# 云硬盘

最佳实践

文档版本01发布日期2018-12-21





#### 版权所有 © 华为技术有限公司 2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

#### 商标声明

#### 注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或 特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声 明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文 档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

# 安全声明

## 漏洞处理流程

华为公司对产品漏洞管理的规定以"漏洞处理流程"为准,该流程的详细内容请参见如下网址: https://www.huawei.com/cn/psirt/vul-response-process 如企业客户须获取漏洞信息,请参见如下网址: https://securitybulletin.huawei.com/enterprise/cn/security-advisory

目录

| 1 通过 LVM 管理云硬盘                 | 1  |
|--------------------------------|----|
| 1.1 通过 LVM 管理云硬盘方案概述           | 1  |
| 1.2 资源规划                       | 2  |
| 1.3 操作流程                       | 2  |
| 1.4 实施步骤                       | 3  |
| 1.4.1 安装 LVM                   | 3  |
| 1.4.2 通过 LVM 创建逻辑卷             |    |
| 1.4.3 创建并挂载文件系统                | 7  |
| 1.4.4 使用未分配容量扩展逻辑卷的容量          | 10 |
| 1.4.5 扩容云硬盘扩展逻辑卷的容量            | 11 |
| 1.4.6 新增云硬盘扩展卷组的容量             | 13 |
| 2 使用云硬盘组建 RAID 磁盘阵列            |    |
| 2.1 使用云硬盘组建 RAID 磁盘阵列概述        |    |
| 2.2 资源规划                       |    |
| 2.3 实施步骤                       |    |
| 2.3.1 创建云服务器                   |    |
| 2.3.2 创建并挂载云硬盘                 |    |
| 2.3.3 使用 mdadm 工具创建云硬盘 RAID 阵列 | 21 |
| 2.3.4 配置云硬盘 RAID 阵列开机自启动       | 24 |

# ▲ 通过 LVM 管理云硬盘

# 1.1 通过 LVM 管理云硬盘方案概述

LVM是逻辑卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制。

LVM通过在云硬盘和文件系统之间添加一个逻辑层,来为文件系统屏蔽下层云硬盘分区布局,提高硬盘分区管理的灵活性,LVM的架构图如<mark>图1-1</mark>所示。



图 1-1 LVM 架构

从上面LVM架构图中可以看出,使用LVM管理云硬盘的基本过程如下:

- 1. 将云硬盘创建为物理卷
- 2. 将多个物理卷组合成卷组
- 3. 在卷组中创建逻辑卷
- 4. 在逻辑卷之上创建文件系统

通过LVM管理云硬盘之后,文件系统不再受限于云硬盘的大小,可以分布在多个云硬 盘上,也可以动态扩容。

如果需要对<mark>图1-1</mark>中的"ext4"文件系统进行扩容,通常有两种做法:

- 卷组中未分配的空间充足时,直接扩展逻辑卷的容量
- 卷组中未分配的空间不足时,扩展卷组的容量,再扩展逻辑卷的容量

## 术语

- 物理卷(Physical Volume)
   物理卷由云硬盘和LVM管理参数组成,是LVM的基本存储设备。
- 卷组(Volume Group)
   卷组是将所有的物理卷首尾相连,组成的一个在逻辑上连续编址的大存储池。
- 逻辑卷(Logical Volume)
   逻辑卷是卷组按照逻辑进行分区所得到的。

# 1.2 资源规划

| <b>表 1-1</b> 资》 | 原和成本规划 |
|-----------------|--------|
|-----------------|--------|

| 资源         | 资源说明                 | 数<br>量 | 每月费用                                  |
|------------|----------------------|--------|---------------------------------------|
| 弹性公网IP     | 弹性云服务器需要绑定弹性公<br>网IP | 1      | 具体的计费方式及标准请参<br>考 <mark>计费说明</mark> 。 |
| 弹性云服务<br>器 | 操作系统:CentOS          | 1      | 具体的计费方式及标准请参<br>考 <mark>计费说明</mark> 。 |
| 云硬盘        | 数据盘: 10G             | 4      | 具体的计费方式及标准请参<br>考 <mark>计费说明</mark> 。 |

# 1.3 操作流程

通过LVM管理云硬盘操作流程如下:

- 1. 安装LVM
- 2. 通过LVM创建逻辑卷
- 3. 创建并挂载文件系统
- 4. 扩容逻辑卷和文件系统
  - a. 使用未分配容量扩展逻辑卷的容量



# 1.4 实施步骤

# 1.4.1 安装 LVM

## 操作场景

默认情况下,弹性云服务器系统中并没有安装LVM,因此需要您手工安装。本章节将 帮助您查询您的弹性云服务器是否安装了LVM以及如何去安装LVM。

本文以云服务器的操作系统为"CentOS 7.5 64位"为例,不同云服务器的操作系统的格式化操作可能不同,本文仅供参考。

## 前提条件

本指导假定您已有弹性云服务器,并为弹性云服务器绑定了弹性公网IP。

## 操作步骤

步骤1 以root用户登录弹性云服务器。

#### 步骤2 执行以下命令,查看系统中是否安装了LVM管理工具。

**rpm -qa |grep lvm2** [root@ecs-lvmtest ~]# rpm -qa |grep lvm2 lvm2-libs-2.02.177-4.el7.x86\_64 lvm2-2.02.177-4.el7.x86\_64

- 如果得到以上回显信息,则说明系统中已经安装了LVM工具,可直接查看通过 LVM创建逻辑卷。
- 如果未得到以上回显信息,则说明系统中未安装LVM工具,请执行步骤3完成安装。

步骤3 执行以下命令,并根据回显提示信息安装LVM工具。

#### yum install lvm2

回显类似如下信息:

Installed: lvm2.x86\_64 7:2.02.177-4.el7

Dependency Installed: device-mapper-event.x86\_64 7:1.02.146-4.el7 7:1.02.146-4.el7 device-mapper-persistent-data.x86\_64 0:0.7.3-3.el7

device-mapper-event-libs.x86\_64

lvm2-libs.x86\_64 7:2.02.177-4.el7

Dependency Updated: device-mapper.x86\_64 7:1.02.146-4.el7

device-mapper-libs.x86\_64 7:1.02.146-4.el7

Complete!

