping 10.2.0.93

回显类似如下信息,表示网络互通配置成功。

```
[root@ecs-A01 ~]# ping 10.2.0.93
PING 10.2.0.93 (10.2.0.93) 56(84) bytes of data.
64 bytes from 10.2.0.93: icmp_seq=1 ttl=64 time=0.849 ms
64 bytes from 10.2.0.93: icmp_seq=2 ttl=64 time=0.455 ms
64 bytes from 10.2.0.93: icmp_seq=3 ttl=64 time=0.385 ms
64 bytes from 10.2.0.93: icmp_seq=4 ttl=64 time=0.372 ms
```

--- 10.2.0.93 ping statistics ---

- 2. 不要中断步骤7.1,登录ecs-X01,验证vpc-A到vpc-B的流量是否通过ecs-X01。
- 在ecs-X01上,执行以下命令,检查eth0网卡的流量变化。
 至少连续执行两次命令,检查RX packets和TX packets是否变化。
 ifconfig eth0

流量变化说明,表示流量通过ecs-X01,流量被防火墙过滤。 [root@ecs-X01 ~]# ifconfig eth0 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 192.168.0.5 netmask 255.255.255.0 broadcast 192.168.0.255 inet6 fe80::f816:3eff:feb6:a632 prefixlen 64 scopeid 0x20<link> ether fa:16:3e:b6:a6:32 txqueuelen 1000 (Ethernet) RX packets 726222 bytes 252738526 (241.0 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 672597 bytes 305616882 (291.4 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 [root@ecs-X01 ~]# ifconfig eth0 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 192.168.0.5 netmask 255.255.255.0 broadcast 192.168.0.255 inet6 fe80::f816:3eff:feb6:a632 prefixlen 64 scopeid 0x20<link> ether fa:16:3e:b6:a6:32 txqueuelen 1000 (Ethernet) RX packets 726260 bytes 252748508 (241.0 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 672633 bytes 305631756 (291.4 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

4. 参考步骤7.1~步骤7.3,检查其他VPC之间的通信情况。

----结束

2.2 通过第三方防火墙实现 VPC 和云下数据中心互访流量清洗

操作场景

用户IDC数据中心和华为云通过云专线(DC)或虚拟专用网络(VPN)通信成功,在 华为云的内网上使用第三方虚拟化防火墙,使得云上云下的业务流量经过自定义的第 三方防火墙,对云上的业务进行灵活的安全控制。

本文以用户同区域的多VPC与本地IDC连通为例,介绍混合云使用第三方防火墙的应用场景。

方案优势

- 支持用户的第三方防火墙。
- 用户云上云下流量经过第三方防火墙。
- 支持用户自定义的更加灵活的安全策略。

典型拓扑

假设用户业务部署在VPC1、VPC2、VPC3及本地IDC中,并且需要在云上使用第三方虚 拟化防火墙。用户可以将第三方虚拟化防火墙配置在VPC2的弹性云服务器中,使用对 等连接及路由规则将VPC间进行连通。同时,在VPC3中创建云专线,使云上VPC与云 下IDC实现连通。

实现方式如下:

图 2-4 场景示意

前提条件

VPC1与VPC2,VPC3子网网段不能重叠,否则对等连接无法通信成功。

配置步骤

步骤1 创建VPC

创建VPC1, VPC2, VPC3。

具体操作请参见创建虚拟私有云和子网。

🛄 说明

创建的VPC1, VPC2, VPC3网段不能重叠。例如VPC1: 10.0.1.0/24; VPC2: 10.0.2.0/24; VPC3: 172.16.0.0/16

步骤2 创建弹性云服务器

1. 创建ECS1, ECS2, 分别属于VPC1的子网, VPC2的子网。 具体方法请参见**自定义购买ECS**。

🛄 说明

ECS2的网卡要关闭源/目的检查。

2. 在弹性云服务器ECS2中部署第三方防火墙。

步骤3 创建对等连接

VPC1和VPC2, VPC2和VPC3, 分别创建对等连接, 实现VPC间的连通。

创建对等连接时,先不配置本端和对端的路由规则,具体配置路由规则参见<mark>配置路由</mark> <mark>规则</mark>。

具体操作请参见创建对等连接。

步骤4 创建子网路由表

创建自定义路由表,关联VPC2的子网,控制VPC2的子网的出流量走向。 具体操作请参见**创建自定义路由表**。

步骤5 创建虚拟IP并绑定弹性云服务器(可选)

您可以在VPC2中创建主备服务器,并绑定同一虚拟IP,当主服务器发生故障无法对外 提供服务时,动态将虚拟IP切换到备服务器,继续对外提供服务。如果不需要备用服 务器,此步骤可以省略。

1. 在VPC2的子网下创建虚拟IP。

具体操作请参见<mark>申请虚拟IP地址</mark>。

将创建的虚拟IP绑定到弹性云服务器ECS2上。
 具体操作请参考虚拟IP绑定云服务器。

步骤6 创建云专线

使用VPC3创建专线,使云上VPC与云下IDC实现连通。具体操作参见创建云专线。

步骤7 配置路由规则

通过配置路由规则将指向目的地址的流量转发到指定的下一跳地址。

- 1. 修改VPC1的默认路由表,增加一条路由规则: VPC1 > 用户IDC,目的地址:用户IDC的CIDR,下一跳: VPC1与VPC2的对等连接。
- 修改VPC2的默认路由表,增加一条路由规则:
 目的地址: 0.0.0.0/0,下一跳: ECS2。
 如果涉及主备部署,创建了虚拟IP的情况下,此处下一跳是虚拟IP的地址。
- 3. 修改VPC2的子网路由表,增加两条规则:
 - a. VPC2 > VPC1,目的地址: VPC1的CIDR,下一跳: VPC1与VPC2的对等连接。
 - b. VPC2 > 用户IDC,目的地址:用户IDC的CIDR,下一跳:VPC2与VPC3的对 等连接。
- 修改VPC3的默认路由表,增加一条路由规则:
 目的地址: 0.0.0.0/0,下一跳: VPC2和VPC3的对等连接。
 由于上述的创建云专线创建了专线,此处有一条系统自动下发的到专线的路由

