算法结果CSV格式说明
| 
       算法  | 
     
       支持程度  | 
     
       header  | 
     
       content  | 
     
       e.g.  | 
    
|---|---|---|---|---|
| 
       all_pairs_shortest_paths  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # batch_paths:  | 
     
       每行为1对pair的多条路,格式: {sourceID},{targetID},"[[{sourceID},{v1},...,{targetID}],...]"  | 
     
       # runtime: 4.411 # paths_number: 20 # data_total_size: 25 # data_return_size: 25 # data_offset: 0 # batch_paths: "121","66","[["121","25","66"]]"  | 
    
| 
       all_shortest_paths  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{targetID}  | 
     
       # runtime: 0.207 # source: 121 # target: 66 # paths_number: 2 # data_total_size: 2 # data_return_size: 2 # data_offset: 0 # paths: 121,7,66 121,25,66  | 
    
| 
       all_shortest_paths_of_vertex_sets  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{targetID}  | 
     
       # runtime: 2.772 # sources: 48,129,34,36 # targets: 46,66,101 # paths_number: 15 # data_total_size: 15 # data_return_size: 15 # data_offset: 0 # paths: 36,72,101 36,59,46 36,73,46  | 
    
| 
       betweenness  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # betweenness:  | 
     
       {vertexID},{betweenness}  | 
     
       # runtime: 1.593 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # betweenness: 79,20.697222222222223 80,12.290584415584414 81,1.5  | 
    
| 
       bigclam  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # community_num: {community_num} # log_likelihood: {log_likelihood} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # communities:  | 
     
       {vertexID}, {community}  | 
     
       # runtime: 2.754 # community_num: 1 # log_likelihood: -5593.4549824494925 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # communities: 6,0 13,0  | 
    
| 
       cesna  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # community_num: {community_num} # log_likelihood: {log_likelihood} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # communities:  | 
     
       {vertexID}, {community}  | 
     
       # runtime: 40114.213 # community_num # log_likelihood # data_total_size: 1344 # data_return_size: 1344 # data_offset: 0 # communities: 3850,3 3858,3 3866,3  | 
    
| 
       closeness  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # closeness:  | 
     
       {closeness}  | 
     
       # runtime: 0.394 # source: 12 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # closeness: 0.5087719298245614  | 
    
| 
       cluster_coefficient (statistic = true)  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # cluster_coefficient: {cluster_coefficient} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertex_cluster_coefficient:  | 
     
       {vertexID},{cluster_coefficient}  | 
     
       # runtime: 0.661 # cluster_coefficient: 0.13517429595852912 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertex_cluster_coefficient:  | 
    
| 
       common_neighbors_of_vertex_sets  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # common_neighbors: {common_neighbors} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertices:  | 
     
       {vertexID}  | 
     
       # runtime: 0.42 # common_neighbors: 26 # data_total_size: 26 # data_return_size: 26 # data_offset: 0 # vertices: 103 138 98  | 
    
| 
       connected_component  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # community_num: {community_num} # Max_WCC_size: {Max_WCC_size} # Max_WCC_id: {Max_WCC_id} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community:  | 
     
       {vertexID},{community}  | 
     
       # runtime: 0.263 # community_num: 1 # Max_WCC_size # Max_WCC_id # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,0 6,0 13,0  | 
    
| 
       edge_betweenness  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # edge_betweenness:  | 
     
       {sourceID},{targetID},{edge_betweenness}  | 
     
       # runtime: 153.006 # data_total_size: 311 # data_return_size: 311 # data_offset: 0 # edge_betweenness: 51,20,1.3333333333333333 51,33,7.192099567099566 51,10,3.4761904761904763  | 
    
| 
       infomap  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # min_code_length: {min_code_length} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community:  | 
     
       {vertexID},{community}  | 
     
       # runtime: 98.158 # min_code_length: 6.2680095519443135 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,20000000055 6,20000000050 13,20000000014  | 
    
| 
       k_hop  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # k: {k} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertices:  | 
     
       {vertexID}  | 
     
       # runtime: 0.442 # source: 76 # k: 6 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertices: 2 6 13  | 
    
| 
       kcore  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # kmax: {kmax} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # coreness:  | 
     
       {vertexID},{coreness}  | 
     
       # runtime: 10.882 # kmax: 15 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # coreness: 2,14 6,15 13,15  | 
    
| 
       label_propagation  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community:  | 
     