当回显显示"Complete!"时,表示安装LVM完成。

----结束

# 1.4.2 通过 LVM 创建逻辑卷

## 操作场景

如图1-3所示,本章节指导您在两块10GB的云硬盘之上创建一个15GB的逻辑卷。

门 说明

创建逻辑卷使用的多块云硬盘,规格可以不同。

创建过程为依次创建物理卷、创建卷组和创建逻辑卷。

#### 图 1-3 创建 LVM 逻辑卷示例



## 前提条件

安装LVM的弹性云服务器已经挂载了两块云硬盘。

#### 操作步骤

- 步骤1 以root用户登录弹性云服务器。
- 步骤2 执行如下命令,查看磁盘并记录设备名称。

fdisk -l | grep /dev/vd | grep -v vda

回显类似如下信息:

[root@ecs-lvmtest ~]# fdisk -l | grep /dev/vd | grep -v vda Disk /dev/vdb: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vdc: 10.7 GB, 10737418240 bytes, 20971520 sectors

可以看到云服务器上挂载的2块磁盘,设备名称分别为"/dev/vdb"、"/dev/vdc"。

#### 步骤3 将云硬盘创建为物理卷。

1. 执行以下命令,将云硬盘创建为物理卷。

pvcreate 磁盘设备名1 磁盘设备名2 磁盘设备名3...

#### 参数说明如下:

磁盘设备名:此处需要填写磁盘的设备名称,如果需要批量创建,可以填写多个 设备名称,中间以空格间隔。

命令示例:

#### pvcreate /dev/vdb /dev/vdc

回显类似如下信息:

[root@ecs-lvmtest ~]# pvcreate /dev/vdb /dev/vdc Physical volume "/dev/vdb" successfully created. Physical volume "/dev/vdc" successfully created. 2.

| 执行如下命令,查看系                                                                                                                                                                                                                                                                                                     | 统中物理卷的详细信息。                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| pvdisplay                                                                                                                                                                                                                                                                                                      |                                                                                                                         |
| 回显类似如下信息:                                                                                                                                                                                                                                                                                                      |                                                                                                                         |
| [root@ecs-lvmtest ~]# pvdis<br>"/dev/vdc" is a new physical<br>NEW Physical volume<br>PV Name /dev/vd<br>VG Name<br>PV Size 10.00 GiB<br>Allocatable NO<br>PE Size 0<br>Total PE 0<br>Free PE 0<br>Allocated PE 0<br>PV UUID dypyLh-<br>"/dev/vdb" is a new physical<br>NEW Physical volume<br>PV Name /dev/vd | play<br>al volume of "10.00 GiB"<br><br>k<br>k<br>xjlj-PvG3-jD0j-yup5-O7SI-462R7C<br>al volume of "10.00 GiB"<br><br>Ib |
| VG Name<br>PV Size 10.00 GiB<br>Allocatable NO<br>PE Size 0<br>Total PE 0<br>Free PE 0<br>Allocated PE 0<br>PV UUID srv5H1-                                                                                                                                                                                    | tgLu-GRTl-Vns8-GfNK-jtHk-Ag4HHB                                                                                         |
| 可以看到系统有两个新<br>vdb"。                                                                                                                                                                                                                                                                                            | 的物理卷,物理卷名称分别为                                                                                                           |

步骤4 将多个物理卷组合成卷组。

1. 执行以下命令,创建卷组。

vgcreate 卷组名 物理卷名称1 物理卷名称2 物理卷名称3...

参数说明如下:

- 卷组名:可自定义,此处以vgdata为例。
- 物理卷名称:此处需要填写待添加进卷组的所有物理卷名称,中间以空格隔 开。

命令示例:

#### vgcreate vgdata /dev/vdb /dev/vdc

回显类似如下信息:

[root@ecs-lvmtest ~]# vgcreate vgdata /dev/vdb /dev/vdc Volume group "vgdata" successfully created

2. 执行如下命令,查看系统中卷组的详细信息。

#### vgdisplay

#### 回显类似如下信息:

```
[root@ecs-lvmtest ~]# vgdisplay
 --- Volume group -
VG Name
                  vgdata
System ID
 Format
                 lvm2
 Metadata Areas
                   2
 Metadata Sequence No 1
 VG Access
                 read/write
 VG Status
                 resizable
MAX LV
                 0
Cur LV
                0
Open LV
                 0
```

| Max PV          | 0                                      |
|-----------------|----------------------------------------|
| Cur PV          | 2                                      |
| Act PV          | 2                                      |
| VG Size         | 19.99 GiB                              |
| PE Size         | 4.00 MiB                               |
| Total PE        | 5118                                   |
| Alloc PE / Size | 0 / 0                                  |
| Free PE / Size  | 5118 / 19.99 GiB                       |
| VG UUID         | NLkZV7-hYYE-0w66-tnlt-Y6jL-lk7S-76w4P6 |
|                 |                                        |

#### 步骤5 在卷组中创建逻辑卷

1. 执行如下命令,创建逻辑卷。

lvcreate -L 逻辑卷大小 -n 逻辑卷名称 卷组名称

参数说明如下:

- 逻辑卷大小:该值应小于卷组剩余可用空间大小,单位可以选择"MB"或 "GB"。
- 逻辑卷名称:可自定义,此处以lvdata1为例。
- 卷组名称:此处需要填写逻辑卷所在的卷组名称。

命令示例:

#### lvcreate -L 15GB -n lvdata1 vgdata

回显类似如下信息:

[root@ecs-lvmtest ~]# lvcreate -L 15GB -n lvdata1 vgdata Logical volume "lvdata1" created.