-----结束

配置验证

登录弹性云服务器ECS1访问用户IDC,在ECS2中可以收到ECS1发给用户IDC的报文, 报文经过ECS2中的防火墙,被防火墙规则过滤。

3 基于华为云弹性云服务器自建容器并实现通

操作场景

在不使用华为云容器产品的情况下,支持用户在华为云弹性云服务器中部署容器,并 实现同一个子网中不同弹性云服务器内的容器相互通信。

方案优势

- 云服务器内部署容器,容器地址非VPC网络地址,通过VPC路由方式转发。
- 只需简单配置路由表,就可实现容器网络的互通,灵活方便。

典型拓扑

此场景下对网络拓扑有如下要求:

- 弹性云服务器在同一子网内。如图中VPC子网网段为192.168.0.0/24,弹性云服务器的IP地址为192.168.0.2和192.168.0.3。
- 容器网段与VPC子网不在一个网段,同一台弹性云服务器内的容器在同一个网段,不同弹性云服务器内容器的网段不同。如图中ECS1中容器网段为10.0.2.0/24, ECS2中容器网段为10.0.3.0/24。
- 发送给容器的数据包下一跳为容器所在弹性云服务器。如图中发送给10.0.2.0/24
 网段的数据包下一跳为192.168.0.2,发送给10.0.3.0/24网段的数据包下一跳为192.168.0.3。

图 3-1 网络拓扑

配置步骤

步骤1 创建VPC及VPC网段。

具体操作请参见创建虚拟私有云和子网。

步骤2 创建弹性云服务器。

具体方法请参见<mark>自定义购买ECS</mark>。

创建完成后在弹性云服务器网卡上取消源地址校验,如<mark>图3-2</mark>所示。

图 3-2 取消源地址校验

步骤3 在弹性云服务器上部署容器。

您可以使用Docker CE完成容器的部署,详细操作步骤,请参考第三方软件的帮助文 档,本文不做详细说明。

🛄 说明

同一台ECS内的容器需要在同一个网段,且不同ECS内容器网段不能重叠。

步骤4 添加VPC路由表信息。

在VPC路由表中添加路由信息。让发送给10.0.2.0/24网段的数据包下一跳为 192.168.0.2,发送给10.0.3.0/24网段的数据包下一跳为192.168.0.3,也就是让发送给 容器的数据包下一跳都为容器所在ECS。

🗀 说明

- 单个VPC中内默认支持50个不同网段的容器部署,如需扩大,请申请扩大VPC路由表数目。
- 容器迁移到其他弹性云服务器后,需要在VPC路由表中添加新的路由信息。

步骤5 添加安全组规则。

为了能够通过traceroute命令和ping命令测试容器网络是否连通,为弹性云服务器的安全组添加如表3-1所示规则,开放ICMP和UDP规则。

具体操作请参见添加安全组规则。

表 3-1 安全组规则

方向	协议/应用	端口	源地址
入方向	ІСМР	全部	0.0.0/0
入方向	UDP	全部	0.0.0/0

----结束

配置验证

分别在两台弹性云服务器上部署容器,通过ping来测试容器网络是否能连通。

以使用Docker部署容器为例,在ECS1上先创建一个网络连接my-net并指定容器网段为 10.0.2.0/24,然后创建容器并指定使用my-net。

\$ docker network create --subnet 10.0.2.0/24 my-net \$ docker run -d --name nginx --net my-net -p 8080:80 nginx:alpine

在ECS2上同样创建网络连接和容器,容器网段为10.0.3.0/24。

\$ docker network create --subnet 10.0.3.0/24 my-net \$ docker run -d --name nginx --net my-net -p 8080:80 nginx:alpine

将弹性云服务器上iptables里面filter表的FORWARD链的默认策略设置为ACCEPT。

🗀 说明

此处设置是因为Docker为安全性将iptables里面filter表的FORWARD链默认策略设置成了drop,因此需要修改。

\$ iptables -P FORWARD ACCEPT

进入10.0.2.2这个容器,尝试ping和traceroute 10.0.3.2,可以看到能够ping通,且 traceroute路由路径为10.0.2.2 -> 10.0.2.1 -> 192.168.0.3 -> 10.0.3.2,与前面设置的 路由转发规则一致。

[root@ecs1 ~]# docker exec -it nginx /bin/sh / # traceroute -d 10.0.3.2 traceroute to 10.0.3.2 (10.0.3.2), 30 hops max, 46 byte packets 1 10.0.2.1 (10.0.2.1) 0.007 ms 0.004 ms 0.007 ms 2 192.168.0.3 (192.168.0.3) 0.232 ms 0.165 ms 0.248 ms 3 10.0.3.2 (10.0.3.2) 0.366 ms 0.308 ms 0.158 ms / # ping 10.0.3.2 PING 10.0.3.2 (10.0.3.2): 56 data bytes 64 bytes from 10.0.3.2: seq=0 ttl=62 time=0.570 ms 64 bytes from 10.0.3.2: seq=1 ttl=62 time=0.343 ms 64 bytes from 10.0.3.2: seq=2 ttl=62 time=0.304 ms 64 bytes from 10.0.3.2: seq=3 ttl=62 time=0.319 ms