       {vertexID},{community}  | 
     
       # runtime: 2.624 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,10000000024 6,10000000024 13,10000000024  | 
    
| 
       link_prediction  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # link_prediction:  | 
     
       {link_prediction}  | 
     
       # runtime: 0 # source: 123 # target: 43 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # link_prediction: 0.07017543859649122  | 
    
| 
       louvain  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # modularity: {modularity} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community:  | 
     
       {vertexID},{community}  | 
     
       # runtime: 45.835 # modularity: 0.16375671670152867 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,20000000062 6,20000000050 13,20000000050  | 
    
| 
       n_paths  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{targetID}  | 
     
       # runtime: 8.025 # source: 123 # target: 87 # paths_number: 100 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # paths: 123,21,87 123,13,87 123,32,87  | 
    
| 
       od_betweenness  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # edge_betweenness:  | 
     
       {sourceID},{targetID},{edge_betweenness}  | 
     
       # runtime: 1.391 # data_total_size: 311 # data_return_size: 311 # data_offset: 0 # edge_betweenness: 51,20,0 51,33,0 51,10,0  | 
    
| 
       pagerank  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # pagerank:  | 
     
       {vertexID},{pagerank}  | 
     
       # runtime: 4.044 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # pagerank: 2,0.007888904051903298 6,0.013215863692849642 13,0.01860530199450448  | 
    
| 
       personalrank  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # personalrank:  | 
     
       {vertexID},{personalrank}  | 
     
       # runtime: 2.326 # source: 46 # data_total_size: 49 # data_return_size: 49 # data_offset: 0 # personalrank: 0,0.0021350905350732297 1,0.004591151406893241  | 
    
| 
       shortest_path  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # path:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{targetID}  | 
     
       # runtime: 0.308 # source: 123 # target: 5 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # path: 123,10,137,5  | 
    
| 
       shortest_path_of_vertex_sets  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # path:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{targetID}  | 
     
       # runtime: 1.832 # source: 24 # target: 121 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # path: 24,121  | 
    
| 
       single_vertex_circles_detection  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # source: {source} # min_circle_length: {min_circle_length} # max_circle_length: {max_circle_length} # limit_circle_number: {limit_circle_number} # circle_number: {circle_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # circles:  | 
     
       每行为一条路,格式: {sourceID},{vertexID1},...,{sourceID}  | 
     
       # runtime: 37.46 # source: 122 # target: # min_circle_length: 3 # max_circle_length: 10 # limit_circle_number: 100 # circle_number: 100 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # circles: 122,82,79,76,65,122 122,125,135,77,65,122 122,82,114,96,65,122  | 
    
| 
       sssp  | 
     
       本地,OBS  | 
     
      
       # runtime: {runtime} # source: {source} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # distance:  | 
     
       {vertexID},{distance}  | 
     
       # runtime: 0.452 # source: 32 # data_total_size: 48 # data_return_size: 48 # data_offset: 0 # distance: 0,2 5,2 7,2  | 
    
| 
       subgraph_matching  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # pattern_graph: {pattern_graph} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # subgraphs:  | 
     
       每行为一个匹配的子图,格式: {vertexID1},{vertexID2},...,{vertexIDn}  | 
     
       ------ statistics = true------- # runtime: 1.376 # pattern_graph: 2,3,1 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # subgraph_number: 1556 ------ statistics = false------- # runtime: 0.956 # pattern_graph: 2,3,1 # subgraph_number: 0 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # subgraphs: 0,51,126 0,51,131 0,126,113  | 
    
| 
       topic_rank  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # topicrank:  | 
     
       {vertexID},{topicrank}  | 
     
       # runtime: 1.11 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # topicrank: 2,0.00663068274092574 6,0.007278130208954746 13,0.007869137668788257  | 
    
| 
       triangle_count (statistic = true)  | 
     
       本地,OBS  | 
     
       # runtime: {runtime} # triangle_count: {triangle_count} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertex_triangles:  | 
     
       {vertexID},{vertex_triangles}  | 
     
       # runtime: 0.491 # triangle_count: 1653 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertex_triangles:  | 
    
 
  算法结果失败返回示例:
Http Status Code: 400
{
"errorMessage": "Unsupported output file format",
"errorCode": "GES.8301"
}