2. 执行如下命令,查询系统中逻辑卷的详细信息。

#### lvdisplay

回显类似如下信息:

[root@ecs-lvmtest ~]# lvdisplay --- Logical volume --LV Path /dev/vgdata/lvdata1 LV Name lvdata1 VG Name vgdata LV UUID c7mNcF-CdPW-5PLD-1qVj-QZpB-nHfy-PHXchV LV Write Access read/write LV Creation host, time ecs-lvmtest.novalocal, 2018-11-29 11:28:18 +0800 LV Status available # open 0 LV Size 15.00 GiB Current LE 3840 Segments 2 Allocation inherit Read ahead sectors auto - currently set to 8192 Block device 252:0

#### ----结束

# 1.4.3 创建并挂载文件系统

#### 操作场景

在创建完逻辑卷之后,需要在逻辑卷之上创建文件系统并挂载文件系统到相应目录 下。本章节指导您在逻辑卷之上创建"ext4"文件系统并挂载文件系统到"/Data1" 目录下。

## 操作步骤

- 步骤1 以root用户登录弹性云服务器。
- 步骤2 执行如下命令,创建文件系统。

mkfs.文件格式 逻辑卷路径

命令示例:

#### mkfs.ext4 /dev/vgdata/lvdata1

回显类似如下信息:

[root@ecs-lvmtest ~]# mkfs.ext4 /dev/vgdata/lvdata1 mke2fs 1.42.9 (28-Dec-2013) Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=0 blocks, Stripe width=0 blocks 983040 inodes, 3932160 blocks 196608 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=2151677952 120 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done Writing inode tables: done Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done

#### 步骤3 执行如下命令,创建挂载目录。

mkdir <u>挂载目</u>录

命令示例:

mkdir /Data1

步骤4 执行如下命令,将文件系统挂载到目录下。

mount 逻辑卷路径 挂载目录

命令示例:

#### mount /dev/vgdata/lvdata1 /Data1

步骤5 执行如下命令,查询文件系统挂载信息。

mount | grep 挂载目录

命令示例:

#### mount | grep /Data1

#### 回显类似如下信息:

[root@ecs-lvmtest ~]# mount | grep /Data1 /dev/mapper/vgdata-lvdata1 on /Data1 type ext4 (rw,relatime,data=ordered)

"dev/mapper/vgdata-lvdata1"为文件系统路径,记录此路径,步骤6中需要使用此路径。

#### 步骤6 执行以下步骤,设置云服务器系统启动时自动挂载文件系统。 如果未进行此项设置,在弹性云服务器重启时重新手动挂载文件系统。 1. 执行如下命令,查询文件系统的UUID。 blkid 文件系统路径 以查询 "dev/mapper/vgdata-lvdata1" 的UUID为例: blkid /dev/mapper/vgdata-lvdata1 回显类似如下信息: [root@ecs-lvmtest ~]# blkid /dev/mapper/vgdata-lvdata1 /dev/mapper/vgdata-lvdata1: UUID="c6a243ce-5150-41ac-8816-39db54d1a4b8" TYPE="ext4" UUID为"c6a243ce-5150-41ac-8816-39db54d1a4b8"。 2. 执行以下命令, 打开"/etc/fstab"文件。 vi /etc/fstab 回显类似如下信息: [root@ecs-lvmtest ~]# vi /etc/fstab # /etc/fstab # Created by anaconda on Tue Nov 7 14:28:26 2017 # Accessible filesystems, by reference, are maintained under '/dev/disk' # See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info UUID=27f9be47-838b-4155-b20b-e4c5e013cdf3 / ext4 defaults 11 UUID=2b2000b1-f926-4b6b-ade8-695ee244a901 /boot 12 ext4 defaults 按"i"进入编辑模式。 3. 将光标移至文件末尾,按"Enter",添加如下内容。 4. UUID=c6a243ce-5150-41ac-8816-39db54d1a4b8 /Data1 ext4 defaults 00 内容说明如下: 第一列:UUID,此处填写1查询的UUID; 第二列:文件系统的挂载目录,此处填写<mark>步骤3</mark>创建的挂载目录"/Data1"; 第三列: 文件系统的文件格式, 此处填写<mark>步骤2</mark>设置的文件格式 "ext4": 第四列: 挂载选项, 此处以"defaults"为例; 第五列: 备份选项,设置为"1"时,系统自动对该文件系统进行备份;设置 为"0"时,不进行备份。此处以"0"为例; 第六列:扫描选项,设置为"1"时,系统在启动时自动对该文件系统进行扫 描;设置为"0"时,不进行扫描。此处以"0"为例。 按"Esc",输入":wq!",并按"Enter"。 5. 保存设置并退出vi编辑器。 **步骤7**执行以下步骤, 验证自动挂载功能。 执行如下命令,卸载文件系统。 1. umount 逻辑卷路径 命令示例: umount /dev/vgdata/lvdata1 2. 执行如下命令,将/etc/fstab文件所有内容重新加载。 mount -a 3. 执行如下命令,查询文件系统挂载信息。

#### mount | grep <u>挂载目录</u>

命令示例:

#### mount | grep /Data1

回显类似如下信息,说明自动挂载功能生效:

[root@ecs-lvmtest ~]# mount | grep /Data1 /dev/mapper/vgdata-lvdata1 on /Data1 type ext4 (rw,relatime,data=ordered)

----结束

## 1.4.4 使用未分配容量扩展逻辑卷的容量

#### 操作场景

当逻辑卷容量不能满足用户需求时,可以扩展逻辑卷的容量。本指导假设您创建的 15GB逻辑卷已经不能满足需求,需要增加4GB容量。

#### 🗋 说明

在进行扩容时,请确保需要扩容的逻辑卷所在的卷组有足够的空闲空间。如果卷组的空闲空间不能满足当前逻辑卷扩容的需求,请参考<mark>扩容云硬盘扩展逻辑卷的容量</mark>或者<mark>新增云硬盘扩展卷组的</mark>容量对卷组进行扩容。

#### 操作步骤

- 步骤1 以root用户登录弹性云服务器。
- 步骤2 执行如下命令,扩展逻辑卷的容量。

#### lvextend -L + 增加容量 逻辑卷路径

参数说明如下:

- 增加容量:该值应小于组卷剩余可用空间大小,单位可以选择"MB"或 "GB"。
- 逻辑卷路径:此处需要填写待扩容的逻辑卷的路径。

命令示例:

lvextend -L +4GB /dev/vgdata/lvdata1

回显类似如下信息:

[root@ecs-lvmtest ~]# lvextend -L +4GB /dev/vgdata/lvdata1 Size of logical volume vgdata/lvdata1 changed from 15.00 GiB (3840 extents) to 19.00 GiB (4864 extents). Logical volume vgdata/lvdata1 successfully resized.

此时只是扩展的逻辑卷的容量,在其之上的文件系统也要随之进行扩展才能使用。

步骤3 执行如下命令,扩展文件系统的容量。

resize2fs 逻辑卷路径

命令示例:

#### resize2fs /dev/vgdata/lvdata1

回显类似如下信息:

[root@ecs-lvmtest ~]# resize2fs /dev/vgdata/lvdata1 resize2fs 1.42.9 (28-Dec-2013)

Filesystem at /dev/vgdata/lvdata1 is mounted on /Data1; on-line resizing required old\_desc\_blocks = 4, new\_desc\_blocks = 28 The filesystem on /dev/vgdata/lvdata1 is now 3657728 blocks long.

#### 步骤4 执行如下命令,查看文件系统容量是否增加。

df -h

回显类似如下信息:

| [root@ecs-lvmtest ~] | ]# df -h                        |
|----------------------|---------------------------------|
| Filesystem           | Size Used Avail Use% Mounted on |
| /dev/vda2            | 39G 1.5G 35G 5% /               |
| devtmpfs             | 487M 0 487M 0% /dev             |
| tmpfs                | 496M 0 496M 0% /dev/shm         |
| tmpfs                | 496M 6.7M 490M 2% /run          |
| tmpfs                | 496M 0 496M 0% /sys/fs/cgroup   |
| /dev/vda1            | 976M 131M 779M 15% /boot        |
| tmpfs                | 100M 0 100M 0% /run/user/0      |
| /dev/mapper/vgdata   | -lvdata1 19G 44M 18G 1% /Data1  |

可以看到,文件系统"/dev/mapper/vgdata-lvdata1"的容量相比之前增加了4GB。

#### -----结束

# 1.4.5 扩容云硬盘扩展逻辑卷的容量

## 操作场景

当逻辑卷容量不能满足用户需求时,可以扩展逻辑卷的容量。本指导假设您创建的 19GB逻辑卷已经不能满足需求,通过扩容其中一个云硬盘,增加10GB容量。

#### 操作步骤

步骤1 在控制台扩容云硬盘。

- 1. 登录管理控制台。
- 2. 选择"存储 > 云硬盘"。进入云硬盘页面。
- 找到待扩容的云硬盘,扩容云硬盘。
   关于扩容云硬盘的详细操作,请参见扩容云硬盘容量。
- 步骤2 以root用户登录弹性云服务器。
- 步骤3 执行以下命令,查看系统是否正确识别扩容后的磁盘。

fdisk -l

回显类似如下信息:

| [rootlecs-lumtest ~]# fdisk -1                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886000 sectors<br>Units = sectors of 1 * 512 = 512 bytes<br>Sector size (logical/physical): 512 bytes / 512 bytes<br>I/O size (minimum/optimal): 512 bytes / 512 bytes<br>Disk label type: dos<br>Disk identifier: 0x000f1217 |  |
| Device Boot Start End Blocks Id System                                                                                                                                                                                                                                     |  |
| Disk /dev/vdb: 21.5 GB, 21474836480 bytes, 41943040 sectors<br>Units = sectors of 1 * 512 = 512 bytes<br>Sector size (logical/physical): 512 bytes / 512 bytes<br>I/O size (minimum/optimal): 512 bytes / 512 bytes                                                        |  |
| Disk ∕dev∕vdc: 10.7 GB, 10737418240 bytes, 20971520 sectors<br>Units = sectors of 1 * 512 = 512 bytes<br>Sector size (logical/physical): 512 bytes / 512 bytes<br>I/O size (minimun/pontimal): 512 butes / 512 bytes                                                       |  |
| Disk /dev/mapper/vgdata-lvdata1: 20.4 GB, 20401094656 bytes, 39845888 sectors<br>Units = sectors of 1 × 512 = 512 bytes<br>Sector size (logical/physical): 512 bytes / 512 bytes<br>I/Ø size (minimun/potimal): 512 bytes / 512 bytes                                      |  |

扩容前/dev/vdb的容量是10GB,扩容后为20GB。

步骤4 执行如下命令,查看LVM的物理卷相关信息。

#### pvdisplay

回显类似如下信息:

| Physical volume                                |  |
|------------------------------------------------|--|
| A HIG A OKA YO A KIND                          |  |
| PU Name /dev/vdb                               |  |
| UG Name vgdata                                 |  |
| PU Size 10.00 GiB / not usable 4.00 MiB        |  |
| Allocatable yes (but full)                     |  |
| PE Size 4.00 MiB                               |  |
| Total PE 2559                                  |  |
| Free PE 0                                      |  |
| Allocated PE 2559                              |  |
| PV UUID QC8WMe-cHfp-2cAJ-2kUH-ghXM-SDJw-mu8rKI |  |
|                                                |  |
| Physical volume                                |  |
| PU Name /dev/vdc                               |  |
| VG Name vgdata                                 |  |
| PU Size 10.00 GiB / not usable 4.00 MiB        |  |
| Allocatable yes                                |  |
| PE Size 4.00 MiB                               |  |
| Total PE 2559                                  |  |
| Free PE 254                                    |  |
| Allocated PE 2305                              |  |
| PV UUID vJxHtf-k86g-fHY1-32iV-xLCZ-bG9a-nEo0FU |  |

/dev/vdb的容量是10GB,说明物理卷容量未增加。

步骤5 执行如下命令,扩容该云硬盘对应的物理卷。

pvresize -v 磁盘设备名

命令示例:

pvresize -v /dev/vdb

回显类似如下信息:

| [root@ecs-lumtest~]# puresize -v /dev/udb                                         |
|-----------------------------------------------------------------------------------|
| Archiving volume group "vgdata" metadata (seqno 3).                               |
| Resizing volume "/dev/vdb" to 41943040 sectors.                                   |
| Resizing physical volume /dev/vdb from 2559 to 5119 extents.                      |
| Updating physical volume "/dev/vdb"                                               |
| Creating volume group backup "/etc/lvm/backup/vgdata" (segno 4).                  |
| Physical volume "/dev/vdb" changed                                                |
| 1 physical volume(s) resized or undated $\angle A$ physical volume(s) not resized |

说明/dev/vdb对应的物理卷扩容成功。

步骤6 如果还需要对现有分区进行扩容,执行如下命令,扩容对应逻辑卷。

lvextend -l +100%FREE 逻辑卷路径

命令示例:

lvextend -l +100%FREE /dev/vgdata/lvdata1

回显类似如下信息:

root@ccs-lumtest ~]# lvextend -1 \*100%FREE /dev/vgdata/lvdata1 Size of logical volume vgdata/lvdata1 changed from 19.00 GiB (4864 extents) to 29.99 GiB (7678 extents). Logical volume vgdata/lvdata1 successfully resized.

步骤7 执行如下命令,扩展磁盘分区文件系统的大小。

resize2fs 逻辑卷路径

命令示例:

resize2fs /dev/vgdata/lvdata1

回显类似如下信息:

| [root@ecs-lvmtest ~]# resize2fs /dev/vgdata/lvdata1                               |
|-----------------------------------------------------------------------------------|
| resize2fs 1.42.9 (28-Dec-2013)                                                    |
| Filesystem at /dev/vgdata/lvdata1 is mounted on /Data1; on-line resizing required |
| old_desc_blocks = 3, new_desc_blocks = 4                                          |
| [ 2591.781109] EXT4-fs (dm-0): resizing filesystem from 4980736 to 7862272 blocks |
| [ 2591.782411] EXT4-fs (dm-0): resized filesystem to 7862272                      |
| The filesystem on /dev/vgdata/lvdata1 is now 7862272 blocks long.                 |
|                                                                                   |

**步骤8**执行如下命令,查看扩容最终结果。

lvdisplay

回显类似如下信息:

| [root@ecs-lvmtest ~]# lv             | display                                |                           |
|--------------------------------------|----------------------------------------|---------------------------|
| Logical volume                       |                                        |                           |
| LV Path                              | /dev/vgdata/lvdata1                    |                           |
| LV Name                              | lvdatal                                |                           |
| UG Name                              | vgdata                                 |                           |
| LV UUID                              | 5FCqyK-HBJE-apc1-F198-PUVu-9pEd-Gg5gMM |                           |
| LV Write Access                      | read/write                             |                           |
| LV Creation host, time               | ecs-lvmtest, 2020-06-04 17:13:26 +0800 |                           |
| LV Status                            | available                              |                           |
| # open                               | 1                                      |                           |
| LV Size                              | 29.99 GiB                              |                           |
| Current LE                           | 7678                                   |                           |
| Segments                             | 3                                      | 29.99 GiB (7678 extents). |
| Allocation                           | inherit                                |                           |
| Read ahead sectors                   | auto                                   |                           |
| <ul> <li>currently set to</li> </ul> | 8192                                   |                           |
| Block device                         | 252:0                                  |                           |

可以看到,逻辑卷容量"LV Size"已经增加10GB。

----结束

# 1.4.6 新增云硬盘扩展卷组的容量

## 操作场景

如<mark>图1-4</mark>所示,当LVM卷组的空间无法满足您的需求时,您可以通过新创建云硬盘、创建物理卷、将物理卷添加到卷组中等操作,对LVM卷组进行扩容。



#### 图 1-4 扩容卷组示例

## 操作步骤

步骤1 创建云硬盘并挂载。

- 1. 登录管理控制台。
- 2. 选择"存储 > 云硬盘"。进入云硬盘页面。
- 9. 单击"购买磁盘",创建云硬盘。
   关于创建云硬盘的详细操作,请参见云硬盘用户指南。
- 4. 在云硬盘列表,找到新创建的云硬盘,单击"挂载"。
- 选择云硬盘待挂载的云服务器,该云服务器必须与云硬盘位于同一个可用分区, 通过下拉列表选择"挂载点"。
   返回云硬盘列表页面,此时云硬盘状态为"正在挂载",表示云硬盘处于正在挂 载至云服务器的过程中。当云硬盘状态为"正在使用"时,表示挂载至云服务器 成功。
- 步骤2 以root用户登录弹性云服务器。
- 步骤3 执行如下命令,查看系统中当前卷组的容量。

#### vgdisplay

回显类似如下信息:

```
[root@ecs-lvmtest ~]# vgdisplay
 --- Volume group ---
 VG Name
                  vgdata
System ID
 Format
                 lvm2
 Metadata Areas
                    2
 Metadata Sequence No 3
 VG Access
                 read/write
VG Status
                  resizable
MAX LV
                  0
```

| Cur LV          | 1                                      |
|-----------------|----------------------------------------|
| Open LV         | 1                                      |
| Max PV          | 0                                      |
| Cur PV          | 2                                      |
| Act PV          | 2                                      |
| VG Size         | 19.99 GiB                              |
| PE Size         | 4.00 MiB                               |
| Total PE        | 5118                                   |
| Alloc PE / Size | 4864 / 19.00 GiB                       |
| Free PE / Size  | 254 / 1016.00 MiB                      |
| VG UUID         | NLkZV7-hYYE-0w66-tnlt-Y6jL-Ik7S-76w4P6 |
|                 |                                        |

可以看到,当前卷组容量"VG Size"为19.99 GiB。

#### 步骤4 执行如下命令,查看磁盘并记录设备名称。

fdisk -l | grep /dev/vd | grep -v vda

回显类似如下信息:

[root@ecs-lvmtest ~]# fdisk -l | grep /dev/vd | grep -v vda Disk /dev/vdb: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vdc: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vdd: 10.7 GB, 10737418240 bytes, 20971520 sectors

可以看到云服务器上新挂载的磁盘,设备名称为"/dev/vdd"。

步骤5 执行如下命令,将新挂载的磁盘创建为物理卷。

pvcreate 磁盘设备名

命令示例:

#### pvcreate /dev/vdd

回显类似如下信息:

[root@ecs-lvmtest ~]# pvcreate /dev/vdd Physical volume "/dev/vdd" successfully created.

#### 步骤6 执行如下命令,添加物理卷到卷组中,对卷组进行扩容。

#### vgextend 卷组名称 物理卷名称

命令示例:

#### vgextend vgdata /dev/vdd

回显类似如下信息:

[root@ecs-lvmtest ~]# vgextend vgdata /dev/vdd Volume group "vgdata" successfully extended

**步骤7**执行如下命令,查看系统中卷组的详细信息。

#### vgdisplay

回显类似如下信息:

[root@ecs-lvmtest ~]# vgdisplay -- Volume group -VG Name vgdata System ID Format lvm2 Metadata Areas 3 Metadata Sequence No 4 VG Access read/write VG Status resizable

| MAX LV          | 0                                      |
|-----------------|----------------------------------------|
| Cur LV          | 1                                      |
| Open LV         | 1                                      |
| Max PV          | 0                                      |
| Cur PV          | 3                                      |
| Act PV          | 3                                      |
| VG Size         | <29.99 GiB                             |
| PE Size         | 4.00 MiB                               |
| Total PE        | 7677                                   |
| Alloc PE / Size | 4864 / 19.00 GiB                       |
| Free PE / Size  | 2813 / <10.99 GiB                      |
| VG UUID         | NLkZV7-hYYE-0w66-tnlt-Y6jL-Ik7S-76w4P6 |
|                 |                                        |

可以看到,卷组容量"VG Size"已经增加10GB。

----结束

# 2 使用云硬盘组建 RAID 磁盘阵列

# 2.1 使用云硬盘组建 RAID 磁盘阵列概述

独立冗余磁盘阵列(Redundant Array of Independent Disks,RAID ),是把多块独 立的磁盘(物理磁盘)按照一定的方式组合构建磁盘组(逻辑磁盘 )。相比单个磁 盘,能够提升存储性能和数据可靠性。

#### 🛄 说明

此处的物理磁盘由云硬盘替代,将独立的云硬盘组成RAID阵列,原理与使用物理磁盘相同。

本手册以操作系统为CentOS 7.5的云服务器为例,共使用4块云硬盘介绍了组件 RAID10的方法。RAID10是结合RAID1和RAID0两种磁盘阵列,先将磁盘两两组建成 RAID1镜像,再组建RAID0将数据分条存储,至少需要4块磁盘。云服务资源的具体信 息如下:

- 资源规划:资源规划
- 创建资源: 创建云服务器、创建并挂载云硬盘

## 常见 RAID 磁盘阵列介绍

| RAID<br>级别 | 简介                                                    | 读写性能               | 安全性能                                               | 磁盘使<br>用率 | 组同RAID<br>阿列的磁量<br>数量 |
|------------|-------------------------------------------------------|--------------------|----------------------------------------------------|-----------|-----------------------|
| RAID<br>0  | RAID0将数据分<br>条存储在多个磁<br>盘上,可实现并<br>行读写,提供最<br>快的读写速率。 | 多个磁盘并行读<br>写获取更高性能 | 最差<br>没有冗余能<br>力,一个磁盘<br>损坏,整个<br>RAID阵列数据<br>都不可用 | 100%      | 两块                    |

表 2-1 常见 RAID 磁盘阵列介绍

| RAID<br>级别 | 简介                                                                                    | 读写性能                                                      | 安全性能                                                                                                                         | 磁盘使<br>用率 | 组同RAID<br>阿列的磁盘<br>少数量 |
|------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
| RAID<br>1  | 通过构造数据氘<br>像实现数据冗<br>余,阵列中一半<br>的磁盘容量投入<br>使用,另一半磁<br>盘容量用来做镜<br>像,提供数据备<br>份。        | 读性能:与单个<br>磁盘相同<br>写性能:需要将<br>数据写入两个磁<br>盘,写性能低于<br>单个磁盘  | 最高<br>提供完整到中的<br>时,动来的<br>自动。<br>提<br>。<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一 | 50%       | 两块                     |
| RAID<br>01 | 结合RAID0和<br>RAID1两种磁盘<br>阵列,先将一半<br>磁盘组建成<br>RAID0分条存储<br>数据,再用另一<br>半磁盘做RAID1<br>镜像。 | 读性能:和<br>RAID0相同<br>写性能:和<br>RAID1相同                      | 比RAID10的安<br>全性能低                                                                                                            | 50%       | 四块                     |
| RAID<br>10 | 结合RAID1和<br>RAID0两种磁盘<br>阵列,先将磁盘<br>两两组建成<br>RAID1镜像,再<br>组建RAID0将数<br>据分条存储。         | 读性能:RAID0<br>相同<br>写性能:RAID1<br>相同                        | 和RAID1的安<br>全性能相同                                                                                                            | 50%       | 四块                     |
| RAID<br>5  | RAID5不需要单<br>独指定数据校验<br>磁盘,而是将每<br>块磁盘生成的校<br>验信息分块存储<br>至阵列中的每块<br>磁盘中。              | 读性能:和<br>RAID0相同<br>写性能:由于要<br>写入奇偶校验信<br>息,写性能低于<br>单个磁盘 | 比RAID10的安<br>全性能低                                                                                                            | 66.7%     | 三块                     |

# 2.2 资源规划

本章节介绍了组建RAID10的云服务器及云硬盘资源的规划情况。

# 云服务器资源

本示例中创建了1台云服务器,参数配置如<mark>表2-2</mark>所示。

#### 表 2-2 云服务器配置参数

| 参数       | 配置信息                              |
|----------|-----------------------------------|
| 名称       | ecs-raid10                        |
| 镜像       | CentOS 7.5 64bit                  |
| 规格       | 通用计算型、s2.medium.2(1vCPUs、2GiB内存 ) |
| 弹性公网IP地址 | 139. <i>XX.XX.XX</i>              |
| 私有IP地址   | 192.168.1.189                     |

## 云硬盘资源

由于组建RAID10至少需要4块云硬盘,本示例中批量创建了4块云硬盘,并挂载至云服务。

# 2.3 实施步骤

# 2.3.1 创建云服务器

#### 操作场景

本章节指导用户创建云服务器。本示例中共创建1台云服务器,配置情况请参见<mark>资源规</mark> 划。

#### 操作步骤

- 步骤1 登录管理控制台。
- **步骤2** 选择"计算 > 弹性云服务器"。 进入弹性云服务器页面。
- 步骤3 单击"购买弹性云服务器"。

关于创建弹性云服务器的详细操作,请参见"弹性云服务器用户指南"。

创建云服务器过程中,以下参数请按照说明配置:

- 镜像:本示例中云服务器的镜像为"CentOS 7.5 64bit"。
- 弹性公网IP地址: 云服务器需要访问公网时,必须使用弹性公网IP,由于本示例需 要安装mdadm(multiple devices admin)工具,因此必须开通弹性公网IP。请 您根据实际情况购买或者使用已有。

本示例中使用新购买的IP,如<mark>图2-1</mark>所示。

图 2-1 配置弹性公网 IP

| 弹性公网IP 🕜 | 如有互联网访问需求, | 请先规划您的弹性公网 | 刚IP资源。单击 <mark>这里</mark> 查》 | 看弹性公 网 IP |
|----------|------------|------------|-----------------------------|-----------|
|          | 现在购买       | 使用已有       | 暂不购买                        |           |

本示例创建1台云服务器,具体参数如<mark>表2-3</mark>所示。

#### 表 2-3 云服务器规格

| 云服务器规格     |                                         | 计费模式 | 数量 |
|------------|-----------------------------------------|------|----|
| 规格         | 通用计算型   s2.medium.2  <br>1vCPUs   2GiB  | 按需付费 | 1  |
| 镜像         | CentOS 7.5 64bit                        |      |    |
| 系统盘        | 高IO, 40GB                               |      |    |
| 虚拟私有云      | vpc-1a55                                |      |    |
| 安全组        | Sys-default                             |      |    |
| 网卡         | subnet-1a55(192.168.1.0/24)             |      |    |
| 弹性公网IP     | 规格: 静态BGP<br>计费方式: 按带宽计费 带宽:<br>5Mbit/s |      |    |
| 云服务器名<br>称 | ecs-raid10                              |      |    |

----结束

# 2.3.2 创建并挂载云硬盘

操作场景

本章节指导用户批量创建4块云硬盘,并挂载至云服务器。

## 操作步骤

- 步骤1 登录管理控制台。
- **步骤2**选择"存储 > 云硬盘"。

进入云硬盘页面。

**步骤3**单击"购买磁盘",创建云硬盘。

关于创建云硬盘的详细操作,请参见"云硬盘用户指南"。 本示例为批量创建4块云硬盘,具体参数如<mark>图2-2</mark>所示。

#### **图 2-2** 云硬盘规格

| 购买磁盘 ◎ |                                                                  |                                                                      |        |    |            |
|--------|------------------------------------------------------------------|----------------------------------------------------------------------|--------|----|------------|
| ✔ 服务选型 |                                                                  |                                                                      | 2 规格确认 |    | 3 完成       |
| 详情     |                                                                  |                                                                      |        |    |            |
| 产品类型   | 产品规格                                                             |                                                                      | 计费模式   | 数量 | 价格         |
| 斑聲     | 区域<br>可用区<br>数据原<br>容量(5B)<br>磁量加度<br>磁量加度式<br>共享金<br>磁盘条称<br>振荡 | 广州<br>可用区2<br>智不配置<br>10<br>普通IO<br>否<br>VBD<br>不共享<br>volume-raid10 | 按需计费   | 4  | ¥0.0168/小时 |

步骤4 将云硬盘挂载至云服务器。

#### ----结束

# 2.3.3 使用 mdadm 工具创建云硬盘 RAID 阵列

#### 操作场景

本章节指导用户通过mdadm工具创建RAID阵列,以RAID10为例。

本文以云服务器的操作系统为"CentOS 7.5 64bit"为例。不同云服务器的操作系统的配置可能不同,本文仅供参考,具体操作步骤和差异请参考对应操作系统的产品文档。

#### 操作步骤

步骤1 使用root用户登录云服务器。

步骤2 执行以下命令,查看磁盘并记录设备名称。

fdisk -l | grep /dev/vd | grep -v vda

#### 回显类似如下信息:

[root@ecs-raid10 ~]# fdisk -l | grep /dev/vd | grep -v vda Disk /dev/vdb: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vdc: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vdd: 10.7 GB, 10737418240 bytes, 20971520 sectors Disk /dev/vde: 10.7 GB, 10737418240 bytes, 20971520 sectors

可以看到云服务器上挂载的4块磁盘,设备名称分别为"/dev/vdb"、"/dev/vdc"、 "/dev/vdd"和"/dev/vde"。

步骤3 执行以下命令,安装mdadm工具。

#### yum install mdadm -y

🛄 说明

mdadm是Linux下的RAID管理工具,务必确保安装mdadm工具的云服务器已开通弹性公网IP。

回显类似如下信息: [root@ecs-raid10~]# yum install mdadm -y ..... Installed: mdadm.x86 64 0:4.0-13.el7 Dependency Installed: libreport-filesystem.x86\_64 0:2.1.11-40.el7.centos

Complete!

#### 步骤4 执行以下命令,使用步骤2中查到的4块磁盘创建RAID阵列。

mdadm -Cv RAID阵列设备名 -a yes -n 磁盘数量 -l RAID级别 磁盘1设备名 磁盘2设备名 磁盘3设备名 磁盘4设备名...

参数说明如下:

- RAID阵列设备名:可自定义,此处以/dev/md0为例。
- 磁盘数量:根据实际情况填写,此处RAID10至少为4块。
- 不同的RAID阵列要求的最小磁盘数量不同,具体说明请参见<mark>使用云硬盘组建RAID</mark> 磁盘阵列概述。
- RAID级别:根据实际情况填写,此处以RAID10为例。
- 磁盘设备名:此处需要填写待组建RAID阵列的所有磁盘设备名,中间以空格隔开。

命令示例:

#### mdadm -Cv /dev/md0 -a yes -n 4 -l 10 /dev/vdb /dev/vdc /dev/vdd /dev/vde

回显类似如下信息: [root@ecs-raid10 ~]# mdadm -Cv /dev/md0 -a yes -n 4 -l 10 /dev/vdb /dev/vdc /dev/vdd /dev/vde mdadm: layout defaults to n2 mdadm: layout defaults to n2 mdadm: chunk size defaults to 512K mdadm: size set to 10476544K mdadm: Defaulting to version 1.2 metadata mdadm: array /dev/md0 started.

步骤5 执行以下命令,格式化新建的RAID阵列。

mkfs.文件格式 RAID阵列设备名

命令示例:

#### mkfs.ext4 /dev/md0

回显类似如下信息: [root@ecs-raid10 ~]# mkfs.ext4 /dev/md0 mke2fs 1.42.9 (28-Dec-2013) Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=128 blocks, Stripe width=256 blocks 1310720 inodes, 5238272 blocks 261913 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=2153775104 160 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208, 4096000 Allocating group tables: done

Writing inode tables: done Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done 步骤6 执行以下命令,创建挂载目录。

mkdir 挂载目录

命令示例:

mkdir /RAID10

步骤7 执行以下命令,挂载RAID阵列设备名。

mount RAID阵列设备名 挂载目录

命令示例:

mount /dev/md0 /RAID10

步骤8 执行以下命令,查看RAID阵列的挂载结果。

#### df -h

| 回显类似如下信息:    |                                 |  |  |  |
|--------------|---------------------------------|--|--|--|
| [root@ecs-ra | [root@ecs-raid10 ~]# df -h      |  |  |  |
| Filesystem   | Size Used Avail Use% Mounted on |  |  |  |
| /dev/vda2    | 39G 1.5G 35G 5% /               |  |  |  |
| devtmpfs     | 911M 0 911M 0% /dev             |  |  |  |
| tmpfs        | 920M 0 920M 0% /dev/shm         |  |  |  |
| tmpfs        | 920M 8.6M 911M 1% /run          |  |  |  |
| tmpfs        | 920M 0 920M 0% /sys/fs/cgroup   |  |  |  |
| /dev/vda1    | 976M 146M 764M 17% /boot        |  |  |  |
| tmpfs        | 184M 0 184M 0% /run/user/0      |  |  |  |
| /dev/md0     | 20G 45M 19G 1%/RAID10           |  |  |  |
|              |                                 |  |  |  |

步骤9 执行以下步骤,设置云服务器系统启动时自动挂载RAID阵列。

1. 执行以下命令,打开"/etc/fstab"文件。

vi /etc/fstab

2. 按"i"进入编辑模式。

回显类似如下信息: [root@ecs-raid10 ~]# vi /etc/fstab

# # /etc/fstab

# Created by anaconda on Tue Nov 7 14:28:26 2017

#

# Accessible filesystems, by reference, are maintained under '/dev/disk' # See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

#

UUID=27f9be47-838b-4155-b20b-e4c5e013cdf3 / ext4 defaults 1 1 UUID=2b2000b1-f926-4b6b-ade8-695ee244a901 /boot ext4 defaults 1 2

- 3. 参考以下示例,在文件的最后一行添加如下配置:

   /dev/md0
   /RAID10

   ext4
   defaults
   0 0
- 按 "Esc",输入 ":wq!",并按 "Enter"。
   保存设置并退出vi编辑器。
- 步骤10 执行以下命令,查看磁盘RAID阵列的信息。

mdadm -D RAID阵列设备名

命令示例:

mdadm -D /dev/md0

回显类似如下信息:

[root@ecs-raid10 ~]# mdadm -D /dev/md0 /dev/md0: Version: 1.2 Creation Time : Thu Nov 8 15:49:02 2018 Raid Level : raid10 Array Size : 20953088 (19.98 GiB 21.46 GB) Used Dev Size : 10476544 (9.99 GiB 10.73 GB) Raid Devices : 4 Total Devices : 4 Persistence : Superblock is persistent Update Time : Thu Nov 8 16:15:11 2018 State : clean Active Devices : 4 Working Devices : 4 Failed Devices : 0 Spare Devices : 0 Layout : near=2 Chunk Size : 512K Consistency Policy : resync Name : ecs-raid10.novalocal:0 (local to host ecs-raid10.novalocal) UUID : f400dbf9:60d211d9:e006e07b:98f8758c Events : 19

Number Major Minor RaidDevice State 0 253 16 0 active sync set-A /dev/vdb 253 32 active sync set-B /dev/vdc 1 1 2 3 2 253 48 active sync set-A /dev/vdd 3 253 64 active sync set-B /dev/vde

----结束

# 2.3.4 配置云硬盘 RAID 阵列开机自启动

### 操作场景

本章节指导用户在mdadm配置文件中添加新建RAID阵列的信息,例如设备名、UUID 等。系统启动时,通过查询文件中配置的信息,启动运行可用的RAID阵列。

本文以云服务器的操作系统为"CentOS 7.5 64bit"为例。不同云服务器的操作系统的配置可能不同,本文仅供参考,具体操作步骤和差异请参考对应操作系统的产品文档。

## 操作步骤

- 步骤1 使用root用户登录云服务器。
- 步骤2 执行以下命令,查看RAID阵列的UUID等信息。

#### mdadm --detail --scan

回显类似如下信息: [root@ecs-raid10 ~]# mdadm --detail --scan ARRAY /dev/md0 metadata=1.2 name=ecs-raid10.novalocal:0 UUID=f400dbf9:60d211d9:e006e07b:98f8758c

#### 步骤3 执行以下步骤,在mdadm文件中添加新建RAID阵列的信息。

1. 执行以下命令,打开"mdadm.conf"文件。

#### vi /etc/mdadm.conf

- 2. 按"i"进入编辑模式。
- 参考以下示例,在文件最后添加如下配置: DEVICE /dev/vdb /dev/vdc /dev/vdd /dev/vde ARRAY /dev/md0 metadata=1.2 name=ecs-raid10.novalocal:0 UUID=f400dbf9:60d211d9:e006e07b:98f8758c 说明如下:
  - DEVICE行:为组建RAID阵列的磁盘设备名,多个磁盘设备名以空格隔开。
  - ARRAY行:此处填写<mark>步骤2</mark>中查到的RAID阵列信息。

#### 门 说明

此处仅为本示例的信息,请根据RAID阵列的实际信息添加。

按 "Esc",输入 ":wq!",并按 "Enter"。
 保存设置并退出vi编辑器。

步骤4 执行以下命令,查看"mdadm.conf"文件是否修改成功。

#### more /etc/mdadm.conf

回显类似如下信息: [root@ecs-raid10 ~]# more /etc/mdadm.conf DEVICE /dev/vdb /dev/vdc /dev/vdd /dev/vde ARRAY /dev/md0 metadata=1.2 name=ecs-raid10.novalocal:0 UUID=f400dbf9:60d211d9:e006e07b:98f8758c

可以看到步骤3中添加的信息,表示修改成功。

----结束